Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Preparation and use of Coppersensor-1, a synthetic fluorophore for live-cell copper imaging

Abstract

Coppersensor-1 (CS1) is a small-molecule, membrane-permeable fluorescent dye for imaging labile copper pools in biological samples, including live cells. This probe, comprising a boron dipyrromethene (BODIPY) chromophore coupled to a thioether-rich receptor, has a picomolar affinity for Cu+ with high selectivity over competing cellular metal ions. CS1 fluorescence increases up to 10-fold on binding to Cu+. In this protocol we describe the synthesis of CS1 and how to use this chemical tool to investigate intracellular levels of labile copper in cultured cells. The preparation of CS1 is anticipated to take 4–5 d, and imaging assays can be performed in 1–2 d with cultured cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: Live-cell copper imaging with CS1.

Similar content being viewed by others

References

  1. Lippard, S.J. & Berg, J. Principles of Bioinorganic Chemistry (University Science Books, Mill Valley, CA, 1994).

    Google Scholar 

  2. Tapiero, H., Townsend, D.M. & Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 57, 386–398 (2003).

    Article  CAS  Google Scholar 

  3. Puig, S. & Thiele, D.J. Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 6, 171–180 (2002).

    Article  CAS  Google Scholar 

  4. Prohaska, J.R. & Gybina, A.A. Intracellular copper transport in mammals. J. Nutr. 134, 1003–1006 (2004).

    Article  CAS  Google Scholar 

  5. Huffman, D.L. & O'Halloran, T.V. Function, structure, and mechanism of intracellular copper trafficking proteins. Annu. Rev. Biochem. 70, 677–701 (2001).

    Article  CAS  Google Scholar 

  6. Field, L.S., Luk, E. & Culotta, V.C. Copper chaperones: personal escorts for metal ions. J. Bioenerg. Biomembr. 34, 373–379 (2002).

    Article  CAS  Google Scholar 

  7. Arnesano, F., Banci, L., Bertini, I. & Ciofi-Baffoni, S. Perspectives in inorganic structural genomics: a trafficking route for copper. Eur. J. Inorg. Chem. 1583–1593 (2004).

  8. Brem, S.S. et al. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. Am. J. Pathol. 137, 1121–1142 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Brewer, G.J. Anticopper therapy against cancer and diseases of inflammation and fibrosis. Drug Disc. Today 10, 1103–1109 (2005).

    Article  CAS  Google Scholar 

  10. Nath, R. Copper deficiency and heart disease: molecular basis, recent advances and current concepts. Int. J. Biochem. Cell Biol. 29, 1245–1254 (1997).

    Article  CAS  Google Scholar 

  11. Connor, J.R. Metals and Oxidative Damage in Neurological Disorders (Plenum Press, New York, 1997).

    Book  Google Scholar 

  12. Sigel, A. & Sigel, H., eds. Metal Ions in Biological Systems: Interrelations Between Free Radicals and Metal Ions in Life Processes, Vol. 36 (Dekker, New York, 1999).

    Google Scholar 

  13. Waggoner, D.J., Bartnikas, T.B. & Gitlin, J.D. The role of copper in neurodegenerative disease. Neurobiol. Dis. 6, 221–230 (1999).

    Article  CAS  Google Scholar 

  14. Bush, A.I., Masters, C.L. & Tanzi, R.E. Copper, β-amyloid, and Alzheimer's disease: tapping a sensitive connection. Proc. Natl. Acad. Sci. USA 100, 11193–11194 (2003).

    Article  CAS  Google Scholar 

  15. Barnham, K.J., Masters, C.L. & Bush, A.I. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3, 205–214 (2004).

    Article  CAS  Google Scholar 

  16. Bellingham, S.A. et al. Gene knockout of amyloid precursor protein and amyloid precursor-like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J. Neurochem. 91, 423–428 (2004).

    Article  CAS  Google Scholar 

  17. Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat. Genet. 3, 7–13 (1993).

    Article  CAS  Google Scholar 

  18. Bull, P.C., Thomas, G.R., Rommens, J.M., Forbes, J.R. & Cox, D.W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat. Genet. 5, 327–337 (1993).

    Article  CAS  Google Scholar 

  19. Valentine, J.S. & Hart, P.J. Misfolded CuZnSOD and amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 100, 3617–3622 (2003).

    Article  CAS  Google Scholar 

  20. Bruijn, L.I., Miller, T.M. & Cleveland, D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 27, 723–749 (2004).

    Article  CAS  Google Scholar 

  21. Furukawa, Y. & O'Halloran, T.V. Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J. Biol. Chem. 280, 17266–17274 (2005).

    Article  CAS  Google Scholar 

  22. Hart, P.J. Pathogenic superoxide dismutase structure, folding, aggregation and turnover. Curr. Opin. Chem. Biol. 10, 131–138 (2006).

    Article  CAS  Google Scholar 

  23. Brown, D.R. & Kozlowski, H. Biological inorganic and bioinorganic chemistry of neurodegeneration based on prion and Alzheimer diseases. Dalton Trans. 1907–1917 (2004).

  24. Millhauser, G.L. Copper binding in the prion protein. Acc. Chem. Res. 37, 79–85 (2004).

    Article  CAS  Google Scholar 

  25. Tsien, R.W. & Tsien, R.Y. Calcium channels, stores, and oscillations. Annu. Rev. Cell Biol. 6, 715–760 (1990).

    Article  CAS  Google Scholar 

  26. Yang, L. et al. Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron X-ray fluorescence microscopy. Proc. Natl. Acad. Sci. USA 102, 11179–11184 (2005).

    Article  CAS  Google Scholar 

  27. Zeng, L., Miller, E.W., Pralle, A., Isacoff, E.Y. & Chang, C.J. A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc. 128, 10–11 (2006).

    Article  CAS  Google Scholar 

  28. Tanaka, M. et al. Synthesis and metal-ion binding properties of monoazathiacrown ethers. J. Org. Chem. 66, 7008–7012 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, E., Zeng, L., Domaille, D. et al. Preparation and use of Coppersensor-1, a synthetic fluorophore for live-cell copper imaging. Nat Protoc 1, 824–827 (2006). https://doi.org/10.1038/nprot.2006.140

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.140

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing