# Some Concepts of Graph Theory 

Malay Bhattacharyya<br>SRF, MIU, ISI Kolkata

## The ston) (ayegins.m

- königsberg bridge on the Pregel River



## The königsbergibidge problemm

Find a traversal through the cities that would cross each bridge once and only once.

## Formalized version:

Find an Euler walk in the shown graph.


## A giapp

- $G=(V, E)$
- $V$ : Set of vertices $\left\{v 1, v 2, \ldots, v_{m}\right\}$
- $E$ : Set of edges $\left\{e 1, e 2, \ldots, e_{n}\right\}$
- $E \subseteq V \times V$
- Order of the graph: $m$
- Size of the graph: $n$


## Vertex incidencesselfloopssand degree

Given, $G=(V, E)$
$\mathrm{I}(v)=\{(i, j) \subseteq V \times v \mid(i, j) \in E\}$
$\mathrm{d}(v)=|\mathrm{I}(v)|$
$\mathrm{d}(G)=(1 /|V|) \cdot \sum_{v \in V} \mathrm{~d}(v)$
$\sum_{v \in V} \mathrm{~d}(v)$ is twice the size of the graph ie. $2|E|$


## Directeddgraph

- Distinguishing vertex pairs



## In-degree añdout-degmee

ㅁ In-degree: $\mathrm{d}^{-}(v)$

- Out-degree: $\mathrm{d}^{+}(v)$

$$
\sum_{v \in V} \mathrm{~d}^{-}(v)=\sum_{v \in V} \mathrm{~d}^{+}(v)=|\mathrm{E}|
$$

## Significantitheoren

- The number of vertices of odd degree in a graph is always even.


## Walks, pathenand cyeles

- A walk is a sequence of edges in a graph
- A walk in which no edge is repeated is a trail
- A trail in which no vertex is repeated is a path
- A path which have same start and end vertices is a cycle



## Propertiesøf a tree

- A tree is a connected graph with no cycles
- There is one and only one path between every pair of vertices

ㅁ The degree of a tree with $n$ vertices is $2(n-1) / n$

## Cliques: Complete subgrapis

1-vertex cliques (vertices) - 23,
2-vertex cliques (edges) - 42,
3-vertex cliques (light blue triangles) - 19 (11 are maximal),
4-vertex cliques (dark blue trianges) - 2 (both are maximum and maximal).

Clique number of the graph: 4


## Bipartite grapheand bicllqque

$G=(V 1, V 2, E)$, where $E \subseteq V 1 \times V 2$


## Planar and nom=planar gravilh



## The stotis) (ends...刀

- An Euler walk is a walk that traverses every edges of a graph once
- Criterion: During any walk in the graph, the number of times one enters a non-terminal vertex equals the number of times one leaves it.
- Thus, the degree values of the non-terminal vertices should be even.
- But, this graph has degree values 3, 3, 5, 5 .
- So, no solution exists.


## References

1. F. Harary, Graph Theory, Addison-Wesley, 1969.
2. N. Deo. Graph Theory with Application to Engineering and Computer Science, Prentice-Hall, Englewood Cliffs, N.J., 1974.
3. C. Berge, Graphs, North-Holland, 1985.
4. R. J. Trudeau, Introduction to Graph Theory, Dover Publications, 1994.
5. D. B. West, Introduction to Graph Theory, Prentice Hall, 1996.
6. Introduction to Graph Theory by R.J. Wilson Addison Wesley Longman 1996.
7. R. Diestel. Graph Theory, Third Edition, Springer, Heidelberg, 2000.
8. M. C. Golumbic, Algorithmic Graph Theory and its Applications, Second Edition, Annals of Discrete Mathematics, 57, 2004.

## Thank you

