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Abstract

A detailed account is here presented of our high resolution nuclear magnetic resonance (HR-NMR)
and near infrared (NIR) calibration models, methodologies and validation procedures, together with
a large number of composition analyses for soybean seeds. NIR calibrations were developed based
on both HR-NMR and analytical chemistry reference data for oil and twelve amino acid residues in
mature soybeans and soybean embryos. This is our first report of HR-NMR determinations of amino
acid profiles of proteins from whole soybean seeds, without protein extraction from the seed. It was
found that the best results for both oil and protein calibrations were obtained with a Partial Least
Squares Regression (PLS-1) analysis of our extensive NIR spectral data, acquired with either a
DA7000 Dual Diode Array (Si and InGaAs detectors) instrument or with several Fourier Transform
NIR (FT-NIR) spectrometers equipped with an integrating sphere/InGaAs detector accessory. In
order to extend the bulk soybean samples calibration models to the analysis of single soybean
seeds, we have analized in detail the component NIR spectra of all major soybean constituents
through spectral deconvolutions for bulk, single and powdered soybean seeds. Baseline variations
and light scattering effects in the NIR spectra were corrected, respectively, by calculating the first-
order derivatives of the spectra and the Multiplicative Scattering Correction (MSC). The single
soybean seed NIR spectra are broadly similar to those of bulk whole soybeans, with the exception of
minor peaks in single soybean NIR spectra in the region from 950 to 1,000 nm. Based on previous
experience with bulk soybean NIR calibrations, the PLS-1 calibration model was selected for protein,
oil and moisture calibrations that we developed for single soybean seed analysis. In order to improve
the reliability and robustness of our calibrations with the PLS-1 model we employed standard
samples with a wide range of soybean constituent compositions: from 34% to 55% for protein, from
11% to 22% for oil and from 2% to 16% for moisture. Such calibrations are characterized by low
standard errors and high degrees of correlation for all major soybean constituents. Morever, we
obtained highly resolved NIR chemical images for selected regions of mature soybean embryos that
allow for the quantitation of oil and protein components. Recent developments in high-resolution FT-
NIR microspectroscopy extend the NIR sensitivity range to the picogram level, with submicron
spatial resolution in the component distribution throughout intact soybean seeds and embryos. Such
developments are potentially important for biotechnology applications that require rapid and ultra-
sensitive analyses, such as those concerned with high-content microarrays in Genomics and
Proteomics research. Other important applications of FT-NIR microspectroscopy are envisaged in
biomedical research aimed at cancer prevention, the early detection of tumors by NIR-fluorescence,
and identification of single cancer cells, or single virus particles in vivo by super-resolution
microscopy/ microspectroscopy.
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1. Introduction

Soybeans are the major source of plant protein and oil in the world. Commercial soybean
varieties usually contain ~40% protein and ~20% oil (on a dry weight % basis). Although there
remains a strong economic incentive to develop cultivars with high protein and oil contents
while maintaining a competitive yield, progress has been slow. Effective breeding techniques
require accurate, inexpensive and reliable soybean composition analysis. Certain areas of
breeding and selection research would also benefit from single soybean seed analysis (Silvela
et al., 1989). Conventional composition analysis methods such as the Kjeldahl method for
protein measurement and the ether extraction method for oil fraction measurements are time-
consuming, expensive and impractical for measurements on large numbers of soybean samples
required for molecular genetic mapping and other selection and breeding studies. In addition to
problems such as low speed and high cost, wet-chemistry methods are destructive and rather
inaccurate for single seed analysis, with the notable exception of the extracted protein
determination by the Lowry method (1958).

Emerging practical solutions to these problems are based on Near Infrared Reflectance
Spectroscopy (NIRS). When adequately calibrated with reliable primary data, NIRS generates
accurate results and is less expensive than conventional or wet chemistry, composition
measurement methods such as those currently adopted by the American Oil Chemists’ Society
(AOCS). A wide range of grains and oil seeds has been analyzed by NIRS techniques with
varying degrees of success. For soybeans, early reports showed that dispersive/filter-based Near
Infrared (NIR) instruments can be utilized for the determination of protein, oil (Williams, 1975)
and moisture (Ben-Gera and Norris, 1968). However, in recent years significant improvements
in NIR instrument performance were achieved through novel designs. A recent improvement in
the design of dispersive instruments allows for high spectral acquisition speeds through the
utilization of Dual Diode Array NIR detectors, such as those commercially available from Perten
Instruments, Inc., (Springfield, IL). The DA-7000 NIR spectrometer model (made by Perten
Instruments, Inc.) employs a dual Diode (Si/InGaAs) Array Detector, as well as a stationary
diffraction grating, and is capable of spectral collection speeds up to 600 spectra per second
(Shadow, 1998) in the range from 400 to 1,700 nm. Besides the recent development of Diode
Array techniques for dispersive instruments, Fourier Transform (FT) technology is currently
employed in NIR instruments to overcome most of the disadvantages of classical dispersive NIR
instruments that employ moving gratings and have low acquisition speed and limited NIR
resolution. Commercial FT-NIR instruments are available from manufacturers such as Thermo
Nicolet, Inc. (Madison,WI), PerkinElmer Co. (Shelton,CT) and Bruker, Inc. (Madison,WI). The
major advantages of FT-NIR and dual Diode Array instruments over moving grating dispersive
instruments are their higher spectral resolution, higher and uniform wavelength accuracy, and
also high speed of spectral acquisition/data collection. High spectral resolution is important
because it facilitates long-term calibration robustness and improved separation of the sample
constituents; it may also reduce the total number of samples required for calibration development
because of the higher spectral information content in comparison with the other NIR instrument
designs. High wavelength accuracy is critical when a calibration developed on a specific NIR
instrument needs to be transferred to another instrument, and when separation of minor
component constituents is sought for. Wavelength accuracy is also important for signal
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averaging, which is essential for samples with low signal-to-noise ratio (S/N), as is the case of
single seeds.

Although most NIRS applications are currently focused on bulk sample analysis, some
recent studies on transmission instruments attempted preliminary estimates of single seed
composition, such as the moisture measurement of single soybean seeds with a Shimadzu W-160
dual-beam spectrometer (Lamb and Hurburgh, 1991), and the oil measurement of single corn
kernels with an Infratec model 1255 spectrometer (Orman and Schumann, 1992). These
preliminary reports have indicated the potential of NIRS for single seed analysis. In addition to
transmission instruments, NIR reflectance instruments have also been applied recently to single
seed analysis, such as an attempt to generate color classifications (Wang et al, 1999) and an
attempt to perform computational averaging of single wheat kernel spectra for composition
analysis (Shadow et al, 2000). Although some progress with single seed analysis by NIR has
already been reported, the potential advantages of novel NIR instrument designs such as the dual
Diode Array and FT techniques have not yet been fully exploited. To take advantage of novel
instrument designs, both a dual Diode Array instrument (DA-7000 by Perten Instruments, Inc.,
Springfield, IL) and an FT instrument (Spectrum One NTS, manufactured by PerkinElmer,
Shelton, CT) were calibrated for both bulk and single soybean seed composition analysis. In
recent studies we developed accurate, reliable and robust NIR calibrations for both bulk and
single seed composition analyses that facilitate novel breeding/selection techniques and improve
breeding efficiency.

On the other hand, previous NIRS attempts at calibrations for amino acid residues of
soybean proteins in bulk soybean seeds and powdered soybean seeds have suffered until recently
from two major drawbacks: the employment of primary methods involving extensive extraction
and acid hydrolysis of soybean proteins from soybean seeds, and the low spectral resolution of
the NIR spectra of soybean proteins and their amino acid residues. A radically different approach
that circumvents such problems is afforded by high-resolution carbon-13 (**C) NMR quantitative
analysis of soybean protein peaks corresponding to specific BC sites of selected amino acid
residues of unhydrolyzed and unmodified soybean proteins in either powdered or intact soybean
seeds. Both the advantages and limitations of our novel approach to amino acid profiling and
protein composition analysis of soybean seeds will be discussed, and the possible extension of
this approach to developing NIRS calibrations based on the high-resolution NMR primary data
will be briefly outlined. A comparison will also be presented between the results obtained with
our novel NMR approach for amino acid profiles of soybean seed proteins and the corresponding
data obtained through soybean protein extraction, derivatization and acid hydrolysis, followed by
ion exchange chromatography and high-performance liquid chromatography (HPLC).

An attempt will be made here to present a concise overview of our recent NIR and NMR
methodologies and composition measurements for a wide range of selected soybean accessions,
including over 2,000 exotic soybean germplasm accessions from the USDA Soybean Germplasm
Collection at the National Soybean Research Laboratory at UIUC (http:// www.nsrl.uiuc.edu).
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2. Principles of Spectroscopic Quantitative Analyses

In order to achieve a successful quantitative composition analysis by spectroscopic
techniques one requires a clear understanding of the underlying spectroscopic principles. A
purely statistical approach --without such a basic understanding-- is more likely to result in
spurious numerical data sets, that do not correspond to physical reality.

2.1.  Principles of NIR Spectroscopy

IR/NIR absorption spectra occur because chemical bonds within molecules can vibrate
and rotate thus generating series of different energy levels among which rapid, IR (or NIR)-
induced transitions can occur. According to standard Quantum Mechanics, the vibro-rotational
energy levels of a molecule can be approximately calculated with the following equations:

Evr = Eror + Eviv + Eann = ](] + 1)BhC + [1 — X(l’l + 1/2)]hV (211)

where:
j: rotation quantum number: 0,1,2,3..;
n: vibratim quantum number: 0,1,2,3..;
E: energy eigenvalue, and
x : anharmonic constant = 0.01

The mid- and far- IR induced transitions occur mainly between neighboring energy levels

(An ==%1). Such transitions are normally referred to as fundamental transitions. Absorptions
caused by fundamental transitions of most molecules occur in the mid- and far- IR range of
wavelengths (> 2500 nm). In addition to the fundamental transitions, molecules can also be

excited from the zero energy level to energy levels beyond the first energy level (An =+2.%3..)
with lower probabilities, following Boltzmann statistics. Such transitions are referred to as
overtones. Absorptions caused by overtones of chemical bonds with low reduced mass (such as
the O-H, N-H or C-H bond) take place in the NIR region (typical wavelengths are between 700
and 2500 nm). Therefore, the resulting NIR spectra of liquids or solids appear fairly broad and
have quite low resolution by comparison with mid-IR spectra, but have higher band separation
than visible absorption, or fluorescence spectra that correspond to electronic transitions in
molecules. In addition to overtones, NIR transitions corresponding to (or localized at) different
chemical bonds can couple and produce a combination band of such fundamental transitions.
NIR absorption corresponding to combination bands of specific chemical bonds with low
reduced mass (such as, O-H, N-H and C-H) also take place in the NIR region (Raghavachari,
2001; Barton, 2002). When the sample to be measured is exposed to a beam of NIR light, the
beam interacts with the sample in a variety of modes, such as absorption, reflection,
transmission, scattering, refraction and diffraction. From an analytical standpoint, the light
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absorption is the important process, as it is directly related to constituent concentrations, as
described by the Lambert-Beer’s Law:

A=e*L*C (2.1.2)

where: A is the “True’ Absorbance, € is the Extinction coefficient of the Analyte that absorbs,
L is Path length of light through the analyzed sample, and C is the Analyte Concentration.

The ‘true’ absorbance of a sample, however, is often quite difficult to directly measure- without
applying first appropriate corrections for the other light interactions that occur within the sample,
especially in inhomogeneous solid or turbid liquid samples. In practice, the absorption is often
calculated indirectly from the measurement of the reflectance (R), (as A = Log 1/R) because
reflectance can be readily measured even for thick samples; the exceptions are those complex
samples that possess a composite structure, such as thick, multiple layers of different
composition. The calculated absorbance is usually referred to as the ‘apparent absorbance,” and it
can be significantly affected by specular reflection and light scattering even in the case of thin
samples. Because of light scattering and specular reflection, spectral pre-processing and
corrections are always required in order to obtain reliable NIR quantitative determinations of
composition for samples as complex as whole seeds or intact embryos.

2.2.  Principles of Nuclear Magnetic Resonance Spectroscopy

High Resolution Nuclear Magnetic Resonance (HR-NMR) spectroscopy is a powerful
tool for both qualitative and quantitative analysis of foods and biological systems (see Baianu
and Kumosinski, 1993 for an in-depth review of such recent applications). NMR is based upon
the resonant absorption of radio-frequency (rf) waves/quanta by the nuclear spins present in a
macroscopic sample when the latter is placed in a strong and uniform/constant magnetic field,

H,. The magnetic moments p of the nuclei present in the sample interact with such a strong,
external magnetic field, and the magnetic interaction energy is simply:

Evm=-u.Hyp (Eq. 2.2.1)

The magnetic moments of the nuclei were shown to be able to take only certain discrete values-
they are quantized- and are proportional to the total angular moments, J :

p=vJ, with J= (h/2n)I, (Eqgs.2.2.2)
where v is the giromagnetic ratio characteristic of each type of nucleus, and I is a dimensionless

angular momentum operator whose eigenvalues are called “spin number”, or simply ‘spin’—

an intrinsic quantum mechanical property of a nucleus that is observed only when there is an
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external magnetic field present . The I-operator component along the NMR probe coil axis, x, is

Ix and has m allowed values are called its eigenvalues, or spin values; such allowed m values
have the form I, (I-1),...0,...(-I). Therefore, the nuclear spin energy levels derived from Egs.
2.2.1 and 2.2.2 are:

En = -m y(h/2m)H, (Eq.2.2.3)

, or in frequency (V) units:

hv =vy(h/2x) Hy (Eq.2.2.4)

where m =1, (I-1), ... (-I). Allowed NMR transitions induced by resonant rf irradiation in the
presence of a constant external magnetic field Hy will occur only for:

Am = +1. (Eq.2.2.5)

The external magnetic field Hg polarizes the nuclear spins so that at thermal equilibrium there is
an excess of nuclear magnetic moments precessing, or rotating at a constant rate, around the
direction of the external magnetic field. The net result is a small, macroscopic magnetization

of the sample that precesses around the magnetic field direction, z . A resonant rf pulse will

tilt this precession axis and will also induce transitions between the energy levels that satisfy
eq.2.2.4 (i.e., single quantum transitions). Such transitions can be observed as NMR absorption
peaks in the corresponding NMR spectrum. The pulsed NMR signal- which is acquired in the
time domain- has been called the Free Induction Decay (FID) because it is the result of a voltage
induced by the nuclear spin magnetization of the sample in the coil of the NMR probe as a result
of the fact that the precessing magnetization produces a variable magnetic flux through the NMR
probe coil which alternates in phase with the precessing magnetization (Bloch,1956). The FID
signal decays with time as the nuclear spins loose phase coherence during their precession
around the external magnetic field axis (along the z-direction). The FID is then digitized at a
series of points in time arranged at regular, small intervals, and it is stored in digital form in
dedicated computer memory. Increasing the number of digitization points proportionally
increases the spectral resolution of the NMR absorption spectrum when the computer transforms
the digitized FID signal by Fast Fourier Transformation (FFT).

Because the various types of chemical bonds or chemical groups present in a material
sample correspond to different electron density distributions surrounding the nuclear spins of the
atoms involved, such nuclear spins experience different degrees of shielding from the external
magnetic field, which is caused by the specific electron densities involved in chemical bonds or
groups. As a result, the nuclear spins from distinct chemical groups resonate at different radio
frequencies corresponding to the different degrees of shielding of such nuclear spins from the
external magnetic field by the surrounding electron orbitals. Therefore, a number of such distinct
nuclear magnetic resonance absorption peaks is observed which differ through their specific
resonance frequencies by a value defined as the ‘Chemical Shift’- proportional to the amount of
electron orbital shielding surrounding each nuclear spin present. Various chemical groups will
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thus exhibit a number of characteristic resonance peaks with chemical shifts specific to those
groups. For convenient comparison of HR-NMR spectra obtained with different instruments
utilizing magnets of different strengths, the chemical shift is defined as the ratio of the local
magnetic field present at the observed nucleus to the full strength of the external, uniform and
constant magnetic field. As the NMR measurements are usually expressed in frequency units,
this definition of the chemical shift, & can be also expressed as:

0 =(Vioe — Vst )/VST (Eq.2.2.6)
, where Vp . is the nuclear spin resonance frequency of the nucleus in the sample and

vgt is the resonance frequency for a known standard chosen as a reference, such as, for
example, tetra-methylsilane, (CH3)4- Si, which is the selected standard for both '"H and C
NMR. This definition makes the chemical shift independent of the strength of the external
magnetic field utilized by the HR-NMR instrument and allows for a direct comparison between
spectra obtained with very different HR-NMR instruments. Very detailed, precise theoretical
treatments of the NMR absorption and related processes are available in ‘standard’ textbooks
(Abragam, 1968; Slichter, 1969). Simplified, instrument- or application- oriented textbooks
(Farrar and Becker, 1971; Becker, 1980) and reviews (Baianu and Kumosinski,1993) are also
available that facilitate the effective use of a wide variety of such chemically selective (and
sophisticated) HR-NMR techniques by the interested analytical chemists, physical chemists,
organic chemists, biochemists, or research scientists in other applied fields. As in the case of
NIR spectroscopy, quantitative analyses can be performed nondestructively, quickly and
routinely. The most widely employed HR-NMR techniques for quantitative analyses are based
on the fact that the areas under the NMR absorption peaks corresponding to a specific
component are directly proportional to the concentration of that component in the sample. Two
of the most widely detected nuclei in NMR experiments are 'H and °C. C is a nuclear isotope
of carbon that is naturally present (but with a relatively low abundance of ~ 1%) in fatty acids,
lipids, and amino acids in soybean seeds. Compared to the NMR of the naturally abundant 'H,
the *C NMR has relatively low sensitivity both because of its 1% natural abundance and
because of its lower resonance frequency (one quarter of the 'H resonance frequency).
Furthermore, in static solids there is a substantial line broadening caused by the chemical shift
anisotropy (CSA) and by magnetic dipolar interactions. In liquids, very rapid molecular tumbling
averages the chemical shift anisotropies, resulting in HR-NMR spectra with very sharp and well-
resolved peaks. In static solids, chemical shift anisotropies remain as ‘chemically intrinsic’
features that can disguise valuable composition information which could otherwise be extracted
from the isotropic chemical shifts. As a result, the ’C NMR spectra of static solid powders are
both broad and unresolved. Consequently, for the investigation of soybean solid samples, one
needs to employ high-resolution NMR techniques specially designed for solids that overcome
the low sensitivity and line-broadening problems. These methods, jointly labeled as ‘Solid-State’
NMR (SS-NMR) techniques, are employed in order to minimize first-order anisotropic nuclear
interactions and to increase the S/N either by rapid sample spinning in the external magnetic
field, and/or by employing special rf pulse sequences that considerably reduce magnetic dipolar
interactions. Some of the more ‘popular’ techniques in this SS-NMR group among biochemists,
analytical/organic chemists and physical chemists are the following:
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o The Magic Angle Spinning (MAS) technique in which the whole sample is spun at an
angle of 54°44° with respect to the external magnetic field, and at a rate equal to or
greater than the dipolar linewidth expressed in frequency units;

o Multiple-Pulse Sequences (MPS) employed as composite pulse sequences that achieve
homonuclear and/or heteronuclear decoupling;

o Cross-Polarization (CP), achieves a transfer of spin-polarization from the abundant
nuclear spin population (for example, 'H) to the rare and lower gyromagnetic ratio (e.g.,
C) nuclear spin population, thus enhancing the signal to noise (S/N) for the rare
nucleus.

3. EXPERIMENTATION
3.1. NIR Instrumentation

Because sample absorption data are difficult to measure directly, they are measured
indirectly through reflection or transmission. NIR can, however, be employed in either the
reflectance mode or the transmission mode. NIR reflectance instruments measure the amount of
NIR radiation reflected from the sample at different wavelengths. NIR transmission (NIT)
instruments, on the other hand, measure the amount of NIR radiation transmitted through the
sample at different wavelengths. Based on the mechanism of collecting optical data at different
wavelengths, NIR instruments can also be categorized as: interference filters instruments,
moving diffraction grating instruments, fixed grating instruments, acousto-optical tunable filters
(AOTF) instruments, Diode Array NIR (DA-NIR) instruments and Interferometer-based
instruments such as FT-NIR. Filters-based NIR instruments are usually the most economical
ones. The number and position of filters are designed and optimized for certain specific types of
samples, and it is generally not easy to expand such instruments to other sample types.
Interference filters-based NIR instruments work mostly in the transmission mode, such as the
Zeltex, ZX800 and the ZX50 model instruments (manufactured by Zeltex Inc., Hagerstown, MD,
http://www.zeltex.com). The major limitation of such interference filter-based instruments is that
spectra are collected at only a few pre-selected wavelengths that are designed and optimized only
for the major component analysis of bulk grain and oil seed samples. For the analysis of minor
components like isoflavones, more flexible and powerful NIR instruments such as the DA-NIR
or the Fourier Transform NIR (FT-NIR) instruments are required.

In order to collect spectral data for a large set of different wavelengths, NIR radiation can
be dispersed through diffraction gratings so that signals with different wavelengths are separated,
and the detector can detect signals at an individual wavelength. In the conventional configuration
where a single detector is used, the diffraction grating system has to be gradually rotated, in
order to project onto the detector signals of different wavelengths. Such systems are usually
referred to as moving grating systems. A major limitation of such moving grating systems is due
to the fact that the diffraction grating contains a moving part, which makes it difficult to obtain
reproducible scans and also negatively affects the wavelength accuracy. Novel dispersive NIR
instruments solve this problem by employing multiple detectors, such as diode array detectors, to
detect NIR signals at different wavelengths simultaneously. In such an instrument, the NIR
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radiation can still be dispersed through diffraction gratings. However, signals at different
wavelengths are projected onto a stationary array of detectors, and the signals are detected
simultaneously for different wavelengths. For this reason, it is no longer necessary to move the
diffraction grating system. Such instruments are referred to as stationary grating systems. Since
no moving grating is involved, reproducibility and wavelength accuracy/uniformity throughout
the spectral range are markedly improved. Furthermore, the spectral acquisition speed is also
improved dramatically because spectral data at different wavelengths are collected in parallel by
such stationary grating systems, as opposed to the sequential data collection by instruments
operating with moving gratings/monochromators. Typically a moving grating system takes about
30 seconds to scan an NIR spectrum at moderate resolution (i.e., 3 nm), whereas a diode-array
stationary grating instrument is capable of acquiring hundreds of NIR spectra in just one second
(Baianu et al., 2002[b]) at comparable resolution throughout the entire NIR spectrum.

3.2. NIR Spectra Pre-processing

NIR quantitation using the Lambert-Beer’s law (eq. 2.1.2) requires absorbance data to be
used for the concentration calculation. However, most NIR instruments do not measure
absorbance directly. Instead, they measure NIR reflectance from, or transmittance through, the
sample. The measured reflectance or transmittance data are then converted to absorbance data,
which are normally referred to as apparent absorbance, to be differentiated from the ‘true’
absorbance. The apparent absorbance can be significantly affected by a variety of effects, such as
specular reflection, light scattering, baseline shifts, etc. In order to improve the accuracy and
reliability of NIR calibrations, NIR spectra usually have to be corrected for such effects prior to
calibration model development. In fact, it has been reported that light scattering and baseline
shifts may introduce more spectral variations than do the constituent contents (Williams et al,
1987). Since a calibration is the mapping between the spectral data and the constituent contents,
the regression and calculations involved in the calibration development will be dominated by
light scattering and specular reflection effects, instead of constituent content variations, if light
scattering and specular reflection effects are not corrected first. As a result, any calibration
obtained without spectral pre-processing is likely to be inaccurate, unreliable, or both.

Specular reflection effects can appear as a nonlinear baseline shift across the entire NIR
spectrum. A semi-empirical approach for correcting the baseline shifts caused by specular
reflection involves the definition of a set of user-selected baseline points. A baseline curve is
then defined by such selected points through fitting a spline function to the points. The procedure
is readily implemented with the Perkin-Elmer “SpectrumONE” program in a user-interactive
mode that also allows for the subtraction of the fitted spline function/baseline curve from the
NIR raw spectrum of the sample. In addition to specular reflection, the baseline shifts of NIR
spectra may also be caused by electronic noise or detector response variations. In such cases, the
baseline variation can appear to be constant over the entire spectral range, or may increase
linearly with wavelength. First and second order derivatives of NIR spectra can then be
employed effectively to remove baseline variations. The derivatives of a spectrum can be
calculated by a finite difference method, which is just the difference of spectral values between
two adjacent points. It is relatively easy and simple to calculate, but the S/N of the derivative
spectrum will decrease. To solve this problem, Savitzky and Golay (Williams, 1987) proposed
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an improved algorithm for derivative calculations, which begins with a least-squares linear
regression of a polynomial of degree k over at least (k+1) data points. The derivatives of an NIR
spectrum are then calculated as the derivatives of a best-fitted polynomial. The Savitzky-Golay
algorithm has been proven to be very effective and the S/N is preserved in the calculated
derivative spectrum.

In addition to baseline shift effects caused by the specular reflection, the electronic noise
and the detector variations, light scattering is another important source of spectral variation.
According to modern Quantum Electrodynamics theory (Feynman, 1963), as well as Rayleigh’s
simplified theory of light scattering (Kortum, 1969), when a beam of light interacts with
molecules in a material, the incident light beam is partially scattered by such molecules in
addition to being partially absorbed. The absorbance is linearly related to the concentrations of
various components in the sample, according to eq. 2.1.2. On the other hand, light scattering is
mainly caused by sample inhomogeneities, (e.g., the difference of scattering coefficients between
different parts of the same sample), such as those caused by pores, a distribution of particle sizes
and matrix ‘texture’. The scattering coefficient is inversely proportional to the particle size of the
sample, and can also be affected by variations in the packing density from sample to sample
(Mie, 1908; Thiessing, 1950). According to the Kubelka-Munk theory (Kortum, 1969), light
scattering affects the apparent absorbance in a multiplicative manner. Therefore, light scattering
effects cannot be effectively corrected through simple, linear correction algorithms. To correct
for multiplicative light scattering effects, Geladi and co-workers (Geladi et al, 1985) proposed a
semi-empirical approach called the Multiplicative Scattering Correction (MSC), that is currently
the most popular method for pre-processing NIR spectra (Isaksson, 1990). MSC begins by
calculating the average spectrum of the whole set of standard samples, and then attempts to
determine the multiplicative parameter (scale factor) as well as the additive parameter (shift
factor) for each spectrum through a linear regression of the sample spectrum against the mean
spectrum. In some applications the MSC approach was found to be very effective for correcting
spectral variations caused by light scattering; as a result of MSC both the accuracy and reliability
of NIR analysis were significantly improved in comparison with calibrations based on ‘raw’
(uncorrected) spectra. The effects of MSC applied to raw NIR spectra of single soybeans are
illustrated in Fig. 3.2.1 and Fig. 3.2.2, and are quite substantial for both Dual Diode Array (Fig.
3.2.1 B) and FT-NIR spectra of soybeans (Fig. 3.2.2 B).
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Fig. 3.2.1. An overlay plot of DA-NIR spectra of single soybean seeds obtained with
the Perten DA-7000 instrument. A: Before MSC. B: After MSC.
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Fig. 3.2.2. An overlay plot of FT-NIR spectra of single soybean seeds obtained with the
Perkin-Elmer Spectrum ONE instrument. A: Before MSC. B: After MSC.
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3.3 NIR Calibration Models

After careful selection of the standard samples and accurate measurements of the
composition of the standard samples for reference values, NIR spectra can be collected for such
standard samples with state-of-the-art NIR instruments. With proper spectral pre-processing to
correct for specular reflection and light scattering effects, the corrected NIR spectra of the
standard samples can then be employed for calibration development to predict unknown
samples. Calibrations are developed through regressions of the NIR spectral data against the
reference values of constituent concentrations, in practice mostly through regressions of apparent
absorbance data against the sample concentration data.

NIR instruments measure optical data such as reflectance from, or transmittance through,
samples. The reflectance and transmittance data are usually converted into apparent absorbance.
In order to predict the contents of components to be measured from the optical data, a calibration
needs to be developed first. After adequate spectral data pre-processing, the calibration can be
developed through regression of the corrected NIR spectral data against the reference constituent
contents. As shown in the previous section on the principles of NIR, most “optical” spectroscopy
quantitative analysis methods, including NIR, are based on Lambert-Beer’s law which is re-cast
here into a form that specifies explicitely the quantities that are wavelength-dependent :

a,=¢;-l-c 33.1)

, where a; is the absorbance at wavelength 4, ¢ is the concentration of the component (analyte) to
be measured, ¢; is the absorptivity of the component at the specific wavelength A and [ is the
path length. Utilizing eq.3.3.1, a direct approach to soybean NIR protein calibrations might
attempt a univariate (linear) regression of the measured absorbance at an appropriately selected
wavelength against the protein content of the standard soybean samples. However, because the
NIR spectra of soybeans are very complex and each absorbance band often contains peaks from
several different components, it remains difficult--if not impossible-- to select any specific
wavelength that would be ‘sufficiently’ free of interference from other components to allow a
reliable calibration development. One can solve this problem by taking advantage of another part
of Lambert-Beer’s law which simply states that the absorbance values of multiple components at
are additive at any given wavelength. Consequently, an improved calibration model can be
specified as:

a/1=8i/1°l°ci+8m-l-cj+... (3.3.2)

where a, and and / have the same meaning as in the previous equation, &;, is the absorptivity, c;
is the concentration of component i, ¢, and c¢; are defined as before for component j, and so on,

for all the components present in the sample. With this model, one has to measure the
absorbance for at least two different wavelengths if there are two interfering components to be
measured, and a multivariate regression procedures would have to be employed. Unfortunately,
even such a multivariate model is of little practical use for NIR calibration development. The
major drawback of such a model is that it would require a knowledge of the complete
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composition (concentration of every component) in the calibration samples, whereas in most
situations one may only be interested in certain components.

One solution to this problem is obtained either by rearranging the Lambert- Beer’s
equation as follows:

c= (3.3.3)

, or by combining the absorptivity coefficient (¢) and the path length (/) into a single constant , so
that it takes the simpler form:

For complex samples such as soybean seeds, where most major components do interfere with
each other, absorbance data obtained at more than one wavelength are often utilized in practice,
and the above model is extended to all such selected wavelengths:

C:aﬂlp/ll +a/’L2p/12+”.+a/’me//lm (335)

The above model is known as the Inverse Least Squares (ILS), or the Multiple Linear Regression
(MLR) model, and is widely applied in filter-based NIR instruments that collect spectral data at
only a few pre-selected wavelengths. For either DA-NIR or FT-NIR instruments, that collect
spectral data for hundreds of different wavelengths, it is impractical to apply such an MLR
model directly to all of the acquired data points throughout the entire spectral range because such
a procedure would require the calculation of a total of m regression parameters (usually several
hundreds or thousands) with such an MLR model; this would, therefore, require that a minimum
set of m standard samples (several hundreds to thousands) to be available for the calibration
training set. One solution to this potentially severe problem would be to apply the MLR model to
only a small number of spectral data at pre-selected wavelengths, but such number must not
exceed the number of standard samples employed for calibration because otherwise there would
be some undetermined variables. The pre-selection of such wavelengths is critical to building an
accurate and robust calibration, but it is also quite difficult to do. One may know which
wavelength regions should be included from the corresponding spectra of the pure components.
The selection of the exact wavelengths for calibration from such regions can still be difficult,
because most modern instruments have high, or very high, resolution, and therefore, even in a
narrow spectral region there will be a large number of points present.

Another approach is to specify the most important region(s), based either on the pure-
component spectra or the deconvolved spectra of the standard samples. Then, one could utilize a
computer algorithm to select the rest of the wavelengths for the calculation, such as in the case of
the Stepwise Multiple Linear Regression (SMLR) procedure provided by the TQ Analysis
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software package (copyright by Nicolet Co). Even with the SMLR approach, if the number of
data points included in the model is not carefully selected, over-fitting may readily occur (that is,
the calibration model would have utilized too many factors); as a result, the calibration may fit
the standard samples perfectly, but it will fail to predict samples that are not in the calibration
training set. An improved, advanced approach utilizes a statistical factor analysis method, that
leads to two other directly related NIR calibration models: the Principal Component Regression
model (PCR), and the Partial Least Squares model (PLS). Both the PCA/PCR and the PLS
model are based on factor analysis, which was developed to solve problems that have many
factors; such factors may also happen to be highly co-linear when the MLR is over-fitting. The
principle on which both PCR and PLS are based stems from the observation that, although there
are usually many different variations that make up a spectrum (such as: inter-constituent
interactions, instrument variations, differences in sample handling, etc.), after proper data pre-
treatments (such as, baseline corrections, light scattering corrections, e.g., MSC, etc.) the largest
variations remaining in the calibration set would be only due to the chemical composition
variations of the standard samples. The main purpose of both PCR and PLS is then to calculate a
set of ‘variation spectra’ that represents only the variations caused by composition. Such
calculated ‘variation spectra’ are sometimes called loading vectors, principal components, or
more frequently, factors. The calculation of such spectra usually involves an iterative process
that manipulates n-samples of proper numerical values called ‘eigenvectors’, and for this reason
PCR and PLS algorithms are also called ‘eigenvector methods’. Once the factors are calculated,
they are utilized instead of the raw spectra for building the calibration model; therefore, the
possibility of over-fitting can be minimized by choosing the correct number of factors. Although
the concepts of PLS and PCR are similar, the approaches to the calculation of the factors
(loading vectors) are quite different. The PCR algorithm calculates the factors independent of the
concentration information, whereas the PLS algorithm utilizes both the concentration and
spectral information of the calibration set to calculate the factors.

The PLS method is considered, in general, to be more reliable than PCR. Besides the
numerical calculation of regression parameters for the calibration, the PLS algorithm also
provides qualitative information for model validation, through the first loading vector, which is
usually a first-order approximation to the pure-component spectrum (Haaland et al, 1988;
Sorvaniemi et al, 1993). Although PLS is an advanced multivariate regression algorithm, and has
been widely applied for NIR calibration development, care still needs to be taken when applying
PLS to NIR data of complex samples such as soybeans. Unlike MLR- which usually requires
manually selecting the wavelengths or spectral regions for the calculation- PLS has the intrinsic
ability to automatically build calibration models over the entire spectral range, thus eliminating
the requirements of either manual selection of wavelengths or spectral regions. Whereas this
feature might be an advantage for most types of samples, it may lead to a severe limitation of the
results obtained with the PLS in the special case of samples which happen to have a very high
degree of correlation between two or more component concentrations. In such special cases, the
first-order loading vectors of the two correlated components may look similar, and the
calibration would remain unreliable regardless of the algorithm(s), models or method(s)
employed for calibration. In special cases, one might be able to minimize this problem by
manually selecting for the PLS calculation those spectral regions where the pure-component
absorption dominates (an approach reminiscent of MLR).
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The computations of PLS and PCR are usually carried out with professional
chemometrics software. There are currently several chemometrics software programs available
for calibration development with PLS and PCR, such as the ThermoGalactic Graphic Relation
Array Management System (GRAMS/32) (Salem, NH, www.galactic.com), ThermoNicolet TQ
Analyst (Madison, WI, www.nicolet.com), Perkin-Elmer Quant+ (www.perkin-elmer.com), and
Bruker OPUS (www.bruker.com). The GRAMS/32 software package is a professional
spectroscopic analysis software package that supports light scattering corrections as well as PLS
and PCR regression algorithms. The calibration results, including correlation plots, loading
spectra, SECV plots, etc., can be exported to Microsoft Office subprograms such as Excel. It can
also be expanded by allowing the user to write special programs in the Array Basic programming
language. The TQ Analysis software package, on the other hand, provides several calibration
features that are user-friendly. It supports light scattering corrections (MSC), as well as spectral
smoothing, and also includes the options of CLS, MLR, PCR and PLS regression analyses. Even
though the TQ program is not as expandable as GRAMS/32, it is specifically designed and
optimized for FT-NIR instruments. In our NIRS and FT-NIR studies, both the GRAMS/32 and
the TQ Analyst were routinely employed.

3.4. NMR Techniques for Oil Determination in Soybean

3.4.1 Simple One-Pulse (1IPULSE) High-Resolution NMR

The simple, 1PULSE 'H NMR method provides a direct means for measuring the oil
content in somatic soybean embryos and soybean oil samples. This method uses just one radio
frequency (rf) pulse during each acquisition cycle (Fig 3.4.1.1). The rf pulse excites all 'H nuclei
in a sample, and a characteristic 'H NMR time-domain signal is observed. The single pulse
employed by this method has a defined width that maximizes the initial amplitude of the NMR

signal; this pulse width is the time interval during which the resonant rf pulse of average power
pw is applied to the sample, resulting in a 90 degree flip of the nuclear spin magnetization from
the direction of the constant, external magnetic field.

The hydrogen nucleus (‘H), with a spin of %, is usually selected for NMR measurements
because it is the most abundant isotope present in natural biomaterials. The rf pulse selected for
HR-NMR has a characteristic, resonance frequency which is proportional to the magnetic field
strength employed by the instrument. In our measurements, a Varian U-400 spectrometer model
was employed, and the applied radio frequency pulse was at the 'H resonance frequency of 400
MHz, in an external magnetic field of 9.4 T.
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Fig. 3.4.1.1. Simple 1PULSE Sequence for High-Resolution NMR Analysis of Oil
in seeds.

In the case of our high-resolution NMR studies of oil in mature soybean seeds and embryos, the
number of selected points was np = 65,536. The FFT of an FID produces an HR-NMR spectrum
which represents the variation of the NMR absorption intensity with the nuclear spin resonance
frequency. To avoid the possibility of rf saturation, nuclear spins must be allowed to relax (that
is, without any additional rf excitation being applied) for a significant interval of time called
delay time, or d>, until the next 90° rf pulse is applied. For a low viscosity liquid that does not
contain either paramagnetic or ferromagnetic species, the length of time required for the nuclear
spin relaxation to occur is at least on the order of the reciprocal of the half-height linewidth for
the sharpest observed absorption peak in the HR-NMR spectrum of the liquid. For typical HR-
NMR studies the line broadening (Ib) is selected to be less than ~0.2 Hz, and therefore the

delay time, d, , required for nuclear spin relaxation is typically on the order of 5 s or longer. To
compensate for the very weak NMR absorption signal of oil from the soybean seed or embryo
samples, S/N in the oil spectra was improved more than twenty-fold through the accumulation of
at least 400 transients, while the gain parameter of the rf pre-amplifier and receiver was held
constant during all HR-NMR acquisitions.

3.4.2 Low-resolution NMR for Oil Determination in Seeds: AOCS recommended method
Ai 3-75 for Oil Content

The time-domain pulsed NMR method is an AOCS recommended standard method
(AOCS Recommended Practice AK4-95) for rapid and simultaneous determinations of oil and
moisture contents of oil seeds. This method can accurately measure oil seed samples with less
than 10% moisture. Drying is stated to be necessary for the higher moisture samples. The
method usually involves the following steps:

1. Place the test sample into the magnetic field of the NMR spectrometer;

2. Apply an intense 90° radio frequency (rf) pulse to excite all the hydrogen nuclear
spins;
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3. Record the free induction decay (FID) following the 90° rf pulse. The maximum
amplitude of the FID signal is proportional to the total number of protons from the water
and oil phases of the sample;

4. Apply a second, 180° , refocusing, rf pulse to produce a spin-echo signal when only the
signal from the oil phase contributes to the FID;

5. Calculate the difference between the two component signal amplitudes, one of which
is proportional to the oil, while the other is proportional to the moisture content. Then
convert the measured signal intensity from water and oil into percentages of oil or
moisture content with an established calibration.

This method has been applied to soybean and sunflower seed analysis and was reported to have
only 0.6% error for oil determination. The calibrations employed to relate the FID signal to oil
and moisture percentages are critical for the accuracy and reliability of this method. For best
performance, the calibration samples should be homogenous, free from impurities, and of the
same type as the test samples; this is so because different types of oil seeds may have different
fatty acid profiles which would result in different time dependences for the FID amplitude. It is
recommended that the oil content of calibration standards should be determined with the
reference method described in AOCS Ai 3-75.

3.4.3 1PDNA C SS-NMR technique for Oil Content Determination in Soybean Flours

Soybean flours can be directly measured for oil content determination by employing a
composite, IPDNA pulse sequence. Solid-state BC NMR spectra were recorded with a General
Electric, GN300WB model, FT-NMR instrument, operating with a 7.05 T, wide bore
superconducting magnet. The pencil-shaped CP-MAS probe allowed for the insertion of a 7.5
mm diameter rotor made of zirconium. The NMR pencil probe components are as shown in Fig.
3.4.3.1. The same NMR probe is employed for experiments which require spinning the rotor at
high-speed rates, with the rotor axis at the magic angle (54deg,44min) with respect to the
external manetic field (z) direction. The maximum spinning rate of the rotor was ~6 kHz with
all our samples and was simply achieved with nitrogen gas from the building supply. The active
volume in the coil could be filled with ~300 mg of sample. Considering the fact that the
gyromagnetic ratio for °C is just one quarter of that for 'H, the center frequency for the *C
NMR spectrum in the 7.05 T superconducting magnetic field of the GN300WB spectrometer
was near 75 MHz.
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Fig. 3.4.3.1. Diagram of the pencil probe employed in a General Electric, GN300WB model,
FT-NMR spectrometer, with a zirconium rotor sleeve, Kel-f drive tip, Teflon front spacer and
end cap.
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Fig. 3.4.3.2. The 1PDNA NMR pulse sequence employed in our BC SS-NMR
measurements of oil content in soybean flours.

3.4.4. The VACP C SS-NMR technique for Measurements of Protein Content in
Soybean Flours

The Variable Amplitude Cross-Polarization (VACP) experiment is performed by applying
a pulse sequence that transfers polarization from the 'H to "°C nuclear spins, in the presence of
sample spinning at the magic angle with respect to the external magnetic field. The artificially
imposed, fast sample spinning averages out the '>C chemical shift anisotropy. The purpose of the
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VACP NMR pulse sequence is to enhance the BC NMR signal through cross-polarization from
'H to the neighboring *C nuclear spins. The pencil probe for solids was employed in the General
Electric GN300WB (7.04 T) spectrometer to measure 300 mg samples of soybean flours without
any additional sample preparation. The number of transients selected in this case was 1,600 for
each soybean flour sample, thus allowing for a 40-fold improvement in S/N.

'H- 1°C contact i Decoupling
: (L)
L4 i

L

Acqu151t10n

Fig. 3.4.4.1 The VACP NMR pulse sequence employed in our BC SS-NMR measurements of
Protein Content in Soybean Seed Flours.

3.4.5 Liquid-State 3C NMR Measurements of Protein Content and Amino Acid Residues
in Hydrated Soy Flour Gels

Solid sample composition information that could be provided by the averaged, Isotropic
Chemical Shift Isotropy (CSI) is hidden by the very broad bands present in static and rigid solids
that possess large Chemical Shift Anisotropy (CSA). In liquids, rapid molecular tumbling
averages out anisotropies and, therefore, NMR spectroscopists often employ dilute solutions to
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acquire high-resolution NMR spectra. Nevertheless, it is often the case that highly hydrated
concentrated samples, such as hydrated gels, still exhibit higher resolution ?C NMR spectra than
those obtained with the help of various SS-NMR techniques, by virtue of the segmental mobility
in high molecular weight biopolymers, in those sample regions that are highly hydrated as in soft
gels of various hydrated biopolymers (Baianu et al, 1989).

3.4.6 Protein Content and Amino Acid Profile Determination with the WALTZ- 16, 'H
Decoupling Sequence for B¢ Liquid-State NMR of Highly Hydrated Soy Flour Gels and
Doughs

The WALTZ-16 'H decoupling pulse sequence for *C NMR, is a composite pulse sequence that
employs 'H broadband decoupling, as well as refocusing of the heteronuclear interactions, by
applying a refocusing 180 deg. pulse to the C nuclear spins as shown in Fig 3.4.6.1. In order to
determine the protein content and amino acid profiles of soybean seeds we employed a Varian
UI-600 spectrometer that operates at 150 MHz resonance frequency for ’C NMR in a 14.1 T
external magnetic field. Samples of soy flour gels of various dilutions in D,O at pH ~11.2 were
carefully placed in a 10 mm probe for solutions. Spectra were recorded with 10,000 transients,
with a "°C pulse width of 8.0 us; the recycle delay employed was 4.0 s and the acquisition time
was 0.62 s. The selected spectral width was 52.8 kHz (~350 ppm).

4.0s ' 621.0ms

IH 8.0[.1.5 . eeesssssss
dy Pw

13C

Fig. 3.4.6.1. The WALTZ-16 Decoupling pulse sequence for Liquid-State '*C NMR.
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3.5 Standard Methods for Soybean Composition Analysis

Understanding the limitations and assumptions involved in standard methods is essential for
generating high quality calibrations; any large and unexplained variations in the content of any
of the components in the standard samples can result in large errors of prediction for the
constituents of interest. Therefore, the analytical methods for oil, protein and moisture
determination will be briefly discussed as they have been employed for the purpose of NIR
calibrations for these major soybean seed components.

3.5.1 Oil determination

Compared to protein determination methods, the oil determination method most
commonly employed is relatively straightforward. Both oil and fats belong to the class of lipids,
which by definition is a group of substances generally soluble in organic solvent and insoluble in
water. Oil refers to liquid lipids at room temperature whereas ‘fat’ refers to the solid lipids at
room temperature. Since oil consists of a mixture of hydrophobic molecules that are soluble in
organic solvent and insoluble in water, the total oil content of a sample can be determined by
organic solvent extraction.

3.5.1.1. Solvent extraction methods (AOCS official method Ac 3-44)

Based on the extraction operation, the organic solvent extraction method can be
categorized as a continuous solvent extraction method, a semicontinuous solvent extraction
method, or a discontinuous solvent extraction method. The semicontinuous extraction method is
most widely employed in analytical laboratories and it normally utilizes a Soxhlet distiller or
similar devices. The AOCS official method (Ac 3-44) for oil determination of soybean samples
is the semi-continuous method.

The AOCS official method specifies petroleum ether as the solvent to extract oil from
ground soybean meal in a Butt-type extraction apparatus such as Soxhlet distiller. The basic
operation involves the following steps: First, weigh 2 g of ground sample and enclose the sample
in filter paper. Then place the sample in the Butt tube device and extract the sample with
petroleum ether for 5 hrs. Next, evaporate the petroleum ether on a steam bath or in a water bath.
Finally, weigh the mass of the extracted oil. The oil content of the sample can be calculated as
the percentage of extracted oil over the total mass of the sample. To get accurate and reliable
results, it is important that the powder sample is fine enough as it has been found that particle
size of the ground soybean affects the extraction. In addition, the moisture content of the sample
is also important. If the moisture in the sample is too high (>10%), the sample may also need a
drying pretreatment.

3.6. Protein Analysis

Various techniques were utilized to determine the protein content in soybeans. However,
each one has its advantages or drawbacks, and they should be therefore considered as
complementary to each other.
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The Kjeldahl method is one of the widely employed methods for measuring organic
nitrogen content in grains, and it is also the official method for protein analysis recommended by
the AOCS (Ac 4-91). The total organic nitrogen of the sample is calculated and converted into
the percentage of protein by multiplying by a predefined constant. However, the digestion
process requires some catalysts to increase speed and it is affected by changes in temperature.

The Biuret method is also employed to determine protein content for relatively large
samples. It is considered by many researchers to be more accurate than the Kjeldahl method for
protein measurements because it utilizes the reaction between the peptide bond and copper ions;
on the other hand, Kjeldahl qunatitates only the total nitrogen, and cannot distinguish between
protein and non-protein nitrogen. The Biuret method does have relatively low sensitivity, and it
requires calibration with known protein concentration standards. A related method to Biuret is
the Lowry method, which is perhaps the most widely applied method for determination of
protein content in solutions. It combines the Biuret reaction with the reduction of the Folin-
Ciocalteau phenol reagent (phosphomolybdic-phosphotungstic acid) by aromatic amino acids
tyrosine and tryptophan residues in the proteins. The Lowry method has very high sensitivity;
however, the color reaction may vary with different proteins to a greater extent than with the
Biuret method. Ohnishi and Barr made a modification of the Lowry method in their procedure,
thus combining the advantages of the Biuret method with those of the Lowry method, and also
resolving the limitations of the latter (Ohnishi and Barr, 1978). Their procedure is the basis for
the current Sigma Chemical Co. (St. Louis, Missouri) micro-protein determination procedure
No0.690. This procedure has also been employed in our laboratory for protein determination and
was calibrated with soybean protein standards of known purity and composition.

3.7. High Performance Liquid Chromatography Analysis of Derivatized Amino Acids
from Hydrolyzed Proteins

A method that is often preferred by analytical laboratories in order to generate ‘standard’
amino acid profiles of proteins is High Performance Liquid Chromatography (HPLC) of
hydrolyzed proteins. However, this method does not allow for the measurement of Tryptophan
(Trp), Glutamine (Gln) and Asparagine (Asn) residues. Only values of Glx = Gln +Glu and
Asx=Asp +Asn can be reported with this method as the acid hydrolysis converts all Gln into Glu
(Glutamic Acid), and all Asn into Asp (Aspartic Acid). Before actual HPLC measurement, the
remaining 18 amino acid residues are derivatized with special fluorochrome reagents, such as the
AccQ-Fluor reagent (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) in a borate buffer
(Waters Co., Milford, MA, USA). After obtaining linear HPLC standard plots for the 18 amino
acid residues that are contained in acid hydrolyzates of proteins, one can proceed to attempt NIR
calibrations based on such partial HPLC data for the same group of protein hydrolyzates. This
approach was recently attempted with soybean samples and a brief summary of NIR calibrations
was reported (Anderson, Killam and Orf, 2002) for amino acid profiles of ground soybean
samples measured with the dispersive NIRS Model 6500 instrument (NIRS Systems, Silver
Springs, MD) operated in the reflection mode. The only major drawback of this approach, apart
from the Gln and Asn conversion to the acid forms, are the relatively large errors introduced by
the acid hydrolysis for several of the more labile amino acid residues, thus limiting the
usefulness of the approach to perhaps 10 of the 18 amino acid residues that are being separated
by HPLC.
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3.8. Moisture determination methods

Moisture is probably the most widely analyzed component for food products. There are,
however, several precautions that need be observed in order to obtain accurate and reproducible
moisture measurements. Water in food products and oil seeds can be dynamically distributed
over at least three different types of water populations, i.e., free, adsorbed and trapped. Most
moisture determination methods determine the amount of water in food products by measuring
the difference of mass before and after removing water from the sample, in most cases by drying
the sample for extended periods of time at temperatures close to the water boiling point. Because
not all the water populations present in a food product, or an oil seed, can be readily removed by
drying at a specific temperature, drying methods for moisture determination are susceptible to
inconsistency. The most widely employed moisture determination method for grains and oil
seeds is the oven drying method. For oven drying, the sample is heated under specified
conditions and the weight loss is measured to calculate the moisture content of the sample.
Drying conditions, such as the type and condition of the oven, and the time and temperature of
drying, can significantly affect the results. In the ASAE standard method (ASAE S352.2) for
soybean moisture determination, it is required that 15 grams of whole, ungrounded soybean
seeds be dried at 103 °C for 72 hrs. To determine the moisture content of low moisture products
the Karl Fischer titration method could also be applied. This chemical method is based on the
fundamental reaction involving the reduction of iodine by SO, in the presence of water.
However, its rate of success with several oil seeds, such as corn and soybean seeds has been
rather low.
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4. RESULTS

4.1 Validation of the NIR Calibrations for Protein and Oil Measurements in Mature
Soybean Seeds: Bulk and Single Seed Calibrations

After appropriate spectral corrections for light scattering effects and baseline shifts, the
DA-NIR and FT-NIR spectra of the standard samples were employed for calibration
development. For both the DA-NIR and FT-NIR instruments, calibrations were developed based
on the PLS-1 model and they were validated with the corresponding deconvoluted spectra. The
number of factors for the PLS-1 models was optimized by cross validation; the prediction errors
of the calibration models were also estimated by employing cross validation. The correlation
coefficients (R) and Standard Error of Cross Validation (SECV) of the DA-NIR calibration for
protein and oil measurements are presented in Figures 4.1 to 4.4 for the FT-NIR instrument, and
in Figures 4.5 to 4.8 for the DA-NIR instrument. In addition, the calibration results are also
presented in Tables 4.1 and Table 4.2. From Figures 4.1 to 4.4 and Table 4.1, one can see that
the SECV values for protein and oil analysis for both bulk soybean samples and single seed
soybean samples are fairly low. For bulk sample analysis, the SECV value is quite low, ~0.1%
for both protein and oil calibrations. For the single seed analysis, the SECV value for protein
analysis is 1.1% and that for oil is 0.5%. From Figures 4.1 to 4.4 and Table 4.1, one may note
that very accurate results can be obtained with the FT-NIR instrument. The SECV values for
protein and the oil FT-NIR analysis of bulk samples are similar to the results obtained with the
DA-NIR instrument, whereas for single seed analysis, the FT-NIR instrument seems to be more
accurate. This is as expected, and it is easily explained by the fact that FT-NIR instruments
utilize an integrating sphere accessory and a much narrower beam, which is more appropriate for
single seed analysis.
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Fig. 4.1.1. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Single
Seed Soybean Analysis.
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Fig. 4.1.2. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Single Seed

Soybean Analysis.
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Fig. 4.1.3. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Bulk

Soybean Sample Analysis.



Nature Precedings : doi:10.1038/npre.2012.7053.1 : Posted 30 Mar 2012

29

o4 1 Com. Coeff.: 099868 RMSEC: 0127
a
a
o
S
E -
o
1
3 Calibration
+ W alidation
ol o & Comection
1 1 1 I 1 1 1 1 I
2 Actual 1

Fig. 4.1.4. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Bulk Soybean
Sample Analysis
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Fig. 4.1.5. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Bulk
Soybean Sample Analysis.
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Table 4.1.1. Correlation coefficients (R) and Standard Error of Cross Validation (SECV) for
Soybean Protein, Oil, and Moisture Analysis on the Perkin-Elmer Spectrum ONE NTS FT-NIR
Instrument.

Components Protein Oil

Bulk Sample | Single Seeds | Bulk Sample | Single Seeds

SECV 0.3 0.3 0.1 0.2
R 99.9% 99.9% 99.9% 99.9%
1 | R=0999

20 SECV =0.07

Pradictad Concentration [ F25 52

1= T T T T T T T T T T
11 14 17 2]

Aciual Concentration [ C2 )

Fig. 4.1.6. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Bulk Soybean
Sample Analysis.



Nature Precedings : doi:10.1038/npre.2012.7053.1 : Posted 30 Mar 2012

31

Table 4.1.2. Correlation coefficients (R) and Standard Error of Cross-Validation (SECV) for
Soybean Protein and Oil Analysis on the Perten DA-7000, Dual Diode-Array DA-NIR
Instrument.

Components Protein Oil

Bulk Sample Single Seeds Bulk Sample Single Seeds
SECV 0.1 1.1 0.1 0.5
R 99.9% 98.5% 99.9% 98.5%
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o (&) o (&) o
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\
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Fig. 4.1.7. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Single
Seed Soybean Analysis.
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Fig. 4.1.8. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Single Seed
Soybean Analysis.

4.20il and Protein Determination in Mature Soybeans Using NMR Techniques

4.2.1 Decoupling Sequence for *C Liquid-State NMR of Highly Hydrated Soybean
Flour Gels and Doughs

The 'H decoupled ?C NMR spectra of gel samples of soybean flour, protein isolate and
oil that were recorded with the WALTZ-16 'H decoupling pulse sequence are presented in Figs.
4.2.1.1t04.2.1.3.

It was previously reported for soybean proteins (Baianu and Kumosinski, 1993; Kakalis
and Baianu, 1989, 1990) that the region of interest for soybean protein content determination is
located in spectral region 4, between 173 ppm and 181 ppm, as shown in Fig.4.2.1.1. Indeed, we
found the ?C NMR peaks of 18 amino acid residues to be present in this region. In the same
figure, spectral region 3 was dominated by signals coming from the major components of the
teguments, cellulose and hemicellulose. Signals from different carbons of triacylglycerols have
resonances in region 2. The peak in spectral region 1 is assigned to the methyl group signal, and



Nature Precedings : doi:10.1038/npre.2012.7053.1 : Posted 30 Mar 2012

33

the peaks in region 5 are assigned to glycoproteins. In Fig. 4.2.1.3 the peaks at 59 ppm and 66
ppm are assigned to the Co. and CP carbons of glycerol, whereas the peaks at 125 ppm and 127
ppm are assigned to the ethylene carbons of fatty acids.

The proposed assignments of the C, peaks for all essential amino acids were in
accordance with BioMagResBank, as follows: His (81.40 ppm), Ile (77.23 ppm), Leu (69.90
ppm), Lys (42.63 ppm), Met (47.13 ppm), Phe (73.46 ppm), Thr (51.93 ppm), Trp (47.13 ppm)
and Val (51.93 ppm). Similar °C NMR assignments were made previously for wheat proteins
(Baianu, 1981; Baianu et al., 1982; 1989) and corn zeins (Augustine and Baianu,1986; Baianu,
1987; Baianu and Kumosinski,1993). We also found that the carbonyl peaks of 18 of the amino
acids present were close to ~172 ppm. The amino acid profiles of the soy protein and/or soybean
flour were obtained from the integral values of the C, peaks ratioed to the integral value of the
carbonyl peak at ~172 ppm. The amino acid profile can then be used as a database for the
protein evaluation method called the protein digestibility corrected amino acid score (PDCAAS),
which takes into account the amino acid profiles of specific protein groups.

In previous reports of high-resolution BC NMR studies of purified soybean protein
fractions in solutions (Kakalis and Baianu, 1989, 1990; Wei, 1990), it was shown that the best
resolution of the amino acid residue peaks in the NMR spectra was obtained for pH values close
to 11. Therefore, the protein content of soybean flour gels was determined under such alkaline
pH conditions by employing the standard plot obtained for various dilution levels of SPI gels. A
standard '>*C NMR calibration plot for dilute SPI solutions is presented in Fig. 4.2.1.4. This was
obtained by plotting the ratios of the peak integral values for the region between 173 ppm and
181 ppm in the "C NMR spectra of SPI solutions and/or gels, against the known SPI
concentration. The linear regression equation for fitting the standard plot was then employed to
calculate the soybean protein content of soybean flour gels.
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Fig. 4.2.1.1 WALTZ-16 decoupled Be Liquid-State NMR of a soybean flour gel sample
with 38.7% protein content. Spectrum recorded with 10,000 transients on a Varian UI600
NMR spectrometer, in a 14.1 T external magnetic field.
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Fig. 4.2.1.2. WALTZ-16 decoupled "°C Liquid-State NMR of a Soybean Protein Isolate gel
sample with 50.8% protein content. Spectrum recorded with 5,000 transients, on a Varian
UI600 NMR spectrometer, in a 14.1 T external magnetic field.
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Fig. 4.2.1.3. WALTZ-16 "*C Liquid-State NMR of a soybean oil sample. The spectrum was
recorded with 112 transients on a Varian UI-600 NMR spectrometer, in a 14.1 T external field.
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Fig. 4.2.1.4. Standard Calibration Plot for Soybean Protein Isolates.

2.3.2 Amino Acid Contents of Soybeans Determined by *C Liquid-State, High-Resolution
NMR, Ion Exchange Chromatography and HPLC. Correlations between Amino
Acid and Soybean Protein Contents

Amino acid profiles of a set of 100 standard soybean seed samples were determined by
high performance liquid chromatography of Amino Acids. The NIR values for protein and oil of
this standard sample set are highly correlated, as shown in Fig. 4.2.2.1. Furthermore, we found
that the amino acid contents of this standard soybean seeds set, calculated on a dry basis as a
percent of the total soybean seed sample weight (D %, AA) are highly correlated with the
soybean protein content calculated on a dry basis from the total sample weight (as shown in the
following Figures 4.2.2.2 to 4.2.2.5). Therefore, our data presented here in Figures 4.2.2.2 to
4.2.2.5 imply that NIR calibrations for amino acid contents of soybeans may encounter
difficulties with most standard sets because of the close correlation (>85%) between the amino
acid residue and the protein content of soybeans. Similar, high correlations were also found for
other amino acid residues of acid hydrolyzed soy proteins: Asx, His, Ala, Ile, Cys and Met.

Table 4.2.2.1 presents a comparison between our amino acid composition analyses by Be
Liquid-State, High-Resolution NMR of unhydrolyzed soybean seed samples and the
corresponding data obtained by ion exchange chromatography of extracted soybean proteins
after acid hydrolysis. As shown in a previous report (Augustine and Baianu, 1984), there is very
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good agreement between the amino acid analysis of acid hydrolyzed, extracted soybean protein
samples by °C Liquid-State, High-Resolution NMR and the corresponding data obtained by ion
exchange chromatography of the same extracted soybean protein samples after acid hydrolysis.
Therefore, the remaining differences between the results obtained by the two different
approaches are most likely to be caused by acid hydrolysis. Furthermore, our NMR results
include data for Trp, Gln, Glu, Asn and Asp in unhydrolyzed soybean proteins that cannot be
obtained for acid hydrolyzed protein samples.

Table 4.2.2.1. Comparison between Amino Acid Contents of Soybean Proteins in Soybean
Seeds Determined by '“C Liquid-State, High-Resolution NMR and Ion Exchange
Chromatography (IEC).

Wt % Total : Ala Val Leu Tleu Gly Asn Asp Asx GIln Glu Glx
NMR 5 5 7 4.5 4 7 5 12 11 8 19
IEC 4 5.2 7.3 4.7 28 ND ND 12.1 ND ND 21.3

Ser Thr Arg Lys Trp Tyr His Phe Cys Met
NMR 5 4 8 7 1 3 3 6 1.5 1.0
IEC 4.6 3.6 9.5 1.8 ND 35 26 5.5 ND 0.9

D% Protein vs. D % Oil Inverse Correlation for the
Amino Acid Set of 65 Standards

55.00 | =-1.104X + 64.2
< 5000 . R%=0.84
g R=-0.92
& 45.00 -
X
O 40.00 -
35.00 ‘ w |

10.00 15.00 20.00 25.00
D% OQil
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Fig. 4.2.2.1. Inverse Correlation between Protein (Dry weight %) vs. Oil (Dry weight %) for
the Amino Acid Set of 65 Standards selected for the NIRS AA-Calibration (in addition to the
remaining 35 standards employed for independent validation).
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Fig. 4.2.2.2. Arginine as % Tot Dry Wt. vs. D% Protein. Note the very high degree of
correlation between the Arginine content (as % of Total dry weight) and the Protein (as % of
Total Dry weight) for the 65 amino acid standards measured.
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Fig. 4.2.2.3. Glutamine plus Glutamic Acid (Glx), as % Tot Dry Wt. vs. D% Soybean Protein.
Note the very high degree of correlation between the Glx content (as % of Total dry weight)
and the Protein (as % of Total Dry weight) for the 65 amino acid standards measured.

LEUCINE D% vs. Protein D%
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Fig. 4.2.2.4. Leucine as % Tot. Dry Wt. vs. D% Protein. Note the very high degree of correlation
between the Leucine content (as % of Total dry weight) and the Protein (as % of Total Dry
weight) for the 65 amino acid standards measured.
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Valine D% vs. Protein D%
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Fig. 4.2.2.5. Valine as % Total Dry Weight vs. D% Protein. Note the very high degree of
correlation between the Valine content (as % of Total dry weight) and the Protein (as % of
Total Dry weight) for the 65 amino acid standards measured.

Furthermore, our data indicates that the range of amino acid content variation among
different soybean lines is relatively narrow, thus limiting the scope that breeders may have for
selecting soybean lines with improved amino acid profiles. This interesting aspect requires
further experimental studies, as well as careful analysis of the NIR data for the amino acid
standard sets (e.g., deconvolution of the soybean protein spectra and their comparison with the
deconvoluted NIR spectra of the individual amino acids.)

4.3 Oil Determination in Soybeans with the 1IPULSE HR-NMR method.

Because the oil in plant seeds is in a liquid-like form, the oil protons are highly mobile and
are detected by the IPULSE NMR sequence. On the other hand, the much less mobile protons of
carbohydrates and proteins in the solid matrix of the soybean seeds remain undetected as their
FID signals decay very rapidly (within <30 us), and are therefore within the dead-time of high-
resolution NMR probes for liquids (Rutar er al., 1989). The NMR signal amplitude is
proportional to the mass of a sample (Abragam, 1961), and the intensity of a peak is simply the
integral value of the area under the corresponding HR-NMR absorption peak. Experimental
conditions and methodology were as described in Section 3, and references cited therein.

Fig. 4.3.1 illustrates the proportional increase of the NMR peak height with increasing quantity
of oil for soybean seed standard samples. The standard, linear plot shown was first obtained for
pure soybean oil standards. The slope of the standard regression line, expressed from the
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intensity of the NMR peak as a linear function of the corresponding amount of oil in the
standards, was then employed for the calculation of the quantities of oil for unknown soybean
samples. Unknown sample oil contents were predicted by direct comparison of the measured
NMR peaks for oil with the regression line in the oil standard plot (Fig. 4.3.2). Similar oil
measurements were carried out previously for rapeseed or canola seeds, without oil extraction

from the seeds.
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Fig. 4.3.1. The peak height increases as the quantity of oil in a sample increases. The 'H
spectrum was taken with an NMR spectrometer Varian U-400 and a Nalorac 5 mm 'H
NMR Quad probe, in an external magnetic field of 9.4 T, at a resonance frequency of 400

MHz.
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Fig. 4.3.2. The soybean oil standard plot for 400 MHz '"H NMR measurements on the Varian U-
400. The probe was a Nalorac 5 mm QUAD for high-resolution "H NMR.
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Fig. 4.3.3. The "H NMR oil peaks in a 0.9 uL soybean oil sample are in the following regions: 0
to 3 ppm, ~4 ppm and ~5 ppm. The '"H NMR peak of water is at 4.67 ppm. The 'H NMR
spectra was acquired by averaging 500 transients with a Varian U-400 NMR spectrometer and a
Nalorac 5 mm Quad probe tuned to a resonance 'H center frequency of 400 MHz in an external
magnetic field of 9.4 T.
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4.4 Oil Determination in Soybean Flour with the 1 PDNA NMR Pulse Sequence

The 1PULSE witd Decoupler turned on During Acquisition (IPDNA) pulse sequence was
employed for the carbonyl group detection of oil in soy flours. The lattice relaxation time for oil,
T, measured with the inverse recovery method, and was found to be T = 0.52 s. Therefore, the
delay time, or the inter-pulse time interval, should be selected as ds=5T,, or ~2.5 s, and thus
ensure that all FID signals are reproducible. However, because the FID is acquired for an interval
time T,*, which is much shorter than the actual T;, the acquisition delay can be reduced in
practice to ~3 T,*, or even less if the selected pulse width was smaller than the 90° pulse.
Therefore, in our oil determination measurements by NMR, ds was selected as 2 s, and the
number of accumulations was 400, for a duration of the 90° rf pulse of 5.5 us.

The chemical shift values were obtained by comparison to the glycine carbonyl chemical
shift value of 176.03 ppm relative to TMS, as shown in Fig. 4.4.1. >C NMR spectra of soybean
flours and soybean oil recorded with the IPDNA experiment with 400 transients are presented in
Figs. 4.4.2. and 4.4.3. Based on our published assignments (Baianu et al.,1993), the peaks in the
spectral region ~130 ppm were assigned to the ethylenic carbons of the fatty acid signals.

SSB SSB

— T T T T T T T T T T T T T T T T T T T T
250 200 150 100 a0 ppm

Fig. 4.4.1. Solid Glycine powder spectra with the carbonyl peak at 176.03 ppm
relative to TMS. (SSB = spinning sidebands).
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Fig 4.4.2. IPDNA "°C SS-NMR of soybean flour for a standard sample with 20% oil content
(~300 mg total weight). The soybean oil signal of interest exhibits several resolved peaks close
to 130 ppm.

-——t 7
200 180 100 &0 i ppm

Fig. 4.4.3. IPDNA "°C SS-NMR of a standard sample of 53.5 mg of soybean oil in Al,Oj3.
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The 1PDNA sequence pulse can be employed to record the BC NMR spectra of compounds
in their liquid phase (or in solutions) as it is the case with oil in soybeans. Since all oil soybean
components are tumbling fast relative to the *C NMR resonance frequency employed in our
measurements, the dipolar interactions were reduced and their NMR signals gave sharp, well-
resolved peaks. Thus, the measured diffusion constant for oil in immature soybean embryos was
in the range of 10° cm”s™. All *C NMR spectra were baseline corrected prior to integration.
The quantity of oil in a sample was assumed to be given by the value of the integral of the peaks
at ~132 ppm. The standard oil curve was obtained with the integral values of the '°C NMR peaks
at ~132 ppm (which are assigned to the ethylenic carbons of fatty acids). The results of our Be
NMR measurements were in very good agreement with our NIR results obtained for the same

soybean samples, as shown in Table 4.4.1 and Fig. 4.4.4.

Table 4.4.1. Example of IPDNA “C SS-NMR Measurements of Oil Content for Soybean
Flours, and their direct, linear correlation with the corresponding NIR data.

Soybean|M21| W210 | W240 | M309 | M285 | 96- |W1228 & 96- | LGO00- | LGOO-

Seed ID | 23 1 3 960A2- 959A6- | 13523 | 13251
2687 1447

% oilby [24.7| 23.9 | 22.1 | 20.4 | 21.6 | 19.8 18.2 16.4 | 14.2 13.3

NIR

%o0il by 124.9| 24.0 | 22.7 | 21.0 | 22.0 | 19.0 19.0 16.9 | 143 13.9
NMR
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Fig. 4.4.4. IPDNA C SSNMR of Oil Content of Soybean Flours and their direct linear
correlation with the corresponding NIR data.
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4.5 Oil Determination in Soybean Flour by VACP *C SS-NMR

The protein content of soybean flours was determined from the standard plot for Soy
Protein Isolates (SPI), (SPI source: 95% protein content, Archer Daniels Midland Company, IL,
USA). NMR measurements of soy protein content are in agreement with the corresponding NIR
results for the same samples, as shown in Table 4.5.1 and Fig. 4.5.2

200 180 100 50 pam

Fig. 4.5.1. VACP "°C SSNMR of a Soybean Flour sample with 41% protein content (300 mg
total weight). The component of interest has peaks in the spectral region around 174 ppm.

Table 4.5.1. VACP >C SS-NMR Measurements of Protein Content of Soybean Flours and
Their Direct Correlation with the NIR Data (as shown in Section 2.6).

96- 0. |LGO0[LGOO

Soybean W210 |W240 | M30 | M28 |960A2 | W122 S -

Seed ID [M2123| 4 3 | 9 | 5 i 8 9?22‘?' 1352 | 1325

2687 3 | 1

% | 370 | 391 | 40.8 |42.7 |43.8 | 462 | 496 | 526 |55.0 |56.7
protein
by NIR

% | 371 | 400 | 415 |42.0 |44.0 | 470 | 49.0 | 531 |55.0 |58.0
protein
by NMR

37.0



Nature Precedings : doi:10.1038/npre.2012.7053.1 : Posted 30 Mar 2012

47

Linear Correlation Between NMR and
NIR data for Soybean Protein
Composition
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Fig. 4.5.2. VACP "’C SS-NMR Measurements of Protein Content in Soybean Flours
and their direct, Linear Correlation with the Corresponding NIR Data.

NMR

The 99% linear correlation between the *C SS-NMR and the corresponding Dual DA-
NIRS oil and protein measurements on the same samples of well-defined soybean accessions
from the USDA Soybean Germplasm Collection at UIUC, suggests that both techniques are
suitable for the non-destructive, practical determination of both oil and protein content of
soybean flours.

5. Limitations and Advantages of the techniques

FT-NIR instruments offer relatively high sensitivity, higher spectral resolution and
considerably shorter spectral acquisition time in comparison with either filter-based or dispersive
instruments that employ moving gratings.
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Moisture determination errors can significantly affect the accuracy of any calibration in
the NIR region because all the remaining components are specified on a wet basis in the
chemometric programs that utilize, for example, the PLS1 algorithm. Furthermore, FT-NIR
measurements on powdered soybeans take longer than whole seed analysis, and moisture
calibrations are significantly less accurate for soybean powders in comparison with whole seeds
because of the rapid moisture changes that can, and do, occur in soybean powders. Therefore,
any inaccuracy in moisture determinations for the standard samples will significantly affect the
predicted values for the other soybean seed/ oil seed components. The effect is even greater
when smaller concentrations need to be predicted such as, for example, in the case of isoflavone
or fatty acid calibrations. Errors made in moisture control of seed samples during transfers
between measurement sites (i.e., between reference/analytical wet chemistry and routine NIR
laboratories) have often been the cause of inaccurate and unreliable NIR calibrations that were
not externally pre-validated. This is also one of the possible reasons why NIR methods for
protein, oil and moisture are not yet recommended by AOCS for oil seeds.

In comparison with other methods of composition analysis, FT-NIR reflectance has not
only the advantage of being convenient (with little or no sample preparation required), but it is
also high speed, low cost per sample analysis and highly reproducible when calibrated correctly.
These are indeed considerable advantages to be weighted against its minor disadvantages.

Last but not least, the soybean coat, and especially the darker coat colors, have been
found to have a major influence on the NIR scattering and reflection properties of the soybean
seed that does limit the applications of NIR for the composition analysis of dark color coat
soybeans such as black, brown or green.

On the other hand, HR-NMR techniques for both liquids and solids have superior spectral
resolution in comparison with FT-NIR but their sensitivity is lower than that of FT-NIR;
therefore, composition analysis by HR-NMR are slower and more costly than by FT-NIR.

6. OTHER APPLICATIONS:
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Selection of Soybeans Standards for Near Infrared Calibrations of Fatty
Acid Composition

Unlike the resolved peaks of fatty acids in mid-IR spectra, the NIR bands are much less
resolved for fatty acids thus making calibrations more difficult by NIR. NIR determinations of
fatty acid contents in oil seeds have been previously reported, but the robustness of such
calibrations, as well as the validation problems encountered determined suggested that the work
reported should be considered as preliminary screening (Velasco, 1999; Sato, 2002).

We have therefore decided to develop new calibration procedures that would select
reliable calibration standard sets so as to minimize potential validation problems that were
previously encountered (Pazdernik et al., 1997). Two sets of 66 soybean standards were selected
for fatty acid calibrations, based on the wide range of expected fatty acid values suggested by
previous analytical measurements of fatty acid contents for the same soybean lines from the
collection of soybean lines at the Soybean Research Laboratory at the University of Illinois at
Urbana. These selected lines were sealed in airtight containers and stored under constant
temperature. In order to develop a reliable FT-NIR calibration there are several requirements that
should be met. First, all factors affecting FT-NIR spectra must be represented in the calibration
set. Such factors include physical and chemical characteristics of the sample, methods of sample
preservation and processing, as well as instrument and sample environment (Windham, et al.,
1989). Secondly, since the fatty acid composition is reported as a percentage of total oil content,
the latter needs to be verified on site in order to eliminate potential errors that may occur at
transfers between two different sites, for example. Furthermore, since the developments of the
NIR calibration models have to be carried out with contents expressed on a wet basis it is very
important to re-check the moisture contents of all sample standards that are employed for the
calibration, and correct for any moisture changes that are likely to occur between different
measurement sites.

Results

Standard gas chromatography (GC) methods (AOCS, Ca 5b-71) were employed to
estimate the reference fatty acid content of the calibration set. The fatty acids analyzed were:
16:0, 18:0, 18:1, 18:2 and 18:3 and the results were expressed as percentage of total oil and are
presented in Table 6.1 (measurements were carried out at the USDA Peoria Laboratory).
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Table 6.1. Range of constituents for 66 selected soybean samples selected as standards for Fatty Acid
NIR Calibrations (data is courtesy of the USDA Peoria Laboratory). (Soybean lines are identified
as: Stoneville 1999, MG V-VIII. USDA Germplasm, National Research Center, Urbana, IL.)

Simple Dry

Statistics  Protein Dry Oil Moisture %16:0 % 18:0 % 18:1 % 18:2 % 18:3
Mean 47.61 17.11 5.86 11.91 3.24 21.19 55.42 8.24
Stdev 2.03 1.21 0.17 0.70 0.49 2.51 2.08 1.03
Max 53.74 19.32 6.19 14.10 4.35 27.63 60.74 10.93
Min 43.80 13.70 5.48 10.54 2.33 14.24 51.09 6.32

Our laboratory’s NIT measurements with Zeltex transmission instruments of the total oil
contents for the selected standards are compared in Fig. 6.1 with those provided by the Northern
Region USDA Peoria Laboratory. One notes a very high degree of correlation (r = 0.98) between
the dry oil values measured independently by the two laboratories. This suggests that potential
problems with sample transfers between the two independent measurement sites have been thus
avoided, and also that validation of the calibration results with the second set of validation sample
standards processed with the same procedure is likely to avoid the validation problems reported
previously (Velasco, 1999; Sato, 2002; Windham, et al., 1989). Furthermore, a statistical
exploratory analysis of the fatty acids contents of the standards was performed using SPSS ® and
SAS ® software to detect the normality of the data as well as the presence of outliers within the
standards.

24.00 4
y = 1.0445x - 3.7496
22.00 R?=0.95
r=0.98

8 20.00 -
(=]
x
N
® 18.00 *
5
>
5 16.00 -

14.00

12.00 T T T T . )

12.00 14.00 16.00 18.00 20.00 22.00 24.00
Dry Oil % (Peoria)

Fig. 6.1. Correlation between dry oil (USDA Peoria) vs. dry oil ZX800 of 66 fatty acids selected
soybean standards.
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The palmitic acid distribution of the calibration set was significantly normal (Shapiro-Wilks P =
0.05). This means that the sample size follows probability laws and that non extreme values were
selected as standards. The palmitic distribution appeared to be leptokurtic, and also skewed
towards high values, but it contained only mild outliers. In addition, because of the selection of
stable lines, its coefficient of variation was smaller than 6 %.

The stearic acid distribution of the fatty acid calibration standards was also normal, with a 0.05
probability of type I error (p-value = 0.246). It was also leptokurtic as well as skewed towards the
higher values, but with a coefficient of variation smaller than 15%.

In the oleic distribution, the central tendency statistics were extremely close and therefore the
coefficient of variation was small (CV = 11.83%). The oleic and linoleic distributions of the
calibration set were also normal, both with coefficients of variation less than 4%.

On the other hand, the linolenic acid distribution was not normal with a 0.05 probability of type I
error (Shapiro-Wilks p-value= 0.011) It was skewed towards the highest values and leptokurtic,
with its inter-quartile range being extremely narrow and its coefficient of variation equal to
12.49%.

NIR Dry Oil vs NIR Dry P, 66 samples by duplicate.
dp +do (62.8 to 67.4 ), moist(4.9 to 6.7). Stoneville

1999. MG V - VIl
22 4 y =-0.6094x + 46.158
20 | R? = 0.942
r=-0.97
® 18 1
O 16
>
14 |
e L 2
12 |
10

40.00 42.00 44.00 46.00 48.00 50.00 52.00 54.00 56.00
Dry Protein, %

Fig. 6.2. Inverse oil--protein correlation of 66 fatty acids selected samples measured with NIT
instruments.

Guo et al. (2002) suggested in a recent study of 5000 different soybean lines that there is a
high degree of inverse correlation (-r>0.90) between protein and oil contents of seeds drawn from
large sets of soybean lines. The high degree of inverse correlation present between the oil and
protein contents of our selected standard set for fatty acid calibrations shown in Fig. 6.2 is
consistent with these recent NIT and NIR studies, and it thus provides an independent, external
validation for the protein values of our selected standard set of soybean seeds.
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7. Practical Implications of our High-Resolution NIR and NMR Analyses of Soybean Seeds

A brief illustration of our NIR results for a large set of soybean samples is presented in
Figure 7.1. A high degree of inverse correlation exists between the protein and oil contents for
the 5,000 bulk soybean seed samples measured by NIR with the calibrations. This group of
soybean seed samples was selected from a large set of experimental lines planted at six different
locations over two years. The data presented in Figure 7.1 is therefore consistent with the
robustness of our NIR calibrations for protein and oil, and also indicate that even after a small
number of generations (~3) the degree of inverse correlation between protein and oil can be very
high (>90%). This fact limits the soybean protein content increase that can be practically
achieved for commercial soybean applications.

Furthermore, from a commercial viewpoint the high seed yield of soybeans appears to be
accepted by the industry as being more important than high protein content. It has been generally
found that the protein concentration and seed yield of soybeans are inversely correlated.
However, in a few recent studies (Thompson and Nelson,1998; Kabelka et al., 2002) it was
suggested that the mean protein compositions of soybean populations could be increased to a
certain extent, and without a significant loss of agronomic yield (Wilcox and Cavins, 1995). In
the same study (Wilcox and Cavins, 1995), one soybean line “Pando” (498 g/kg protein) was
backcrossed to another line “Cutler 71 (408 g/kg protein) to determine if the yield of Cutler 71
could be recovered in addition to the high protein from Pando. Random F4-derived lines, as well
as three lines with highest protein concentration from the initial cross were evaluated for
agronomic traits for 1 yr. Seeds were evaluated for protein and oil concentration using either
NIR reflectance or NIR transmission (NIT). The parent line for each backcross was selected first
for protein, and then for yield, similarly to Cutler 71. Random F4-derived progenies and the
cultivars Pando, Cutler 71, and Hamilton were evaluated for 2 yrs. In each backcross generation,
lines were identified with seed protein in excess of 470 g/kg and progressively approached the
Cutler 71 yield. One line averaged 472 g/kg seed protein and was significantly (p = 0.05) higher
in seed yield than Cutler 71, and similar in yield to the Hamilton cultivar. In each population,
there were inverse relationships between yield and protein (R* = 0.33 to 0.06) and between seed
protein and seed oil (R* 0.55 to 0.94). In successive backcross populations, minimum oil values
increased from 148 to 174 g/kg, indicating a trend toward recovering the oil concentration of
Cutler 71 (204 g/kg). The data demonstrate that high seed protein can be backcrossed to a
soybean cultivar, fully recovering the seed yield of the cultivar. This suggests the absence of
physiological barriers to combining high seed protein with high seed yield in these soybean
populations.

For the soybean lines investigated in a recent study (Kabelka et al., 2002), we have also
found by NIT that the degree of protein-oil inverse correlation was as high as that of the soybean
experimental lines represented in Fig.6.1. This is the case in spite of the fact that the mean
protein content of the latter was substantially higher (by ~7%) than that of the former soybean
group that was also characterized for agronomic yield by Kabelka et al. (2002).

Our novel NIR calibrations have been extensively and successfully tested with a wide
range of different soybean lines and exotic germplasm soybean accessions for both accuracy and
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robustness; therefore, our calibrations can be employed equally well for the rapid and reliable
NIR analysis of soybean composition throughout the industrial soybean distribution chain, from
harvesting to post-harvest processing. Such improved soybean lines often have lower oil content
as a trade-off for the increased protein content, but still could have an acceptable seed yield for
soybean lines with significantly increased protein content above the range of commercial
soybean cultivars.

24.0
22.0 1
20.0 1
18.0 -
& 16.0 -
14.0 -
12.0 - 000 samples
10.0 | | |

35.0 40.0 45.0 50.0 55.0
Protein, %

y=0.61x+47.19

%

Fig. 7.1. Protein-Oil Inverse Correlation of 5,000 Soybean Samples of Experimental
Lines at UTUC.

8. Conclusions and Discussion

Oil content determinations for whole soybeans seeds were carried out with either Diode
Array or FT-NIR instruments; such determinations were based upon calibrations that utilized a
PLS1 regression models and were extensively validated with a large number of soybean lines.
Our NIR calibrations were undertaken in parallel with the higher resolution (but slower and more
expensive) NMR measurements. These calibrations had very high correlation coefficients
(R >0.99) between the NIR predicted values and the reference data. Both high-resolution NIR
and NMR calibrations and methodologies were employed -- with HR-NMR employed to
calibrate the NIR-- and, respectively, carry out a large number of protein and oil composition
analyses of soybean seeds (~50,000; by NIR and NIT) for breeding and selection purposes over a
period of three years. A wide range of soybean experimental lines and more than 2,000 exotic
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soybean germplasm accessions were thus characterized accurately and reproducibly for selection
and breeding programs at UIUC. Therefore, our results demonstrate the usefulness of this novel
NIR approach for soybean selection and breeding purposes.

A high degree of inverse correlation was found between the protein and oil contents of
5,000 bulk soybean seed samples predicted by NIR with the new calibrations that we developed.
This group of soybean seed samples was selected from an even larger set of experimental lines
that were planted at six different locations over a time interval of three years. Improved soybean
lines are often found to have lower oil content as a trade-off for the increased protein content, but
still could have an acceptable seed yield for soybean lines with significantly increased protein
content well-above the range of commercial soybean cultivars.

Our novel NIR calibrations may also be employed to develop procedures for the rapid
and reliable analysis of soybean composition throughout the industrial soybean distribution
chain, from harvesting to post-harvest processing.
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FIGURE CAPTIONS

Fig. 3.2.1. Overlay plot of DA-NIR spectra of single soybean seeds obtained with the Perten
DA-7000 instrument. A: Before MSC; B: After MSC.

Fig. 3.2.2. Overlay plot of FT-NIR spectra of single soybean seeds obtained with the Perkin-
Elmer Spectrum ONE instrument. A: Before MSC; B: After MSC

Fig. 3.4.1.1. Simple One-Pulse sequence for high-resolution NMR analysis of oil.

Fig. 3.4.3.1. A pencil probe of a General Electric GN300WB FT-NMR spectrometer, with a
zirconia rotor sleeve, Kel-f drive tip and Teflon front spacer and endcap

Fig. 3.4.3.2. The 1PDNA pulse sequence employed in °C SS-NMR experiments of oil content
determination in soybean flours.

Fig. 3.4.7.1. The WALTZ-16 Decoupling Pulse Sequence for Liquid- State BC NMR.

Fig. 3.5.1. The VACP pulse sequence employed in BC SS-NMR Measurements of Protein
Content in Soybean Flours.

Fig. 4.1.1. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Single
Seed Soybean Analysis.

Fig. 4.1.2. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Single Seed
Soybean Analysis.

Fig. 4.1.3. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Bulk
Soybean Sample Analysis.

Fig. 4.1.4. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Bulk Soybean
Sample Analysis

Fig. 4.1.5. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Bulk
Soybean Sample Analysis.
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Fig. 4.1.6. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Bulk Soybean
Sample Analysis.

Fig. 4.1.7. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Single
Seed Soybean Analysis.

Fig. 4.1.8. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Single Seed
Soybean Analysis.

Fig. 4.2.1.1. WALTZ-16 decoupled "*C Liquid-State NMR of a soy flour gel sample with 38.7%
protein content.  Spectrum recorded with 10,000 transients on a Varian UI-600 NMR
spectrometer, in a 14.1 T external magnetic field.

Fig. 4.2.1.2. WALTZ-16 decoupled °C Liquid-State NMR of a Soy Protein Isolate gel sample
with 50.8% protein content. Spectrum recorded with 5,000 transients, on a Varian UI-600 NMR
spectrometer, in 14.1 T external magnetic field.

Fig. 4.2.1.3. WALTZ-16 °C Liquid- State NMR of soy oil sample. The spectrum was recorded
with 112 transients on a Varian UI-600 NMR spectrometer, in 14.1 T external field.

Fig. 4.2.1.4. Standard Calibration Plot for Soy Protein Isolates.

Fig. 4.2.2.1. Protein (Dry weight %) vs. Oil (Dry weight %) Inverse Correlation for the Amino
Acid Set of the 65 Standards selected for the NIR AA Calibration, in addition to the remaining
35 standards employed for independent validation.

Fig. 4.2.2.2. Arginine as % Tot Dry Wt. vs. D% Protein.
Fig. 4.2.2.3. Glutamine plus Glutamic, Glx, as % Tot Dry Wt. vs. D% Soybean Protein.
Fig. 4.2.2.4. Leucine as % Tot Dry Wt. vs. D% Protein.

Fig. 4.2.2.5. Valine as % Total Dry Weight vs. D% Protein.
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Fig. 4.3.1. The '"H NMR spectrum taken with an NMR spectrometer Varian U 400 and a Nalorac
5mm '"H Quad probe, in an external magnetic field of 9.4 T, at an 'H NMR resonance frequency
of 400 MHz.

Fig. 4.3.2. The soybean oil standard plot for 400 MHz '"H NMR measurements on the Varian
U-400. The probe was a Nalorac 5 mm QUAD for '"H NMR.

Fig. 4.3.3. The '"H NMR oil peaks in a 0.9 puL soybean oil sample collected by accumulating 500
transients with a Varian U400 NMR spectrometer and a Nalorac 5Smm Quad probe tuned to a
resonance frequency of 400 MHz in an external magnetic field of 9.4 T.

Fig. 4.4.1. Glycine spectra with its carbonyl peak at 176.03 ppm relative to TMS.

Fig. 4.4.2. IPDNA C SS-NMR of soybean flour for a standard sample of 20% oil content
(~300 mg total wt). The oil signal of interest exhibits several resolved peaks close to 130 ppm.

Fig. 4.4.3. IPDNA "°C SS-NMR of a standard sample of 53.5 mg soybean oil in Al,O3.

Fig. 4.4.4. IPDNA >C SSNMR of Oil Content of Soybean Flours and their direct correlation
with the corresponding NIR data.

Fig. 4.5.1. VACP "°C SSNMR of a Soybean Flour sample of 41% protein content (300 mg total
weight). The component of interest has peaks in the spectral region centered at 174 ppm.

Fig. 4.5.2. VACP °C SS-NMR Measurements of Protein Content in Soybean Flours, and their
direct, Linear Correlation with the corresponding NIR data.

Fig. 6.1. Protein-Oil Inverse Correlation of 5000 Soybean Samples of Developmental Lines at
UIUC.
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