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UAbstract 
 
A detailed account is here presented of our high resolution nuclear magnetic resonance (HR-NMR) 
and near infrared (NIR) calibration models, methodologies and validation procedures, together with 
a large number of composition analyses for soybean seeds. NIR calibrations were developed based 
on both HR-NMR and analytical chemistry reference data for oil and twelve amino acid residues in 
mature soybeans and soybean embryos. This is our first report of HR-NMR determinations of amino 
acid profiles of proteins from whole soybean seeds, without protein extraction from the seed.  It was 
found that the best results for both oil and protein calibrations were obtained with a Partial Least 
Squares Regression (PLS-1) analysis of our extensive NIR spectral data, acquired with either a 
DA7000 Dual Diode Array (Si and InGaAs detectors) instrument or with several Fourier Transform 
NIR (FT-NIR) spectrometers equipped with an integrating sphere/InGaAs detector accessory.  In 
order to extend the bulk soybean samples calibration models to the analysis of single soybean 
seeds, we have analized in detail the component NIR spectra of all major soybean constituents 
through spectral deconvolutions for bulk, single and powdered soybean seeds. Baseline variations 
and light scattering effects in the NIR spectra were corrected, respectively, by calculating the first-
order derivatives of the spectra and the Multiplicative Scattering Correction (MSC). The single 
soybean seed NIR spectra are broadly similar to those of bulk whole soybeans, with the exception of 
minor peaks in single soybean NIR spectra in the region from 950 to 1,000 nm. Based on previous 
experience with bulk soybean NIR calibrations, the PLS-1 calibration model was selected for protein, 
oil and moisture calibrations that we developed for single soybean seed analysis. In order to improve 
the reliability and robustness of our calibrations with the PLS-1 model we employed standard 
samples with a wide range of soybean constituent compositions: from 34% to 55% for protein, from 
11% to 22% for oil and from 2% to 16% for moisture. Such calibrations are characterized by low 
standard errors and high degrees of correlation for all major soybean constituents. Morever, we 
obtained highly resolved NIR chemical images for selected regions of mature soybean embryos that 
allow for the quantitation of oil and protein components. Recent developments in high-resolution FT-
NIR microspectroscopy extend the NIR sensitivity range to the picogram level, with submicron 
spatial resolution in the component distribution throughout intact soybean seeds and embryos. Such 
developments are potentially important for biotechnology applications that require rapid and ultra- 
sensitive analyses, such as those concerned with high-content microarrays in Genomics and 
Proteomics research. Other important applications of FT-NIR microspectroscopy are envisaged in 
biomedical research aimed at cancer prevention, the early detection of tumors by NIR-fluorescence, 
and identification of single cancer cells, or single virus particles in vivo by super-resolution 
microscopy/ microspectroscopy. 
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High Resolution Nuclear Magnetic Resonance and Near Infrared Determination of 

Soybean Oil, Protein and Amino Acid Residues in Soybean Seeds 
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1. Introduction 

 

 Soybeans are the major source of plant protein and oil in the world. Commercial soybean 

varieties usually contain ~40% protein and ~20% oil (on a dry weight % basis). Although there 

remains a strong economic incentive to develop cultivars with high protein and oil contents 

while maintaining a competitive yield, progress has been slow. Effective breeding techniques 

require accurate, inexpensive and reliable soybean composition analysis. Certain areas of 

breeding and selection research would also benefit from single soybean seed analysis (Silvela  

et al., 1989). Conventional composition analysis methods such as the Kjeldahl method for 

protein measurement and the ether extraction method for oil fraction measurements are time-

consuming, expensive and impractical for measurements on large numbers of soybean samples 

required for molecular genetic mapping and other selection and breeding studies. In addition to 

problems such as low speed and high cost, wet-chemistry methods are destructive and rather 

inaccurate for single seed analysis, with the notable exception of the extracted protein 

determination by the Lowry method (1958). 

 

Emerging practical solutions to these problems are based on Near Infrared Reflectance 

Spectroscopy (NIRS).  When adequately calibrated with reliable primary data, NIRS generates 

accurate results and is less expensive than conventional or wet chemistry, composition 

measurement methods such as those currently adopted by the American Oil Chemists’ Society 

(AOCS).  A wide range of grains and oil seeds has been analyzed by NIRS techniques with 

varying degrees of success. For soybeans, early reports showed that dispersive/filter-based Near 

Infrared (NIR) instruments can be utilized for the determination of protein, oil (Williams, 1975) 

and moisture (Ben-Gera and Norris, 1968). However, in recent years significant improvements 

in NIR instrument performance were achieved through novel designs. A recent improvement in 

the design of dispersive instruments allows for high spectral acquisition speeds through the 

utilization of Dual Diode Array NIR detectors, such as those commercially available from Perten 

Instruments, Inc., (Springfield, IL). The DA-7000 NIR spectrometer model (made by Perten 

Instruments, Inc.) employs a dual Diode (Si/InGaAs) Array Detector, as well as a stationary 

diffraction grating, and is capable of spectral collection speeds up to 600 spectra per second 

(Shadow, 1998) in the range from 400 to 1,700 nm. Besides the recent development of Diode 

Array techniques for dispersive instruments, Fourier Transform (FT) technology is currently 

employed in NIR instruments to overcome most of the disadvantages of classical dispersive NIR 

instruments that employ moving gratings and have low acquisition speed and limited NIR 

resolution. Commercial FT-NIR instruments are available from manufacturers such as Thermo 

Nicolet, Inc. (Madison,WI), PerkinElmer Co. (Shelton,CT) and Bruker, Inc. (Madison,WI). The 

major advantages of FT-NIR and dual Diode Array instruments over moving grating dispersive 

instruments are their higher spectral resolution, higher and uniform wavelength accuracy, and 

also high speed of spectral acquisition/data collection. High spectral resolution is important 

because it facilitates long-term calibration robustness and improved separation of the sample 

constituents; it may also reduce the total number of samples required for calibration development 

because of the higher spectral information content in comparison with the other NIR instrument 

designs. High wavelength accuracy is critical when a calibration developed on a specific NIR 

instrument needs to be transferred to another instrument, and when separation of minor 

component constituents is sought for. Wavelength accuracy is also important for signal 
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averaging, which is essential for samples with low signal-to-noise ratio (S/N), as is the case of 

single seeds.  

 

 Although most NIRS applications are currently focused on bulk sample analysis, some 

recent studies on transmission instruments attempted preliminary estimates of single seed 

composition, such as the moisture measurement of single soybean seeds with a Shimadzu W-160 

dual-beam spectrometer (Lamb and Hurburgh, 1991), and the oil measurement of single corn 

kernels with an Infratec model 1255 spectrometer (Orman and Schumann, 1992). These 

preliminary reports have indicated the potential of NIRS for single seed analysis. In addition to 

transmission instruments, NIR reflectance instruments have also been applied recently to single 

seed analysis, such as an attempt to generate color classifications (Wang et al, 1999) and an 

attempt to perform computational averaging of single wheat kernel spectra for composition 

analysis (Shadow et al, 2000). Although some progress with single seed analysis by NIR has 

already been reported, the potential advantages of novel NIR instrument designs such as the dual 

Diode Array and FT techniques have not yet been fully exploited. To take advantage of novel 

instrument designs, both a dual Diode Array instrument (DA-7000 by Perten Instruments, Inc., 

Springfield, IL) and an FT instrument (Spectrum One NTS, manufactured by PerkinElmer, 

Shelton, CT) were calibrated for both bulk and single soybean seed composition analysis. In 

recent studies we developed accurate, reliable and robust NIR calibrations for both bulk and 

single seed composition analyses that facilitate novel breeding/selection techniques and improve 

breeding efficiency. 

 

 On the other hand, previous NIRS attempts at calibrations for amino acid residues of 

soybean proteins in bulk soybean seeds and powdered soybean seeds have suffered until recently 

from two major drawbacks: the employment of primary methods involving extensive extraction 

and acid hydrolysis of soybean proteins from soybean seeds, and the low spectral resolution of 

the NIR spectra of soybean proteins and their amino acid residues. A radically different approach 

that circumvents such problems is afforded by high-resolution carbon-13 (P

13
PC) NMR quantitative 

analysis of soybean protein peaks corresponding to specific P

13
PC sites of selected amino acid 

residues of unhydrolyzed and unmodified soybean proteins in either powdered or intact soybean 

seeds. Both the advantages and limitations of our novel approach to amino acid profiling and 

protein composition analysis of soybean seeds will be discussed, and the possible extension of 

this approach to developing NIRS calibrations based on the high-resolution NMR primary data 

will be briefly outlined. A comparison will also be presented between the results obtained with 

our novel NMR approach for amino acid profiles of soybean seed proteins and the corresponding 

data obtained through soybean protein extraction, derivatization and acid hydrolysis, followed by 

ion exchange chromatography and high-performance liquid chromatography (HPLC). 

 

 An attempt will be made here to present a concise overview of our recent NIR and NMR 

methodologies and composition measurements for a wide range of selected soybean accessions, 

including over 2,000 exotic soybean germplasm accessions from the USDA Soybean Germplasm 

Collection at the National Soybean Research Laboratory at UIUC (http:// www.nsrl.uiuc.edu). 
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2. Principles of Spectroscopic Quantitative Analyses 

 

 In order to achieve a successful quantitative composition analysis by spectroscopic 

techniques one requires a clear understanding of the underlying spectroscopic principles. A 

purely statistical approach --without such a basic understanding-- is more likely to result in 

spurious numerical data sets, that do not correspond to physical reality. 

 

 

2.1. Principles of NIR Spectroscopy 

 

IR/NIR absorption spectra occur because chemical bonds within molecules can vibrate 

and rotate thus generating series of different energy levels among which rapid, IR (or NIR)-

induced transitions can occur. According to standard Quantum Mechanics, the vibro-rotational 

energy levels of a molecule can be approximately calculated with the following equations: 

 
νhnxBhcjjEEEE anhvibrotNIR )]2/1(1[)1( +−++=++=        (2.1.1) 

 

where:  

 

0.01constant    anharmonic  :x

  and  , seigenvalueenergy    : E

;0,1,2,3...  :number  quantumn    vibratio:n

  ;0,1,2,3...  :number  quantumrotation     :j

≈

 

 

The mid- and far- IR induced transitions occur mainly between neighboring energy levels 

( 1∆n ±= ).  Such transitions are normally referred to as fundamental transitions. Absorptions 

caused by fundamental transitions of most molecules occur in the mid- and far- IR range of 

wavelengths (> 2500 nm). In addition to the fundamental transitions, molecules can also be 

excited from the zero energy level to energy levels beyond the first energy level ( 3..2,∆n ±±= ) 

with lower probabilities, following Boltzmann statistics. Such transitions are referred to as 

overtones. Absorptions caused by overtones of chemical bonds with low reduced mass (such as 

the O-H, N-H or C-H bond) take place in the NIR region (typical wavelengths are between 700 

and 2500 nm).  Therefore, the resulting NIR spectra of liquids or solids appear fairly broad and 

have quite low resolution by comparison with mid-IR spectra, but have higher band separation 

than visible absorption, or fluorescence spectra that correspond to electronic transitions in 

molecules. In addition to overtones, NIR transitions corresponding to (or localized at) different 

chemical bonds can couple and produce a combination band of such fundamental transitions. 

NIR absorption corresponding to combination bands of specific chemical bonds with low 

reduced mass (such as, O-H, N-H and C-H) also take place in the NIR region (Raghavachari, 

2001; Barton, 2002). When the sample to be measured is exposed to a beam of NIR light, the 

beam interacts with the sample in a variety of modes, such as absorption, reflection, 

transmission, scattering, refraction and diffraction. From an analytical standpoint, the light 
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absorption is the important process, as it is directly related to constituent concentrations, as 

described by the Lambert-Beer’s Law:  

 

                                     A = εεεε * L * C                                            (2.1.2) 

 

where: A is the ‘True’ Absorbance, εεεε is the Extinction coefficient of the Analyte that absorbs, 

L is Path length of light through the analyzed sample, and C is the Analyte Concentration. 

 

The ‘true’ absorbance of a sample, however, is often quite difficult to directly measure- without 

applying first appropriate corrections for the other light interactions that occur within the sample, 

especially in inhomogeneous solid or turbid liquid samples. In practice, the absorption is often 

calculated indirectly from the measurement of the reflectance (R), (as A = Log 1/R) because 

reflectance can be readily measured even for thick samples; the exceptions are those complex 

samples that possess a composite structure, such as thick, multiple layers of different 

composition. The calculated absorbance is usually referred to as the ‘apparent absorbance,’ and it 

can be significantly affected by specular reflection and light scattering even in the case of thin 

samples. Because of light scattering and specular reflection, spectral pre-processing and 

corrections are always required in order to obtain reliable NIR quantitative determinations of 

composition for samples as complex as whole seeds or intact embryos. 

 

 

2.2. Principles of Nuclear Magnetic Resonance Spectroscopy  

 

High Resolution Nuclear Magnetic Resonance (HR-NMR) spectroscopy is a powerful 

tool for both qualitative and quantitative analysis of foods and biological systems (see Baianu 

and Kumosinski, 1993 for an in-depth review of such recent applications). NMR is based upon 

the resonant absorption of radio-frequency (rf) waves/quanta by the nuclear spins present in a 

macroscopic sample when the latter is placed in a strong and uniform/constant magnetic field, 

HRoR.  The magnetic moments µµµµ of the nuclei present in the sample interact with such a strong, 

external magnetic field, and the magnetic interaction energy is simply: 

ERMR = - µµµµ . HR0R       (Eq. 2.2.1) 

 

The magnetic moments of the nuclei were shown to be able to take only certain discrete values-

they are quantized- and are proportional to the total angular moments, J : 

 

        µ = µ = µ = µ = γ    J,  with  J= (h/2π )I,      (Eqs.2.2.2) 

 

where γ is the giromagnetic ratio characteristic of each type of nucleus, and I is a dimensionless 

angular momentum operator whose eigenvalues are called “spin number”, or simply ‘spin’— 

an intrinsic quantum mechanical property of  a nucleus that is observed only when there is an 
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 8 

external magnetic field present .  The I-operator component along the NMR probe coil axis, x, is 

IRx Rand has m allowed values are called its eigenvalues, or spin values;  such allowed m values 

have the form I, (I-1),…0,…(-I). Therefore, the nuclear spin energy levels  derived from Eqs. 

2.2.1 and 2.2.2 are: 

          ERmR = -m γ(h/2π)HR0                                                                     R(Eq.2.2.3) 

 

, or  in frequency (ν) units:  

hν   = γ(h/2π) HR0                  R        (Eq.2.2.4) 

 

where m = I, (I-1),  … (-I).  Allowed NMR transitions induced by resonant rf irradiation in the 

presence of a constant external magnetic field HR0  Rwill occur only for:  

 
∆∆∆∆m = +1.                                                   (Eq.2.2.5)   

                     

The external magnetic field HR0 Rpolarizes the nuclear spins so that at thermal equilibrium there is  

an excess of nuclear magnetic moments precessing, or rotating at a constant rate, around the 

direction of the external magnetic field. The net result is a small, macroscopic magnetization 

of the sample that precesses around the magnetic field direction, z . A resonant rf pulse will 

tilt this precession axis and will also induce transitions between the energy levels that satisfy 

eq.2.2.4 (i.e., single quantum transitions). Such transitions can be observed as NMR absorption 

peaks in the corresponding NMR spectrum. The pulsed NMR signal- which is acquired in the 

time domain- has been called the Free Induction Decay (FID) because it is the result of a voltage 

induced by the nuclear spin magnetization of the sample in the coil of the NMR probe as a result 

of the fact that the precessing magnetization produces a variable magnetic flux through the NMR 

probe coil which alternates in phase with the precessing magnetization (Bloch,1956). The FID 

signal decays with time as the nuclear spins loose phase coherence during their precession 

around the external magnetic field axis (along the z-direction). The FID is then digitized at a 

series of points in time arranged at regular, small intervals, and it is stored in digital form in 

dedicated computer memory. Increasing the number of digitization points proportionally 

increases the spectral resolution of the NMR absorption spectrum when the computer transforms 

the digitized FID signal by Fast Fourier Transformation (FFT).   

 

Because the various types of chemical bonds or chemical groups present in a material 

sample correspond to different electron density distributions surrounding the nuclear spins of the 

atoms involved, such nuclear spins experience different degrees of shielding from the external 

magnetic field, which is caused by the specific electron densities involved in chemical bonds or 

groups. As a result, the nuclear spins from distinct chemical groups resonate at different radio 

frequencies corresponding to the different degrees of shielding of such nuclear spins from the 

external magnetic field by the surrounding electron orbitals. Therefore, a number of such distinct 

nuclear magnetic resonance absorption peaks is observed which differ through their specific 

resonance frequencies by a value defined as the ‘Chemical Shift’- proportional to the amount of 

electron orbital shielding surrounding each nuclear spin present.  Various chemical groups will 
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 9 

thus exhibit a number of characteristic resonance peaks with chemical shifts specific to those 

groups. For convenient comparison of HR-NMR spectra obtained with different instruments 

utilizing magnets of different strengths, the chemical shift is defined as the ratio of the local 

magnetic field present at the observed nucleus to the full strength of the external, uniform and 

constant magnetic field.  As the NMR measurements are usually expressed in frequency units, 

this definition of the chemical shift, δδδδ, can be also expressed as: 

 

  δ  = (νδ  = (νδ  = (νδ  = (νRLocR  − ν  − ν  − ν  − νRSTR )/ν )/ν )/ν )/νRSTR                                                  (Eq.2.2.6)        

, where νννν RLoc Ris the nuclear spin resonance frequency of the nucleus in the sample and 

 ν ν ν νRST Ris the resonance frequency for a known standard chosen as a reference, such as, for 

example, tetra-methylsilane, (CHR3R)R4R- Si, which is the selected standard for both P

1
PH and P

13
PC 

NMR. This definition makes the chemical shift independent of the strength of the external 

magnetic field utilized by the HR-NMR instrument and allows for a direct comparison between 

spectra obtained with very different HR-NMR instruments. Very detailed, precise theoretical 

treatments of the NMR absorption and related processes are available in ‘standard’ textbooks 

(Abragam, 1968; Slichter, 1969). Simplified, instrument- or application- oriented textbooks 

(Farrar and Becker, 1971; Becker, 1980) and reviews (Baianu and Kumosinski,1993) are also 

available that facilitate the effective use of a wide variety of such chemically selective (and 

sophisticated) HR-NMR techniques by the interested analytical chemists, physical chemists, 

organic chemists, biochemists, or research scientists in other applied fields. As in the case of 

NIR spectroscopy, quantitative analyses can be performed nondestructively, quickly and 

routinely. The most widely employed HR-NMR techniques for quantitative analyses are based 

on the fact that the areas under the NMR absorption peaks corresponding to a specific 

component are directly proportional to the concentration of that component in the sample. Two 

of the most widely detected nuclei in NMR experiments are P

1
PH and P

13
PC.  P

13
PC is a nuclear isotope 

of carbon that is naturally present (but with a relatively low abundance of ~ 1%) in fatty acids, 

lipids, and amino acids in soybean seeds. Compared to the NMR of the naturally abundant P

1
PH, 

the P

13
PC NMR has relatively low sensitivity both because of its 1% natural abundance and 

because of its lower resonance frequency (one quarter of the P

1
PH resonance frequency).  

Furthermore, in static solids there is a substantial line broadening caused by the chemical shift 

anisotropy (CSA) and by magnetic dipolar interactions. In liquids, very rapid molecular tumbling 

averages the chemical shift anisotropies, resulting in HR-NMR spectra with very sharp and well-

resolved peaks.  In static solids, chemical shift anisotropies remain as ‘chemically intrinsic’ 

features that can disguise valuable composition information which could otherwise be extracted 

from the isotropic chemical shifts. As a result, the P

13
PC NMR spectra of static solid powders are 

both broad and unresolved. Consequently, for the investigation of soybean solid samples, one 

needs to employ high-resolution NMR techniques specially designed for solids that overcome 

the low sensitivity and line-broadening problems. These methods, jointly labeled as ‘Solid-State’ 

NMR (SS-NMR) techniques, are employed in order to minimize first-order anisotropic nuclear 

interactions and to increase the S/N either by rapid sample spinning in the external magnetic 

field, and/or by employing special rf pulse sequences that considerably reduce magnetic dipolar 

interactions. Some of the more ‘popular’ techniques in this SS-NMR group among biochemists, 

analytical/organic chemists and physical chemists are the following: 
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• The Magic Angle Spinning (MAS) technique in which the whole sample is spun at an 

angle of 54 P

0
P44’ with respect to the external magnetic field, and at a rate equal to or 

greater than the dipolar linewidth expressed in frequency units; 

 

• Multiple-Pulse Sequences (MPS) employed as composite pulse sequences that achieve 

homonuclear and/or heteronuclear decoupling; 

 

• Cross-Polarization (CP), achieves a transfer of spin-polarization from the abundant 

nuclear spin population (for example, P

1
PH) to the rare and lower gyromagnetic ratio (e.g., 

P

13
PC) nuclear spin population, thus enhancing the signal to noise (S/N) for the rare 

nucleus. 

 

 

3. EXPERIMENTATION 

3.1. NIR Instrumentation 

 

 Because sample absorption data are difficult to measure directly, they are measured 

indirectly through reflection or transmission. NIR can, however, be employed in either the 

reflectance mode or the transmission mode. NIR reflectance instruments measure the amount of 

NIR radiation reflected from the sample at different wavelengths. NIR transmission (NIT) 

instruments, on the other hand, measure the amount of NIR radiation transmitted through the 

sample at different wavelengths. Based on the mechanism of collecting optical data at different 

wavelengths, NIR instruments can also be categorized as: interference filters instruments, 

moving diffraction grating instruments, fixed grating instruments, acousto-optical tunable filters 

(AOTF) instruments, Diode Array NIR (DA-NIR) instruments and Interferometer-based 

instruments such as FT-NIR. Filters-based NIR instruments are usually the most economical 

ones. The number and position of filters are designed and optimized for certain specific types of 

samples, and it is generally not easy to expand such instruments to other sample types. 

Interference filters-based NIR instruments work mostly in the transmission mode, such as the 

Zeltex, ZX800 and the ZX50 model instruments (manufactured by Zeltex Inc., Hagerstown, MD, 

http://www.zeltex.com). The major limitation of such interference filter-based instruments is that 

spectra are collected at only a few pre-selected wavelengths that are designed and optimized only 

for the major component analysis of bulk grain and oil seed samples. For the analysis of minor 

components like isoflavones, more flexible and powerful NIR instruments such as the DA-NIR 

or the Fourier Transform NIR (FT-NIR) instruments are required. 

 

In order to collect spectral data for a large set of different wavelengths, NIR radiation can 

be dispersed through diffraction gratings so that signals with different wavelengths are separated, 

and the detector can detect signals at an individual wavelength. In the conventional configuration 

where a single detector is used, the diffraction grating system has to be gradually rotated, in 

order to project onto the detector signals of different wavelengths. Such systems are usually 

referred to as moving grating systems. A major limitation of such moving grating systems is due 

to the fact that the diffraction grating contains a moving part, which makes it difficult to obtain 

reproducible scans and also negatively affects the wavelength accuracy. Novel dispersive NIR 

instruments solve this problem by employing multiple detectors, such as diode array detectors, to 

detect NIR signals at different wavelengths simultaneously. In such an instrument, the NIR 
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 11 

radiation can still be dispersed through diffraction gratings. However, signals at different 

wavelengths are projected onto a stationary array of detectors, and the signals are detected 

simultaneously for different wavelengths. For this reason, it is no longer necessary to move the 

diffraction grating system.  Such instruments are referred to as stationary grating systems. Since 

no moving grating is involved, reproducibility and wavelength accuracy/uniformity throughout 

the spectral range are markedly improved. Furthermore, the spectral acquisition speed is also 

improved dramatically because spectral data at different wavelengths are collected in parallel by 

such stationary grating systems, as opposed to the sequential data collection by instruments 

operating with moving gratings/monochromators. Typically a moving grating system takes about 

30 seconds to scan an NIR spectrum at moderate resolution (i.e., 3 nm), whereas a diode-array 

stationary grating instrument is capable of acquiring hundreds of NIR spectra in just one second 

(Baianu et al., 2002[b]) at comparable resolution throughout the entire NIR spectrum. 

 

 

3.2. NIR Spectra Pre-processing 

 

 NIR quantitation using the Lambert-Beer’s law (eq. 2.1.2) requires absorbance data to be 

used for the concentration calculation. However, most NIR instruments do not measure 

absorbance directly. Instead, they measure NIR reflectance from, or transmittance through, the 

sample. The measured reflectance or transmittance data are then converted to absorbance data, 

which are normally referred to as apparent absorbance, to be differentiated from the ‘true’ 

absorbance. The apparent absorbance can be significantly affected by a variety of effects, such as 

specular reflection, light scattering, baseline shifts, etc. In order to improve the accuracy and 

reliability of NIR calibrations, NIR spectra usually have to be corrected for such effects prior to 

calibration model development. In fact, it has been reported that light scattering and baseline 

shifts may introduce more spectral variations than do the constituent contents (Williams et al, 

1987). Since a calibration is the mapping between the spectral data and the constituent contents, 

the regression and calculations involved in the calibration development will be dominated by 

light scattering and specular reflection effects, instead of constituent content variations, if light 

scattering and specular reflection effects are not corrected first. As a result, any calibration 

obtained without spectral pre-processing is likely to be inaccurate, unreliable, or both.  

 

Specular reflection effects can appear as a nonlinear baseline shift across the entire NIR 

spectrum. A semi-empirical approach for correcting the baseline shifts caused by specular 

reflection involves the definition of a set of user-selected baseline points. A baseline curve is 

then defined by such selected points through fitting a spline function to the points. The procedure 

is readily implemented with the Perkin-Elmer “SpectrumONE” program in a user-interactive 

mode that also allows for the subtraction of the fitted spline function/baseline curve from the 

NIR raw spectrum of the sample. In addition to specular reflection, the baseline shifts of NIR 

spectra may also be caused by electronic noise or detector response variations. In such cases, the 

baseline variation can appear to be constant over the entire spectral range, or may increase 

linearly with wavelength. First and second order derivatives of NIR spectra can then be 

employed effectively to remove baseline variations. The derivatives of a spectrum can be 

calculated by a finite difference method, which is just the difference of spectral values between 

two adjacent points. It is relatively easy and simple to calculate, but the S/N of the derivative 

spectrum will decrease. To solve this problem, Savitzky and Golay (Williams, 1987) proposed 
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 12 

an improved algorithm for derivative calculations, which begins with a least-squares linear 

regression of a polynomial of degree k over at least (k+1) data points. The derivatives of an NIR 

spectrum are then calculated as the derivatives of a best-fitted polynomial. The Savitzky-Golay 

algorithm has been proven to be very effective and the S/N is preserved in the calculated 

derivative spectrum.  

 

In addition to baseline shift effects caused by the specular reflection, the electronic noise 

and the detector variations, light scattering is another important source of spectral variation. 

According to modern Quantum Electrodynamics theory (Feynman, 1963), as well as Rayleigh’s 

simplified theory of light scattering (Kortum, 1969), when a beam of light interacts with 

molecules in a material, the incident light beam is partially scattered by such molecules in 

addition to being partially absorbed. The absorbance is linearly related to the concentrations of 

various components in the sample, according to eq. 2.1.2. On the other hand, light scattering is 

mainly caused by sample inhomogeneities, (e.g., the difference of scattering coefficients between 

different parts of the same sample), such as those caused by pores, a distribution of particle sizes 

and matrix ‘texture’. The scattering coefficient is inversely proportional to the particle size of the 

sample, and can also be affected by variations in the packing density from sample to sample 

(Mie, 1908; Thiessing, 1950). According to the Kubelka-Munk theory (Kortum, 1969), light 

scattering affects the apparent absorbance in a multiplicative manner. Therefore, light scattering 

effects cannot be effectively corrected through simple, linear correction algorithms. To correct 

for multiplicative light scattering effects, Geladi and co-workers (Geladi et al, 1985) proposed a 

semi-empirical approach called the Multiplicative Scattering Correction (MSC), that is currently 

the most popular method for pre-processing NIR spectra (Isaksson, 1990). MSC begins by 

calculating the average spectrum of the whole set of standard samples, and then attempts to 

determine the multiplicative parameter (scale factor) as well as the additive parameter (shift 

factor) for each spectrum through a linear regression of the sample spectrum against the mean 

spectrum. In some applications the MSC approach was found to be very effective for correcting 

spectral variations caused by light scattering; as a result of MSC both the accuracy and reliability 

of NIR analysis were significantly improved in comparison with calibrations based on ‘raw’ 

(uncorrected) spectra.  The effects of MSC applied to raw NIR spectra of single soybeans are 

illustrated in Fig. 3.2.1 and Fig. 3.2.2, and are quite substantial for both Dual Diode Array (Fig. 

3.2.1 B) and FT-NIR spectra of soybeans (Fig. 3.2.2 B). 

 

 

 

 

 

 

 

 

 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

12
.7

05
3.

1 
: P

os
te

d 
30

 M
ar

 2
01

2



 13 

 

 

 

 

 

Fig. 3.2.1.  An overlay plot of DA-NIR spectra of single soybean seeds obtained with 
the Perten DA-7000 instrument.  A: Before MSC.  B: After MSC.  
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Fig. 3.2.2. An overlay plot of FT-NIR spectra of single soybean seeds obtained with the 
Perkin-Elmer Spectrum ONE instrument. A: Before MSC.  B: After MSC. 
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3.3 NIR Calibration Models 

 

After careful selection of the standard samples and accurate measurements of the 

composition of the standard samples for reference values, NIR spectra can be collected for such 

standard samples with state-of-the-art NIR instruments. With proper spectral pre-processing to 

correct for specular reflection and light scattering effects, the corrected NIR spectra of the 

standard samples can then be employed for calibration development to predict unknown 

samples. Calibrations are developed through regressions of the NIR spectral data against the 

reference values of constituent concentrations, in practice mostly through regressions of apparent 

absorbance data against the sample concentration data.  

  

NIR instruments measure optical data such as reflectance from, or transmittance through, 

samples. The reflectance and transmittance data are usually converted into apparent absorbance. 

In order to predict the contents of components to be measured from the optical data, a calibration 

needs to be developed first. After adequate spectral data pre-processing, the calibration can be 

developed through regression of the corrected NIR spectral data against the reference constituent 

contents. As shown in the previous section on the principles of NIR, most “optical” spectroscopy 

quantitative analysis methods, including NIR, are based on Lambert-Beer’s law which is re-cast 

here into a form that specifies explicitely the quantities that are wavelength-dependent : 

 

cla ⋅⋅= λλλλλλλλ εεεε                                            (3.3.1) 

 

, where aRλR is the absorbance at wavelength λ, c is the concentration of the component (analyte) to 

be measured, εRλR is the absorptivity of the component at the specific wavelength λ and  l is the 

path length. Utilizing eq.3.3.1, a direct approach to soybean NIR protein calibrations might 

attempt a univariate (linear) regression of the measured absorbance at an appropriately selected 

wavelength against the protein content of the standard soybean samples. However, because the 

NIR spectra of soybeans are very complex and each absorbance band often contains peaks from 

several different components, it remains difficult--if not impossible-- to select any specific 

wavelength that would be ‘sufficiently’ free of interference from other components to allow a 

reliable calibration development. One can solve this problem by taking advantage of another part 

of Lambert-Beer’s law which simply states that the absorbance values of multiple components at 

are additive at any given wavelength. Consequently, an improved calibration model can be 

specified as: 

 

...+⋅⋅+⋅⋅= jjii clcla
λλλ εε                           (3.3.2) 

 

where aRλR and and l have the same meaning as in the previous equation, εRiλR is the absorptivity, cRiR 

is the concentration of component i,  εRjλR and cRjR are defined as before for component j, and so on, 

for all the components present in the sample. With this model, one has to measure the 

absorbance for at least two different wavelengths if there are two interfering components to be 

measured, and a multivariate regression procedures would have to be employed. Unfortunately, 

even such a multivariate model is of little practical use for NIR calibration development. The 

major drawback of such a model is that it would require a knowledge of the complete 
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composition (concentration of every component) in the calibration samples, whereas in most 

situations one may only be interested in certain components. 

 

One solution to this problem is obtained either by rearranging the Lambert- Beer’s 

equation as follows: 

 

l

a
c

⋅
=

λλλλ

λλλλ

εεεε
                                                 (3.3.3) 

 

, or by combining the absorptivity coefficient (ε) and the path length (l) into a single constant , so 

that it takes the simpler form: 

 

λλ apc ⋅=  (3.3.4) 

 

For complex samples such as soybean seeds, where most major components do interfere with 

each other, absorbance data obtained at more than one wavelength are often utilized in practice, 

and the above model is extended to all such selected wavelengths: 

 

mm
papapac λλλλλλ +++= ...

2211
             (3.3.5) 

 

The above model is known as the Inverse Least Squares (ILS), or the Multiple Linear Regression 

(MLR) model, and is widely applied in filter-based NIR instruments that collect spectral data at 

only a few pre-selected wavelengths.  For either DA-NIR or FT-NIR instruments, that collect 

spectral data for hundreds of different wavelengths, it is impractical to apply such an MLR 

model directly to all of the acquired data points throughout the entire spectral range because such 

a procedure would require the calculation of a total of m regression parameters (usually several 

hundreds or thousands) with such an MLR model; this would, therefore, require that a minimum 

set of m standard samples (several hundreds to thousands) to be available for the calibration 

training set. One solution to this potentially severe problem would be to apply the MLR model to 

only a small number of spectral data at pre-selected wavelengths, but such number must not 

exceed the number of standard samples employed for calibration because otherwise there would 

be some undetermined variables. The pre-selection of such wavelengths is critical to building an 

accurate and robust calibration, but it is also quite difficult to do. One may know which 

wavelength regions should be included from the corresponding spectra of the pure components. 

The selection of the exact wavelengths for calibration from such regions can still be difficult, 

because most modern instruments have high, or very high, resolution, and therefore, even in a 

narrow spectral region there will be a large number of points present.  

 

 Another approach is to specify the most important region(s), based either on the pure-

component spectra or the deconvolved spectra of the standard samples. Then, one could utilize a 

computer algorithm to select the rest of the wavelengths for the calculation, such as in the case of 

the Stepwise Multiple Linear Regression (SMLR) procedure provided by the TQ Analysis 
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software package (copyright by Nicolet Co). Even with the SMLR approach, if the number of 

data points included in the model is not carefully selected, over-fitting may readily occur (that is, 

the calibration model would have utilized too many factors); as a result, the calibration may fit 

the standard samples perfectly, but it will fail to predict samples that are not in the calibration 

training set. An improved, advanced approach utilizes a statistical factor analysis method, that 

leads to two other directly related NIR calibration models: the Principal Component Regression 

model (PCR), and the Partial Least Squares model (PLS).  Both the PCA/PCR and the PLS 

model are based on factor analysis, which was developed to solve problems that have many 

factors; such factors may also happen to be highly co-linear when the MLR is over-fitting. The 

principle on which both PCR and PLS are based stems from the observation that, although there 

are usually many different variations that make up a spectrum (such as: inter-constituent 

interactions, instrument variations, differences in sample handling, etc.), after proper data pre-

treatments (such as, baseline corrections, light scattering corrections, e.g., MSC, etc.) the largest 

variations remaining in the calibration set would be only due to the chemical composition 

variations of the standard samples. The main purpose of both PCR and PLS is then to calculate a 

set of ‘variation spectra’ that represents only the variations caused by composition. Such 

calculated ‘variation spectra’ are sometimes called loading vectors, principal components, or 

more frequently, factors. The calculation of such spectra usually involves an iterative process  

that manipulates n-samples of proper numerical values called ‘eigenvectors’, and for this reason 

PCR and PLS algorithms are also called ‘eigenvector methods’. Once the factors are calculated, 

they are utilized instead of the raw spectra for building the calibration model; therefore, the 

possibility of over-fitting can be minimized by choosing the correct number of factors. Although 

the concepts of PLS and PCR are similar, the approaches to the calculation of the factors 

(loading vectors) are quite different. The PCR algorithm calculates the factors independent of the 

concentration information, whereas the PLS algorithm utilizes both the concentration and 

spectral information of the calibration set to calculate the factors.  

 

 The PLS method is considered, in general, to be more reliable than PCR. Besides the 

numerical calculation of regression parameters for the calibration, the PLS algorithm also 

provides qualitative information for model validation, through the first loading vector, which is 

usually a first-order approximation to the pure-component spectrum (Haaland et al, 1988; 

Sorvaniemi et al, 1993). Although PLS is an advanced multivariate regression algorithm, and has 

been widely applied for NIR calibration development, care still needs to be taken when applying 

PLS to NIR data of complex samples such as soybeans. Unlike MLR- which usually requires 

manually selecting the wavelengths or spectral regions for the calculation- PLS has the intrinsic 

ability to automatically build calibration models over the entire spectral range, thus eliminating 

the requirements of either manual selection of wavelengths or spectral regions. Whereas this 

feature might be an advantage for most types of samples, it may lead to a severe limitation of the 

results obtained with the PLS in the special case of samples which happen to have a very high 

degree of correlation between two or more component concentrations. In such special cases, the 

first-order loading vectors of the two correlated components may look similar, and the 

calibration would remain unreliable regardless of the algorithm(s), models or method(s) 

employed for calibration. In special cases, one might be able to minimize this problem by 

manually selecting for the PLS calculation those spectral regions where the pure-component 

absorption dominates (an approach reminiscent of MLR).  
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The computations of PLS and PCR are usually carried out with professional 

chemometrics software. There are currently several chemometrics software programs available 

for calibration development with PLS and PCR, such as the ThermoGalactic Graphic Relation 

Array Management System (GRAMS/32) (Salem, NH, www.galactic.com), ThermoNicolet TQ 

Analyst (Madison, WI, www.nicolet.com), Perkin-Elmer Quant+ (www.perkin-elmer.com), and 

Bruker OPUS (www.bruker.com). The GRAMS/32 software package is a professional 

spectroscopic analysis software package that supports light scattering corrections as well as PLS 

and PCR regression algorithms. The calibration results, including correlation plots, loading 

spectra, SECV plots, etc., can be exported to Microsoft Office subprograms such as Excel. It can 

also be expanded by allowing the user to write special programs in the Array Basic programming 

language. The TQ Analysis software package, on the other hand, provides several calibration 

features that are user-friendly. It supports light scattering corrections (MSC), as well as spectral 

smoothing, and also includes the options of CLS, MLR, PCR and PLS regression analyses. Even 

though the TQ program is not as expandable as GRAMS/32, it is specifically designed and 

optimized for FT-NIR instruments. In our NIRS and FT-NIR studies, both the GRAMS/32 and 

the TQ Analyst were routinely employed. 

 

3.4.   NMR Techniques for Oil Determination in Soybean 

 

3.4.1 Simple One-Pulse (1PULSE) High-Resolution NMR  

The simple, 1PULSE P

1
PH NMR method provides a direct means for measuring the oil 

content in somatic soybean embryos and soybean oil samples. This method uses just one radio 

frequency (rf) pulse during each acquisition cycle (Fig 3.4.1.1). The rf pulse excites all P

1
PH nuclei 

in a sample, and a characteristic P

1
PH NMR time-domain signal is observed. TheP

 
Psingle pulse 

employed by this method has a defined width that maximizes the initial amplitude of the NMR 

signal; this pulse width is the time interval during which the resonant rf pulse of average power 

pw is applied to the sample, resulting in a 90 degree flip of the nuclear spin magnetization from 

the direction of the constant, external magnetic field.  

 The hydrogen nucleus (P

1
PH), with a spin of 2

1
, is usually selected for NMR measurements 

because it is the most abundant isotope present in natural biomaterials. The rf pulse selected for 

HR-NMR has a characteristic, resonance frequency which is proportional to the magnetic field 

strength employed by the instrument.  In our measurements, a Varian U-400 spectrometer model 

was employed, and the applied radio frequency pulse was at the P

1
PH resonance frequency of 400 

MHz, in an external magnetic field of 9.4 T.  
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Fig. 3.4.1.1. Simple 1PULSE Sequence for High-Resolution NMR Analysis of Oil                     

in seeds. 

 

In the case of our high-resolution NMR studies of oil in mature soybean seeds and embryos, the 

number of selected points was np = 65,536. The FFT of an FID produces an HR-NMR spectrum 

which represents the variation of the NMR absorption intensity with the nuclear spin resonance 

frequency. To avoid the possibility of rf saturation, nuclear spins must be allowed to relax (that 

is, without any additional rf excitation being applied) for a significant interval of time called 

Udelay timeU, or dR2R, until the next 90P

0
P rf pulse is applied.  For a low viscosity liquid that does not 

contain either paramagnetic or ferromagnetic species, the length of time required for the nuclear 

spin relaxation to occur is at least on the order of the reciprocal of the half-height linewidth for 

the sharpest observed absorption peak in the HR-NMR spectrum of the liquid. For typical HR-

NMR studies the line broadening (lb) is selected to be less than ~0.2 Hz, and therefore the 

delay time, dR2R , required for nuclear spin relaxation is typically on the order of 5 s or longer. To 

compensate for the very weak NMR absorption signal of oil from the soybean seed or embryo 

samples, S/N in the oil spectra was improved more than twenty-fold through the accumulation of 

at least 400 transients, while the gain parameter of the rf pre-amplifier and receiver was held 

constant during all HR-NMR acquisitions.  

 

3.4.2 Low-resolution NMR for Oil Determination in Seeds: AOCS recommended method 

Ai 3-75 for Oil Content 

The time-domain pulsed NMR method is an AOCS recommended standard method 

(AOCS Recommended Practice AK4-95) for rapid and simultaneous determinations of oil and 

moisture contents of oil seeds. This method can accurately measure oil seed samples with less 

than 10% moisture. Drying is stated to be necessary for the higher moisture samples. The 

method usually involves the following steps: 
 

1.  Place the test sample into the magnetic field of the NMR spectrometer; 

2. Apply an intense 90 P

o
P radio frequency (rf) pulse to excite all the hydrogen nuclear 

spins;  
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3. Record the free induction decay (FID) following the 90 P

o
P rf pulse. The maximum 

amplitude of the FID signal is proportional to the total number of protons from the water 

and oil phases of the sample; 

4. Apply a second, 180 P

o
P , refocusing, rf pulse to produce a spin-echo signal when only the 

signal from the oil phase contributes to the FID; 

5. Calculate the difference between the two component signal amplitudes, one of which 

is proportional to the oil, while the other is proportional to the moisture content. Then 

convert the measured signal intensity from water and oil into percentages of oil or 

moisture content with an established calibration.  

 

This method has been applied to soybean and sunflower seed analysis and was reported to have 

only 0.6% error for oil determination. The calibrations employed to relate the FID signal to oil 

and moisture percentages are critical for the accuracy and reliability of this method. For best 

performance, the calibration samples should be homogenous, free from impurities, and of the 

same type as the test samples; this is so because different types of oil seeds may have different 

fatty acid profiles which would result in different time dependences for the FID amplitude. It is 

recommended that the oil content of calibration standards should be determined with the 

reference method described in AOCS Ai 3-75.  

 

3.4.3 1PDNA P

13
PC SS-NMR technique for Oil Content Determination in Soybean Flours  

 

Soybean flours can be directly measured for oil content determination by employing a 

composite, 1PDNA pulse sequence. Solid-state P

13
PC NMR spectra were recorded with a General 

Electric, GN300WB model, FT-NMR instrument, operating with a 7.05 T, wide bore 

superconducting magnet. The pencil-shaped CP-MAS probe allowed for the insertion of a 7.5 

mm diameter rotor made of zirconium.  The NMR pencil probe components are as shown in Fig. 

3.4.3.1. The same NMR probe is employed for experiments which require spinning the rotor at 

high-speed rates, with the rotor axis at the magic angle (54deg,44min) with respect to the 

external manetic field (z) direction.  The maximum spinning rate of the rotor was ~6 kHz with 

all our samples and was simply achieved with nitrogen gas from the building supply. The active 

volume in the coil could be filled with ~300 mg of sample. Considering the fact that the 

gyromagnetic ratio for P

13
PC is just one quarter of that for P

1
PH, the center frequency for the P

13
PC 

NMR spectrum in the 7.05 T superconducting magnetic field of the GN300WB spectrometer 

was near 75 MHz. 
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Fig. 3.4.3.1. Diagram of the pencil probe employed in a General Electric, GN300WB model,   

FT-NMR spectrometer, with a zirconium rotor sleeve, Kel-f drive tip, Teflon front spacer and 

end cap. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4.3.2. The 1PDNA NMR pulse sequence employed in our P

13
PC SS-NMR 

measurements of oil content in soybean flours. 

 

 

3.4.4. The VACP P

13
PC SS-NMR technique for Measurements of Protein Content in 

Soybean Flours 

 

The Variable Amplitude Cross-Polarization (VACP) experiment is performed by applying 

a pulse sequence that transfers polarization from the P

1
PH to P

13
PC nuclear spins, in the presence of 

sample spinning at the magic angle with respect to the external magnetic field.  The artificially 

imposed, fast sample spinning averages out the P

13
PC chemical shift anisotropy. The purpose of the 
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VACP NMR pulse sequence is to enhance the P

13
PC NMR signal through cross-polarization from 

P

1
PH to the neighboring P

13
PC nuclear spins. The pencil probe for solids was employed in the General 

Electric GN300WB (7.04 T) spectrometer to measure 300 mg samples of soybean flours without 

any additional sample preparation.  The number of transients selected in this case was 1,600 for 

each soybean flour sample, thus allowing for a 40-fold improvement in S/N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4.4.1 The VACP NMR pulse sequence employed in our P

13
PC SS-NMR measurements of 

Protein Content in Soybean Seed Flours. 

 

3.4.5 Liquid-State P
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PC NMR Measurements of Protein Content and Amino Acid Residues 

in Hydrated Soy Flour Gels  

 

Solid sample composition information that could be provided by the averaged, Isotropic 

Chemical Shift Isotropy (CSI) is hidden by the very broad bands present in static and rigid solids 

that possess large Chemical Shift Anisotropy (CSA). In liquids, rapid molecular tumbling 

averages out anisotropies and, therefore, NMR spectroscopists often employ dilute solutions to 
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acquire high-resolution NMR spectra.  Nevertheless, it is often the case that highly hydrated 

concentrated samples, such as hydrated gels, still exhibit higher resolution P

13
PC NMR spectra than 

those obtained with the help of various SS-NMR techniques, by virtue of the segmental mobility 

in high molecular weight biopolymers, in those sample regions that are highly hydrated as in soft 

gels of various hydrated biopolymers (Baianu et al, 1989). 

 

3.4.6 Protein Content and Amino Acid Profile Determination with the WALTZ- 16, P

1
PH 

Decoupling Sequence for P

13
PC Liquid-State NMR of Highly Hydrated Soy Flour Gels and 

Doughs 

.   

The WALTZ-16 P

1
PH decoupling pulse sequence for P

13
PC NMR, is a composite pulse sequence that 

employs P

1
PH broadband decoupling, as well as refocusing of the heteronuclear interactions, by 

applying a refocusing 180 deg. pulse to the P

13
PC nuclear spins as shown in Fig 3.4.6.1. In order to 

determine the protein content and amino acid profiles of soybean seeds we employed a Varian 

UI-600 spectrometer that operates at 150 MHz resonance frequency for P

13
PC NMR in a 14.1 T 

external magnetic field. Samples of soy flour gels of various dilutions in DR2RO at pH ~11.2 were 

carefully placed in a 10 mm probe for solutions.  Spectra were recorded with 10,000 transients, 

with a P

13
PC pulse width of 8.0 µs; the recycle delay employed was 4.0 s and the acquisition time 

was 0.62 s.  The selected spectral width was 52.8 kHz (~350 ppm). 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.4.6.1.  The WALTZ-16 Decoupling pulse sequence for Liquid-State P

13
PC NMR. 
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3.5 Standard Methods for Soybean Composition Analysis 

Understanding the limitations and assumptions involved in standard methods is essential for 

generating high quality calibrations; any large and unexplained variations in the content of any 

of the components in the standard samples can result in large errors of prediction for the 

constituents of interest. Therefore, the analytical methods for oil, protein and moisture 

determination will be briefly discussed as they have been employed for the purpose of NIR 

calibrations for these major soybean seed components. 

 

3.5.1 Oil determination 

 

Compared to protein determination methods, the oil determination method most 

commonly employed is relatively straightforward. Both oil and fats belong to the class of lipids, 

which by definition is a group of substances generally soluble in organic solvent and insoluble in 

water. Oil refers to liquid lipids at room temperature whereas ‘fat’ refers to the solid lipids at 

room temperature. Since oil consists of a mixture of hydrophobic molecules that are soluble in 

organic solvent and insoluble in water, the total oil content of a sample can be determined by 

organic solvent extraction. 

3.5.1.1. Solvent extraction methods (AOCS official method Ac 3-44) 

 

Based on the extraction operation, the organic solvent extraction method can be 

categorized as a continuous solvent extraction method, a semicontinuous solvent extraction 

method, or a discontinuous solvent extraction method. The semicontinuous extraction method is 

most widely employed in analytical laboratories and it normally utilizes a Soxhlet distiller or 

similar devices. The AOCS official method (Ac 3-44) for oil determination of soybean samples 

is the semi-continuous method. 

The AOCS official method specifies petroleum ether as the solvent to extract oil from 

ground soybean meal in a Butt-type extraction apparatus such as Soxhlet distiller. The basic 

operation involves the following steps: First, weigh 2 g of ground sample and enclose the sample 

in filter paper. Then place the sample in the Butt tube device and extract the sample with 

petroleum ether for 5 hrs. Next, evaporate the petroleum ether on a steam bath or in a water bath. 

Finally, weigh the mass of the extracted oil. The oil content of the sample can be calculated as 

the percentage of extracted oil over the total mass of the sample. To get accurate and reliable 

results, it is important that the powder sample is fine enough as it has been found that particle 

size of the ground soybean affects the extraction. In addition, the moisture content of the sample 

is also important. If the moisture in the sample is too high (>10%), the sample may also need a 
drying pretreatment.  

 

3.6. Protein Analysis 

Various techniques were utilized to determine the protein content in soybeans. However, 

each one has its advantages or drawbacks, and they should be therefore considered as 

complementary to each other.  
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The Kjeldahl method is one of the widely employed methods for measuring organic 

nitrogen content in grains, and it is also the official method for protein analysis recommended by 

the AOCS (Ac 4-91). The total organic nitrogen of the sample is calculated and converted into 

the percentage of protein by multiplying by a predefined constant. However, the digestion 

process requires some catalysts to increase speed and it is affected by changes in temperature.  

The Biuret method is also employed to determine protein content for relatively large 

samples. It is considered by many researchers to be more accurate than the Kjeldahl method for 

protein measurements because it utilizes the reaction between the peptide bond and copper ions; 

on the other hand, Kjeldahl qunatitates only the total nitrogen, and cannot distinguish between 

protein and non-protein nitrogen. The Biuret method does have relatively low sensitivity, and it 

requires calibration with known protein concentration standards.  A related method to Biuret is 

the Lowry method, which is perhaps the most widely applied method for determination of 

protein content in solutions. It combines the Biuret reaction with the reduction of the Folin-

Ciocalteau phenol reagent (phosphomolybdic-phosphotungstic acid) by aromatic amino acids 

tyrosine and tryptophan residues in the proteins. The Lowry method has very high sensitivity; 

however, the color reaction may vary with different proteins to a greater extent than with the 

Biuret method.  Ohnishi and Barr made a modification of the Lowry method in their procedure, 

thus combining the advantages of the Biuret method with those of the Lowry method, and also 

resolving the limitations of the latter (Ohnishi and Barr, 1978). Their procedure is the basis for 

the current Sigma Chemical Co. (St. Louis, Missouri) micro-protein determination procedure 

No.690. This procedure has also been employed in our laboratory for protein determination and 

was calibrated with soybean protein standards of known purity and composition.  

3.7.     High Performance Liquid Chromatography Analysis of Derivatized Amino Acids 

from Hydrolyzed Proteins  
 

A method that is often preferred by analytical laboratories in order to generate ‘standard’ 

amino acid profiles of proteins is High Performance Liquid Chromatography (HPLC) of 

hydrolyzed proteins. However, this method does not allow for the measurement of Tryptophan 

(Trp), Glutamine (Gln) and Asparagine (Asn) residues. Only values of Glx = Gln +Glu and 

Asx=Asp +Asn can be reported with this method as the acid hydrolysis converts all Gln into Glu 

(Glutamic Acid), and all Asn into Asp (Aspartic Acid). Before actual HPLC measurement, the 

remaining 18 amino acid residues are derivatized with special fluorochrome reagents, such as the 

AccQ-Fluor reagent (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) in a borate buffer 

(Waters Co., Milford, MA, USA). After obtaining linear HPLC standard plots for the 18 amino 

acid residues that are contained in acid hydrolyzates of proteins, one can proceed to attempt NIR 

calibrations based on such partial HPLC data for the same group of protein hydrolyzates. This 

approach was recently attempted with soybean samples and a brief summary of NIR calibrations 

was reported (Anderson, Killam and Orf, 2002) for amino acid profiles of ground soybean 

samples measured with the UdispersiveU NIRS Model 6500 instrument (NIRS Systems, Silver 

Springs, MD) operated in the reflection mode. The only major drawback of this approach, apart 

from the Gln and Asn conversion to the acid forms, are the relatively large errors introduced by 

the acid hydrolysis for several of the more labile amino acid residues, thus limiting the 

usefulness of the approach to perhaps 10 of the 18 amino acid residues that are being separated 

by HPLC. 
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3.8.  Moisture determination methods 

 

Moisture is probably the most widely analyzed component for food products. There are, 

however, several precautions that need be observed in order to obtain accurate and reproducible 

moisture measurements. Water in food products and oil seeds can be dynamically distributed 

over at least three different types of water populations, i.e., free, adsorbed and trapped. Most 

moisture determination methods determine the amount of water in food products by measuring 

the difference of mass before and after removing water from the sample, in most cases by drying 

the sample for extended periods of time at temperatures close to the water boiling point. Because 

not all the water populations present in a food product, or an oil seed, can be readily removed by 

drying at a specific temperature, drying methods for moisture determination are susceptible to 

inconsistency. The most widely employed moisture determination method for grains and oil 

seeds is the oven drying method. For oven drying, the sample is heated under specified 

conditions and the weight loss is measured to calculate the moisture content of the sample. 

Drying conditions, such as the type and condition of the oven, and the time and temperature of 

drying, can significantly affect the results. In the ASAE standard method (ASAE S352.2) for 

soybean moisture determination, it is required that 15 grams of whole, ungrounded soybean 

seeds be dried at 103 °C for 72 hrs.  To determine the moisture content of low moisture products 

the Karl Fischer titration method could also be applied. This chemical method is based on the 

fundamental reaction involving the reduction of iodine by SOR2R in the presence of water. 

However, its rate of success with several oil seeds, such as corn and soybean seeds has been 

rather low. 
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4. RESULTS  

4.1 Validation of the NIR Calibrations for Protein and Oil Measurements in Mature 

Soybean Seeds: Bulk and Single Seed Calibrations 
 

After appropriate spectral corrections for light scattering effects and baseline shifts, the 

DA-NIR and FT-NIR spectra of the standard samples were employed for calibration 

development. For both the DA-NIR and FT-NIR instruments, calibrations were developed based 

on the PLS-1 model and they were validated with the corresponding deconvoluted spectra. The 

number of factors for the PLS-1 models was optimized by cross validation; the prediction errors 

of the calibration models were also estimated by employing cross validation. The correlation 

coefficients (R) and Standard Error of Cross Validation (SECV) of the DA-NIR calibration for 

protein and oil measurements are presented in Figures 4.1 to 4.4 for the FT-NIR instrument, and 

in Figures 4.5 to 4.8 for the DA-NIR instrument. In addition, the calibration results are also 

presented in Tables 4.1 and Table 4.2. From Figures 4.1 to 4.4 and Table 4.1, one can see that 

the SECV values for protein and oil analysis for both bulk soybean samples and single seed 

soybean samples are fairly low. For bulk sample analysis, the SECV value is quite low, ~0.1% 

for both protein and oil calibrations. For the single seed analysis, the SECV value for protein 

analysis is 1.1% and that for oil is 0.5%. From Figures 4.1 to 4.4 and Table 4.1, one may note 

that very accurate results can be obtained with the FT-NIR instrument. The SECV values for 

protein and the oil FT-NIR analysis of bulk samples are similar to the results obtained with the 

DA-NIR instrument, whereas for single seed analysis, the FT-NIR instrument seems to be more 

accurate. This is as expected, and it is easily explained by the fact that FT-NIR instruments 

utilize an integrating sphere accessory and a much narrower beam, which is more appropriate for 

single seed analysis.  

 

 
 

Fig. 4.1.1. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Single 

Seed Soybean Analysis. 
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Fig. 4.1.2. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Single Seed 

Soybean Analysis. 

 
 

 
 

Fig. 4.1.3. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Bulk 

Soybean Sample Analysis. 
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Fig. 4.1.4. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Bulk Soybean 

Sample Analysis 

 

 

 

Fig. 4.1.5. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Bulk 

Soybean Sample Analysis. 
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Table 4.1.1.  Correlation coefficients (R) and Standard Error of Cross Validation (SECV) for 

Soybean Protein, Oil, and Moisture Analysis on the Perkin-Elmer Spectrum ONE NTS FT-NIR 

Instrument. 
 

Components Protein Oil 

 Bulk Sample Single Seeds Bulk Sample Single Seeds 

SECV 0.3 0.3 0.1 0.2 

R 99.9% 99.9% 99.9% 99.9% 

 

 

 

 

Fig. 4.1.6. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Bulk Soybean 

Sample Analysis. 
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Table 4.1.2. Correlation coefficients (R) and Standard Error of Cross-Validation (SECV) for 

Soybean Protein and Oil Analysis on the Perten DA-7000, Dual Diode-Array DA-NIR 

Instrument. 
 

Components Protein Oil 

 Bulk Sample Single Seeds Bulk Sample Single Seeds 

SECV 0.1 1.1 0.1 0.5 

R 99.9% 98.5% 99.9% 98.5% 
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Fig. 4.1.7. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Single 

Seed Soybean Analysis. 
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Fig. 4.1.8. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Single Seed 

Soybean Analysis. 

 

  

 

4.2Oil and Protein Determination in Mature Soybeans Using NMR Techniques 

 

4.2.1 Decoupling Sequence for P

13
PC Liquid-State NMR of Highly Hydrated Soybean  

         Flour Gels and Doughs 

 

The P

1
PH decoupled P

13
PC NMR spectra of gel samples of soybean flour, protein isolate and 

oil that were recorded with the WALTZ-16 P

1
PH decoupling pulse sequence are presented in Figs. 

4.2.1.1 to 4.2.1.3. 

It was previously reported for soybean proteins (Baianu and Kumosinski, 1993; Kakalis 

and Baianu, 1989, 1990) that the region of interest for soybean protein content determination is 

located in spectral region 4, between 173 ppm and 181 ppm, as shown in Fig.4.2.1.1.  Indeed, we 

found the P

13
PC NMR peaks of 18 amino acid residues to be present in this region.  In the same 

figure, spectral region 3 was dominated by signals coming from the major components of the 

teguments, cellulose and hemicellulose.  Signals from different carbons of triacylglycerols have 

resonances in region 2. The peak in spectral region 1 is assigned to the methyl group signal, and 
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the peaks in region 5 are assigned to glycoproteins. In Fig. 4.2.1.3 the peaks at 59 ppm and 66 

ppm are assigned to the Cα and Cβ carbons of glycerol, whereas the peaks at 125 ppm and 127 

ppm are assigned to the ethylene carbons of fatty acids.  

The proposed assignments of the CRαR peaks for all essential amino acids were in 

accordance with BioMagResBank, as follows: His (81.40 ppm), Ile (77.23 ppm), Leu (69.90 

ppm), Lys (42.63 ppm), Met (47.13 ppm), Phe (73.46 ppm), Thr (51.93 ppm), Trp (47.13 ppm) 

and Val (51.93 ppm).  Similar P

13
PC NMR assignments were made previously for wheat proteins 

(Baianu, 1981; Baianu et al., 1982; 1989) and corn zeins (Augustine and Baianu,1986; Baianu, 

1987; Baianu and Kumosinski,1993). We also found that the carbonyl peaks of 18 of the amino 

acids present were close to ~172 ppm.  The amino acid profiles of the soy protein and/or soybean 

flour were obtained from the integral values of the CRαR peaks ratioed to the integral value of the 

carbonyl peak at ~172 ppm.  The amino acid profile can then be used as a database for the 

protein evaluation method called the protein digestibility corrected amino acid score (PDCAAS), 

which takes into account the amino acid profiles of specific protein groups. 

In previous reports of high-resolution P

13
PC NMR studies of purified soybean protein 

fractions in solutions (Kakalis and Baianu, 1989, 1990; Wei, 1990), it was shown that the best 

resolution of the amino acid residue peaks in the NMR spectra was obtained for pH values close 

to 11. Therefore, the protein content of soybean flour gels was determined under such alkaline 

pH conditions by employing the standard plot obtained for various dilution levels of SPI gels. A 

standard P

13
PC NMR calibration plot for dilute SPI solutions is presented in Fig. 4.2.1.4.  This was 

obtained by plotting the ratios of the peak integral values for the region between 173 ppm and 

181 ppm in the P

13
PC NMR spectra of SPI solutions and/or gels, against the known SPI 

concentration.  The linear regression equation for fitting the standard plot was then employed to 

calculate the soybean protein content of soybean flour gels. 
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Fig. 4.2.1.1 WALTZ-16 decoupled P

13
PC Liquid-State NMR of a soybean flour gel sample 

with 38.7% protein content.  Spectrum recorded with 10,000 transients on a Varian UI600 

NMR spectrometer, in a 14.1 T external magnetic field. 

 

 

  

 Fig. 4.2.1.2. WALTZ-16 decoupled P

13
PC Liquid-State NMR of a Soybean Protein Isolate gel 

sample with 50.8% protein content. Spectrum recorded with 5,000 transients, on a Varian 

UI600 NMR spectrometer, in a 14.1 T external magnetic field. 
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Fig. 4.2.1.3. WALTZ-16 P

13
PC Liquid-State NMR of a soybean oil sample.  The spectrum was 

recorded with 112 transients on a Varian UI-600 NMR spectrometer, in a 14.1 T external field. 

 

 

Fig. 4.2.1.4. Standard Calibration Plot for Soybean Protein Isolates.   

2.3.2 Amino Acid Contents of Soybeans Determined by P

13
PC Liquid-State, High-Resolution 

NMR, Ion Exchange Chromatography and HPLC. Correlations between Amino 

Acid and  Soybean Protein Contents 
 

Amino acid profiles of a set of 100 standard soybean seed samples were determined by 

high performance liquid chromatography of Amino Acids. The NIR values for protein and oil of 

this standard sample set are highly correlated, as shown in Fig. 4.2.2.1. Furthermore, we found 

that the amino acid contents of this standard soybean seeds set, calculated on a dry basis as a 

percent of the total soybean seed sample weight (D %, AA) are highly correlated with the 

soybean protein content calculated on a dry basis from the total sample weight (as shown in the 

following Figures 4.2.2.2 to 4.2.2.5). Therefore, our data presented here in Figures 4.2.2.2 to 

4.2.2.5 imply that NIR calibrations for amino acid contents of soybeans may encounter 

difficulties with most standard sets because of the close correlation (>85%) between the amino 

acid residue and the protein content of soybeans.  Similar, high correlations were also found for 

other amino acid residues of acid hydrolyzed soy proteins: Asx, His, Ala, Ile, Cys and Met. 

Table 4.2.2.1 presents a comparison between our amino acid composition analyses by P

13
PC 

Liquid-State, High-Resolution NMR of unhydrolyzed soybean seed samples and the 

corresponding data obtained by ion exchange chromatography of extracted soybean proteins 

after acid hydrolysis. As shown in a previous report (Augustine and Baianu, 1984), there is very 
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good agreement between the amino acid analysis of acid hydrolyzed, extracted soybean protein 

samples by P

13
PC Liquid-State, High-Resolution NMR and the corresponding data obtained by ion 

exchange chromatography of the same extracted soybean protein samples after acid hydrolysis. 

Therefore, the remaining differences between the results obtained by the two different 

approaches are most likely to be caused by acid hydrolysis. Furthermore, our NMR results 

include data for Trp, Gln, Glu, Asn and Asp in unhydrolyzed soybean proteins that cannot be 

obtained for acid hydrolyzed protein samples.  

 

Table 4.2.2.1. Comparison between Amino Acid Contents of Soybean Proteins in Soybean 

Seeds Determined by P

13
PC Liquid-State, High-Resolution NMR and Ion Exchange 

Chromatography (IEC). 

 

UWt % Total :  Ala    Val       Leu   Ileu    Gly  Asn  Asp  Asx   Gln   Glu   Glx  

UNMR              5          5             7        4.5        4         7         5       12     11     8       19 

UIEC                   4        5.2        7.3         4.7       2.8      ND      ND   12.1   ND   ND  21.3 

 

U                      Ser      Thr  Arg   Lys    Trp    Tyr    His Phe Cys   Met   

UNMR               5         4          8          7           1          3        3          6          1.5       1.0 

UIEC               4.6         3.6         9.5      7.8         ND      3.5      2.6       5.5        ND      0.9      
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Fig. 4.2.2.1. Inverse Correlation between Protein (Dry weight %) vs. Oil (Dry weight %) for 

the Amino Acid Set of 65 Standards selected for the NIRS AA-Calibration (in addition to the 

remaining 35 standards employed for independent validation). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2.2.2. Arginine as % Tot Dry Wt. vs. D% Protein. Note the very high degree of 

correlation between the Arginine content (as % of Total dry weight) and the Protein (as % of 

Total Dry weight) for the 65 amino acid standards measured. 
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Fig. 4.2.2.3. Glutamine plus Glutamic Acid (Glx), as % Tot Dry Wt. vs. D% Soybean Protein. 

Note the very high degree of correlation between the Glx content (as % of Total dry weight) 

and the Protein (as % of Total Dry weight) for the 65 amino acid standards measured. 
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Fig. 4.2.2.4. Leucine as % Tot. Dry Wt. vs. D% Protein. Note the very high degree of correlation 

between the Leucine content (as % of Total dry weight) and the Protein (as % of Total Dry 

weight) for the 65 amino acid standards measured. 
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Valine D% vs. Protein D%
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Fig. 4.2.2.5. Valine as % Total Dry Weight vs. D% Protein. Note the very high degree of 

correlation between the Valine content (as % of Total dry weight) and the Protein (as % of 

Total Dry weight) for the 65 amino acid standards measured.  

 

Furthermore, our data indicates that the range of amino acid content variation among 

different soybean lines is relatively narrow, thus limiting the scope that breeders may have for 

selecting soybean lines with improved amino acid profiles. This interesting aspect requires 

further experimental studies, as well as careful analysis of the NIR data for the amino acid 

standard sets (e.g., deconvolution of the soybean protein spectra and their comparison with the 

deconvoluted NIR spectra of the individual amino acids.) 

 

4.3 Oil Determination in Soybeans with the 1PULSE HR-NMR method.  

Because the oil in plant seeds is in a liquid-like form, the oil protons are highly mobile and 

are detected by the 1PULSE NMR sequence. On the other hand, the much less mobile protons of 

carbohydrates and proteins in the solid matrix of the soybean seeds remain undetected as their 

FID signals decay very rapidly (within <30 µs), and are therefore within the dead-time of high-

resolution NMR probes for liquids (Rutar et al., 1989).  The NMR signal amplitude is 

proportional to the mass of a sample (Abragam, 1961), and the intensity of a peak is simply the 

integral value of the area under the corresponding HR-NMR absorption peak.  Experimental 

conditions and methodology were as described in Section 3, and references cited therein. 

Fig. 4.3.1 illustrates the proportional increase of the NMR peak height with increasing quantity 

of oil for soybean seed standard samples. The standard, linear plot shown was first obtained for 

pure soybean oil standards. The slope of the standard regression line, expressed from the 
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intensity of the NMR peak as a linear function of the corresponding amount of oil in the 

standards, was then employed for the calculation of the quantities of oil for unknown soybean 

samples.  Unknown sample oil contents were predicted by direct comparison of the measured 

NMR peaks for oil with the regression line in the oil standard plot (Fig. 4.3.2). Similar oil 

measurements were carried out previously for rapeseed or canola seeds, without oil extraction 

from the seeds. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 4.3.1.  The peak height increases as the quantity of oil in a sample increases.  The P

1
PH 

spectrum was taken with an NMR spectrometer Varian U-400 and a Nalorac 5 mm P

1
PH 

NMR Quad probe, in an external magnetic field of 9.4 T, at a resonance frequency of 400 

MHz. 
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Fig. 4.3.2. The soybean oil standard plot for 400 MHz P

1
PH NMR measurements on the Varian U-

400. The probe was a Nalorac 5 mm QUAD for high-resolution P

1
PH NMR.  

 

Fig. 4.3.3. The P

1
PH NMR oil peaks in a 0.9 µL soybean oil sample are in the following regions: 0 

to 3 ppm, ~4 ppm and ~5 ppm.  The P

1
PH NMR peak of water is at 4.67 ppm.  The P

1
PH NMR 

spectra was acquired by averaging 500 transients with a Varian U-400 NMR spectrometer and a 

Nalorac 5 mm Quad probe tuned to a resonance P

1
PH center frequency of 400 MHz in an external 

magnetic field of 9.4 T. 
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4.4 Oil Determination in Soybean Flour with the 1 PDNA NMR Pulse Sequence  

The U1P UULSE witd Decoupler turned on During Acquisition (1PDNA) pulse sequence was 

employed for the carbonyl group detection of oil in soy flours.  The lattice relaxation time for oil, 

TR1,R measured with the inverse recovery method, and was found to be TR1R= 0.52 s. Therefore, the 

delay time, or the inter-pulse time interval, should be selected as dR5R

≥ 5TR1R, or ~2.5 s, and thus 

ensure that all FID signals are reproducible. However, because the FID is acquired for an interval 

time TR2R*, which is much shorter than the actual TR1R, the acquisition delay can be reduced in 

practice to ~3 TR2R*, or even less if the selected pulse width was smaller than the 90 P

0 
Ppulse.  

Therefore, in our oil determination measurements by NMR, dR5R was selected as 2 s, and the 

number of accumulations was 400, for a duration of the 90 P

0
P rf pulse of 5.5 µs.  

TheR Rchemical shift values were obtained by comparison to the glycine carbonyl chemical 

shift value of 176.03 ppm relative to TMS, as shown in Fig. 4.4.1. P

13
PC NMR spectra of soybean 

flours and soybean oil recorded with the 1PDNA experiment with 400 transients are presented in 

Figs. 4.4.2. and 4.4.3. Based on our published assignments P

 
P(Baianu et al.,1993), the peaks in the 

spectral region ~130 ppm were assigned to the ethylenic carbons of the fatty acid signals. 

 

   

Fig. 4.4.1. Solid Glycine powder spectra with the carbonyl peak at 176.03 ppm  

relative to TMS. (SSB = spinning sidebands). 
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 Fig 4.4.2. 1PDNA P

13
PC SS-NMR of soybean flour for a standard sample with 20% oil content 

(~300 mg total weight).  The soybean oil signal of interest exhibits several resolved peaks close 

to 130 ppm. 

 

 

 

   Fig. 4.4.3. 1PDNA P

13
PC SS-NMR of a standard sample of 53.5 mg of soybean oil in AlR2ROR3R. 
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The 1PDNA sequence pulse can be employed to record the P

13
PC NMR spectra of compounds 

in their liquid phase (or in solutions) as it is the case with oil in soybeans.  Since all oil soybean 

components are tumbling fast relative to the P

13
PC NMR resonance frequency employed in our 

measurements, the dipolar interactions were reduced and their NMR signals gave sharp, well-

resolved peaks. Thus, the measured diffusion constant for oil in immature soybean embryos was 

in the range of 10 P

-5 
Pcm P

2
Ps P

-1
P.  All P

13
PC NMR spectra were baseline corrected prior to integration.  

The quantity of oil in a sample was assumed to be given by the value of the integral of the peaks 

at ~132 ppm.  The standard oil curve was obtained with the integral values of the P

13
PC NMR peaks 

at ~132 ppm (which are assigned to the ethylenic carbons of fatty acids).  The results of our P

13
PC 

NMR measurements were in very good agreement with our NIR results obtained for the same 

soybean samples, as shown in Table 4.4.1 and Fig. 4.4.4. 

 

 

Table 4.4.1. Example of 1PDNA P

13
PC SS-NMR Measurements of Oil Content for Soybean 

Flours, and their direct, linear correlation with the corresponding NIR data. 

 

Soybean 
Seed ID 

M21
23 

W210
1 

W240
3 

M309 M285 96-
960A2-
2687 

W1228 96-
959A6-
1447 

LG00-
13523 

LG00-
13251 

% oil by 
NIR 

24.7 23.9 22.1 20.4 21.6 19.8 18.2 16.4 14.2 13.3 

%oil by 
NMR 

24.9 24.0 22.7 21.0 22.0 19.0 19.0 16.9 14.3 13.9 
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Linear Correlation Between 

NMR and NIR data for 

Soybean Oil Composition

y = 0.981x + 0.672

R
2
 = 0.99
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Fig. 4.4.4. 1PDNA P

13
PC SSNMR of Oil Content of Soybean Flours and their direct linear 

correlation with the corresponding NIR data.  
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4.5  Oil Determination in Soybean Flour by VACP P

13
PC SS-NMR 

The protein content of soybean flours was determined from the standard plot for Soy 

Protein Isolates (SPI), (SPI source: 95% protein content, Archer Daniels Midland Company, IL, 

USA).  NMR measurements of soy protein content are in agreement with the corresponding NIR 

results for the same samples, as shown in Table 4.5.1 and Fig. 4.5.2 

 

 

Fig. 4.5.1. VACP P

13
PC SSNMR of a Soybean Flour sample with 41% protein content (300 mg 

total weight).  The component of interest has peaks in the spectral region around 174 ppm. 

 

Table 4.5.1.  VACP P

13
PC SS-NMR Measurements of Protein Content of Soybean Flours and 

Their Direct Correlation with the NIR Data (as shown in Section 2.6). 

 

Soybean 
Seed ID 

M2123 
W210

1 
W240

3 
M30

9 
M28

5 

96-
960A2

- 
2687 

W122
8 

96-
959A6-
1447 

LG00
-

1352
3 

LG00
-

1325
1 

% 
protein 
by NIR 

37.0 39.1 40.8 42.7 43.8 46.2 49.6 52.6 55.0 56.7 

% 
protein 
by NMR 

37.1 40.0 41.5 42.0 44.0 47.0 49.0 53.1 55.0 58.0 
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Linear Correlation Between NMR and 

NIR data for Soybean Protein 

Composition

y = 1.012x - 0.252
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Fig. 4.5.2.  VACP P

13
PC SS-NMR Measurements of Protein Content in Soybean Flours 

and their direct, Linear Correlation with the Corresponding NIR Data.  

 

 

The 99% linear correlation between the P

13
PC SS-NMR and the corresponding Dual DA-

NIRS oil and protein measurements on the same samples of well-defined soybean accessions 

from the USDA Soybean Germplasm Collection at UIUC, suggests that both techniques are 

suitable for the non-destructive, practical determination of both oil and protein content of 

soybean flours. 

 

 

 

 

 

5.  Limitations and Advantages of the techniques 

FT-NIR instruments offer relatively high sensitivity, higher spectral resolution and 

considerably shorter spectral acquisition time in comparison with either filter-based or dispersive 

instruments that employ moving gratings.  
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Moisture determination errors can significantly affect the accuracy of any calibration in 

the NIR region because all the remaining components are specified on a wet basis in the 

chemometric programs that utilize, for example, the PLS1 algorithm. Furthermore, FT-NIR 

measurements on powdered soybeans take longer than whole seed analysis, and moisture 

calibrations are significantly less accurate for soybean powders in comparison with whole seeds 

because of the rapid moisture changes that can, and do, occur in soybean powders. Therefore, 

any inaccuracy in moisture determinations for the standard samples will significantly affect the 

predicted values for the other soybean seed/ oil seed components. The effect is even greater 

when smaller concentrations need to be predicted such as, for example, in the case of isoflavone 

or fatty acid calibrations. Errors made in moisture control of seed samples during transfers 

between measurement sites (i.e., between reference/analytical wet chemistry and routine NIR 

laboratories) have often been the cause of inaccurate and unreliable NIR calibrations that were 

not externally pre-validated. This is also one of the possible reasons why NIR methods for 

protein, oil and moisture are not yet recommended by AOCS for oil seeds. 

In comparison with other methods of composition analysis, FT-NIR reflectance has not 

only the advantage of being convenient (with little or no sample preparation required), but it is 

also high speed, low cost per sample analysis and highly reproducible when calibrated correctly. 

These are indeed considerable advantages to be weighted against its minor disadvantages. 

Last but not least, the soybean coat, and especially the darker coat colors, have been 

found to have a major influence on the NIR scattering and reflection properties of the soybean 

seed that does limit the applications of NIR for the composition analysis of dark color coat 

soybeans such as black, brown or green. 

On the other hand, HR-NMR techniques for both liquids and solids have superior spectral 

resolution in comparison with FT-NIR but their sensitivity is lower than that of FT-NIR; 

therefore, composition analysis by HR-NMR are slower and more costly than by FT-NIR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

6. OTHER APPLICATIONS: 
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Selection of Soybeans Standards for Near Infrared Calibrations of Fatty 

Acid Composition  
  

Unlike the resolved peaks of fatty acids in mid-IR spectra, the NIR bands are much less 

resolved for fatty acids thus making calibrations more difficult by NIR. NIR determinations of  

fatty acid contents in oil seeds have been previously reported, but the robustness of such 

calibrations, as well as the validation problems encountered determined suggested that the work 

reported should be considered as preliminary screening (Velasco, 1999; Sato, 2002).  

 

We have therefore decided to develop new calibration procedures that would select 

reliable calibration standard sets so as to minimize potential validation problems that were 

previously encountered (Pazdernik et al., 1997). Two sets of 66 soybean standards were selected 

for fatty acid calibrations, based on the wide range of expected fatty acid values suggested by 

previous analytical measurements of fatty acid contents for the same soybean lines from the 

collection of soybean lines at the Soybean Research Laboratory at the University of Illinois at 

Urbana. These selected lines were sealed in airtight containers and stored under constant 

temperature. In order to develop a reliable FT-NIR calibration there are several requirements that 

should be met. First, all factors affecting FT-NIR spectra must be represented in the calibration 

set. Such factors include physical and chemical characteristics of the sample, methods of sample 

preservation and processing, as well as instrument and sample environment (Windham, et al., 

1989). Secondly, since the fatty acid composition is reported as a percentage of total oil content, 

the latter needs to be verified on site in order to eliminate potential errors that may occur at 

transfers between two different sites, for example. Furthermore, since the developments of the 

NIR calibration models have to be carried out with contents expressed on a wet basis it is very 

important to re-check the moisture contents of all sample standards that are employed for the 

calibration, and correct for any moisture changes that are likely to occur between different 

measurement sites.  

 

Results 
 

Standard gas chromatography (GC) methods (AOCS, Ca 5b-71) were employed to 

estimate the reference fatty acid content of the calibration set. The fatty acids analyzed were: 

16:0, 18:0, 18:1, 18:2 and 18:3 and the results were expressed as percentage of total oil and are 

presented in Table 6.1 (measurements were carried out at the USDA Peoria Laboratory).  
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Table 6.1. Range of constituents for 66 selected soybean samples selected as standards for Fatty Acid 

NIR Calibrations (data is courtesy of the USDA Peoria Laboratory).  (Soybean lines are identified 

as: Stoneville 1999, MG V–VIII. USDA Germplasm, National Research Center, Urbana, IL.)  

                
Simple 
Statistics 

Dry 
Protein Dry Oil 

  
Moisture  %16:0 % 18:0 % 18:1 % 18:2 % 18:3 

Mean  47.61 17.11 5.86 11.91 3.24 21.19 55.42 8.24 

Stdev  2.03 1.21 0.17 0.70 0.49 2.51 2.08 1.03 

Max 53.74 19.32 6.19 14.10 4.35 27.63 60.74 10.93 

Min  43.80 13.70 5.48 10.54 2.33 14.24 51.09 6.32 

 

 

 
Our laboratory’s NIT measurements with Zeltex transmission instruments of the total oil 

contents for the selected standards are compared in Fig. 6.1 with those provided by the Northern 

Region USDA Peoria Laboratory. One notes a very high degree of correlation (r = 0.98) between 

the dry oil values measured independently by the two laboratories. This suggests that potential 

problems with sample transfers between the two independent measurement sites have been thus 

avoided, and also that validation of the calibration results with the second set of validation sample 

standards processed with the same procedure is likely to avoid the validation problems reported 

previously (Velasco, 1999; Sato, 2002; Windham, et al., 1989). Furthermore, a statistical 

exploratory analysis of the fatty acids contents of the standards was performed using SPSS ® and 

SAS ® software to detect the normality of the data as well as the presence of outliers within the 

standards.  
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Fig. 6.1. Correlation between dry oil (USDA Peoria) vs. dry oil ZX800 of 66 fatty acids selected 

soybean standards. 
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The palmitic acid distribution of the calibration set was significantly normal (Shapiro-Wilks P = 

0.05). This means that the sample size follows probability laws and that non extreme values were 

selected as standards. The palmitic distribution appeared to be leptokurtic, and also skewed 

towards high values, but it contained only mild outliers. In addition, because of the selection of 

stable lines, its coefficient of variation was smaller than 6 %. 

 

 The stearic acid distribution of the fatty acid calibration standards was also normal, with a 0.05 

probability of type I error (p-value = 0.246). It was also leptokurtic as well as skewed towards the 

higher values, but with a coefficient of variation smaller than 15%. 

 

 In the oleic distribution, the central tendency statistics were extremely close and therefore the 

coefficient of variation was small (CV = 11.83%). The oleic and linoleic distributions of the 

calibration set were also normal, both with coefficients of variation less than 4%.   

 

On the other hand, the linolenic acid distribution was not normal with a 0.05 probability of type I 

error (Shapiro-Wilks p-value= 0.011) It was skewed towards the highest values and leptokurtic, 

with its inter-quartile range being extremely narrow and its coefficient of variation equal to 

12.49%. 

 

 

NIR Dry Oil vs NIR Dry P, 66 samples by duplicate. 

dp + do (62.8 to  67.4 ), moist(4.9 to 6.7).  Stoneville 

1999. MG V - VIII   

y = -0.6094x + 46.158
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Fig. 6.2. Inverse oil--protein correlation of 66 fatty acids selected samples measured with  NIT 

instruments.  

 

Guo et al. (2002) suggested in a recent study of 5000 different soybean lines that there is a 

high degree of inverse correlation (-r>0.90) between protein and oil contents of seeds drawn from 

large sets of soybean lines. The high degree of inverse correlation present between the oil and 

protein contents of our selected standard set for fatty acid calibrations shown in Fig. 6.2 is 

consistent with these recent NIT and NIR studies, and it thus provides an independent, external 

validation for the protein values of our selected standard set of soybean seeds. 
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7.  Practical Implications of our High-Resolution NIR and NMR Analyses of Soybean Seeds 

 

A brief illustration of our NIR results for a large set of soybean samples is presented in 

Figure 7.1.  A high degree of inverse correlation exists between the protein and oil contents for 

the 5,000 bulk soybean seed samples measured by NIR with the calibrations. This group of 

soybean seed samples was selected from a large set of experimental lines planted at six different 

locations over two years. The data presented in Figure 7.1 is therefore consistent with the 

robustness of our NIR calibrations for protein and oil, and also indicate that even after a small 

number of generations (~3) the degree of inverse correlation between protein and oil can be very 

high (>90%). This fact limits the soybean protein content increase that can be practically 

achieved for commercial soybean applications. 

Furthermore, from a commercial viewpoint the high seed yield of soybeans appears to be 

accepted by the industry as being more important than high protein content. It has been generally 

found that the protein concentration and seed yield of soybeans are inversely correlated. 

However, in a few recent studies (Thompson and Nelson,1998; Kabelka et al., 2002) it was 

suggested that the mean protein compositions of soybean populations could be increased to a 

certain extent, and without a significant loss of agronomic yield (Wilcox and Cavins, 1995).  In 

the same study (Wilcox and Cavins, 1995), one soybean line “Pando” (498 g/kg protein) was 

backcrossed to another line “Cutler 71” (408 g/kg protein) to determine if the yield of Cutler 71 

could be recovered in addition to the high protein from Pando. Random F4-derived lines, as well 

as three lines with highest protein concentration from the initial cross were evaluated for 

agronomic traits for 1 yr. Seeds were evaluated for protein and oil concentration using either 

NIR reflectance or NIR transmission (NIT). The parent line for each backcross was selected first 

for protein, and then for yield, similarly to Cutler 71. Random F4-derived progenies and the 

cultivars Pando, Cutler 71, and Hamilton were evaluated for 2 yrs. In each backcross generation, 

lines were identified with seed protein in excess of 470 g/kg and progressively approached the 

Cutler 71 yield. One line averaged 472 g/kg seed protein and was significantly (p = 0.05) higher 

in seed yield than Cutler 71, and similar in yield to the Hamilton cultivar. In each population, 

there were inverse relationships between yield and protein (R P

2
P = 0.33 to 0.06) and between seed 

protein and seed oil (R P

2
P 0.55 to 0.94). In successive backcross populations, minimum oil values 

increased from 148 to 174 g/kg, indicating a trend toward recovering the oil concentration of 

Cutler 71 (204 g/kg). The data demonstrate that high seed protein can be backcrossed to a 

soybean cultivar, fully recovering the seed yield of the cultivar.  This suggests the absence of 

physiological barriers to combining high seed protein with high seed yield in these soybean 

populations. 

For the soybean lines investigated in a recent study (Kabelka et al., 2002), we have also 

found by NIT that the degree of protein-oil inverse correlation was as high as that of the soybean 

experimental lines represented in Fig.6.1. This is the case in spite of the fact that the mean 

protein content of the latter was substantially higher (by ~7%) than that of the former soybean 

group that was also characterized for agronomic yield by Kabelka et al. (2002). 

Our novel NIR calibrations have been extensively and successfully tested with a wide 

range of different soybean lines and exotic germplasm soybean accessions for both accuracy and 
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robustness; therefore, our calibrations can be employed equally well for the rapid and reliable 

NIR analysis of soybean composition throughout the industrial soybean distribution chain, from 

harvesting to post-harvest processing. Such improved soybean lines often have lower oil content 

as a trade-off for the increased protein content, but still could have an acceptable seed yield for 

soybean lines with significantly increased protein content above the range of commercial 

soybean cultivars.  

 

 

Fig. 7.1. Protein-Oil Inverse Correlation of 5,000 Soybean Samples of Experimental 

Lines at UIUC. 

 

 

8. Conclusions and Discussion 
 

Oil content determinations for whole soybeans seeds were carried out with either Diode 

Array or FT-NIR instruments; such determinations were based upon calibrations that utilized a 

PLS1 regression models and were extensively validated with a large number of soybean lines. 

Our NIR calibrations were undertaken in parallel with the higher resolution (but slower and more 

expensive) NMR measurements. These calibrations had very high correlation coefficients         

(R >0.99) between the NIR predicted values and the reference data. Both high-resolution NIR 

and NMR calibrations and methodologies were employed -- with HR-NMR employed to 

calibrate the NIR-- and, respectively, carry out a large number of protein and oil composition 

analyses of soybean seeds (~50,000; by NIR and NIT) for breeding and selection purposes over a 

period of three years.  A wide range of soybean experimental lines and more than 2,000 exotic 
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soybean germplasm accessions were thus characterized accurately and reproducibly for selection 

and breeding programs at UIUC. Therefore, our results demonstrate the usefulness of this novel 

NIR approach for soybean selection and breeding purposes.  

 

A high degree of inverse correlation was found between the protein and oil contents of 

5,000 bulk soybean seed samples predicted by NIR with the new calibrations that we developed. 

This group of soybean seed samples was selected from an even larger set of experimental lines 

that were planted at six different locations over a time interval of three years. Improved soybean 

lines are often found to have lower oil content as a trade-off for the increased protein content, but 

still could have an acceptable seed yield for soybean lines with significantly increased protein 

content well-above the range of commercial soybean cultivars.  

 

 Our novel NIR calibrations may also be employed to develop procedures for the rapid 

and reliable analysis of soybean composition throughout the industrial soybean distribution 

chain, from harvesting to post-harvest processing. 
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UFIGURE CAPTIONS 

 

Fig. 3.2.1. Overlay plot of DA-NIR spectra of single soybean seeds obtained with the Perten 

DA-7000 instrument.  A: Before MSC; B: After MSC. 

 

Fig. 3.2.2. Overlay plot of FT-NIR spectra of single soybean seeds obtained with the Perkin-

Elmer Spectrum ONE instrument. A: Before MSC; B: After MSC 

 

Fig. 3.4.1.1. Simple One-Pulse sequence for high-resolution NMR analysis of oil. 

 

Fig. 3.4.3.1. A pencil probe of a General Electric GN300WB FT-NMR spectrometer, with a 

zirconia rotor sleeve, Kel-f drive tip and Teflon front spacer and endcap 

 

Fig. 3.4.3.2. The 1PDNA pulse sequence employed in P

13
PC SS-NMR experiments of oil content 

determination in soybean flours. 

 

Fig. 3.4.7.1. The WALTZ-16 Decoupling Pulse Sequence for Liquid- State P

13
PC NMR. 

 

Fig. 3.5.1. The VACP pulse sequence employed in P

13
PC SS-NMR Measurements of Protein 

Content in Soybean Flours. 

 

Fig. 4.1.1. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Single 

Seed Soybean Analysis. 

 

Fig. 4.1.2. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Single Seed 

Soybean Analysis. 

 

Fig. 4.1.3. Standard Protein Values vs. Calculated Values by FT-NIR Calibrations for Bulk 

Soybean Sample Analysis. 

Fig. 4.1.4. Standard Oil Values vs. Calculated Values by FT-NIR Calibrations for Bulk Soybean 

Sample Analysis 

 

Fig. 4.1.5. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Bulk 

Soybean Sample Analysis. 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

12
.7

05
3.

1 
: P

os
te

d 
30

 M
ar

 2
01

2



 61 

Fig. 4.1.6. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Bulk Soybean 

Sample Analysis. 

 

Fig. 4.1.7. Standard Protein Values vs. Calculated Values by DA-NIR Calibrations for Single 

Seed Soybean Analysis. 

 

Fig. 4.1.8. Standard Oil Values vs. Calculated Values by DA-NIR Calibrations for Single Seed 

Soybean Analysis. 

 

Fig. 4.2.1.1. WALTZ-16 decoupled P

13
PC Liquid-State NMR of a soy flour gel sample with 38.7% 

protein content.  Spectrum recorded with 10,000 transients on a Varian UI-600 NMR 

spectrometer, in a 14.1 T external magnetic field. 

 

Fig. 4.2.1.2. WALTZ-16 decoupled P

13
PC Liquid-State NMR of a Soy Protein Isolate gel sample 

with 50.8% protein content. Spectrum recorded with 5,000 transients, on a Varian UI-600 NMR 

spectrometer, in 14.1 T external magnetic field. 

 

Fig. 4.2.1.3. WALTZ-16 P

13
PC Liquid- State NMR of soy oil sample.  The spectrum was recorded 

with 112 transients on a Varian UI-600 NMR spectrometer, in 14.1 T external field. 

 

Fig. 4.2.1.4. Standard Calibration Plot for Soy Protein Isolates.  

 

Fig. 4.2.2.1. Protein (Dry weight %) vs. Oil (Dry weight %)  Inverse Correlation for the Amino 

Acid Set of the 65 Standards selected for the NIR AA Calibration, in addition to the remaining 

35 standards employed for independent validation. 

 

Fig. 4.2.2.2. Arginine as % Tot Dry Wt. vs. D% Protein.  

 

Fig. 4.2.2.3. Glutamine plus Glutamic, Glx, as % Tot Dry Wt. vs. D% Soybean Protein.  

 

Fig. 4.2.2.4. Leucine as % Tot Dry Wt. vs. D% Protein.  

 

Fig. 4.2.2.5. Valine as % Total Dry Weight vs. D% Protein.  
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Fig. 4.3.1. The P

1
PH NMR spectrum taken with an NMR spectrometer Varian U 400 and a Nalorac 

5mm P

1
PH Quad probe, in an external magnetic field of 9.4 T, at an P

1
PH NMR resonance frequency 

of 400 MHz. 

 

Fig. 4.3.2. The soybean oil standard plot for 400 MHz P

1
PH NMR measurements on the Varian  

U-400.  The probe was a Nalorac 5 mm QUAD for P

1
PH NMR. 

 

Fig. 4.3.3. The P

1
PH NMR oil peaks in a 0.9 µL soybean oil sample collected by accumulating 500 

transients with a Varian U400 NMR spectrometer and a Nalorac 5mm Quad probe tuned to a 

resonance frequency of 400 MHz in an external magnetic field of 9.4 T. 

 

Fig. 4.4.1. Glycine spectra with its carbonyl peak at 176.03 ppm relative to TMS. 

 

Fig. 4.4.2. 1PDNA P

13
PC SS-NMR of soybean flour for a standard sample of 20% oil content 

(~300 mg total wt).  The oil signal of interest exhibits several resolved peaks close to 130 ppm. 

 

Fig. 4.4.3. 1PDNA P

13
PC SS-NMR of a standard sample of 53.5 mg soybean oil in AlR2ROR3R. 

 

Fig. 4.4.4. 1PDNA P

13
PC SSNMR of Oil Content of Soybean Flours and their direct correlation 

with the corresponding NIR data. 

 

Fig. 4.5.1. VACP P

13
PC SSNMR of a Soybean Flour sample of 41% protein content (300 mg total 

weight). The component of interest has peaks in the spectral region centered at 174 ppm. 

 

Fig. 4.5.2. VACP P

13
PC SS-NMR Measurements of Protein Content in Soybean Flours, and their 

direct, Linear Correlation with the corresponding NIR data. 

 

Fig. 6.1. Protein-Oil Inverse Correlation of 5000 Soybean Samples of Developmental Lines at 

UIUC. 
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