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HTS, bottlenecks and databases  

Currently large pharmaceutical companies are undergoing selective disintegration, 

while contract research organizations (CROs) and academia are growing in influence, 

publicly-funded drug development programs are expanding, precompetitive efforts are 

increasing, along with a re-emergence of venture-backed biotechnology firms (1). These 

developments have created a dynamic ecosystem with pharma as smaller nodes in a 

complex network, in which collaborations have become an important business model. 

However, we are seeing a shift in focus away from early drug discovery, counter to what 

some have suggested is necessary for the industry to survive post disintegration (2). 

This is exemplified by the shift of high throughput screening (HTS) for drug 

discovery from a small number of major pharmaceutical companies to a larger number of 

academic and institutional laboratories in the US. This seems counter intuitive as some 

drugs and a large percentage of leads are discovered using HTS (3), yet there are also 

examples in which HTS fails, in particular antibacterial research and other areas (4, 5). 

Learning from the pharma experience with HTS is instructive. A recent study identified 

78 academic screening centers in the US focused on high risk drug targets, while there 

were major gaps for efficacy testing, drug metabolism, PK studies and the challenge of 

translation to the clinic (6), commonly termed the “valley of death”. These gaps 

incidentally are all skills that pharma is removing and outsourcing. This leaves only 

CROs and clinically affiliated institutes able to overcome this bottleneck. Another issue 

identified by researchers from Bayer indicates that literature data on potential drug targets 

is not reproducible (7). Translating more compounds to the clinic from HTS screening 
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centers, may indicate that many would likely fail without controlling for bias in pre-

clinical proof of concept studies and target-based discovery to improve clinical success 

(8). Taking HTS out of pharmaceutical companies has not achieved innovative 

breakthroughs. And yet, the US government through different agencies is investing 

heavily in large HTS initiatives such as ToxCast (9, 10), Tox21 (11), Molecular Libraries 

Probe Production Centers Network (MLPCN) (12), National Center for Translational 

Therapeutics (NCATS) (13), the LINCS project (14) alongside the institutional screening 

centers, with little apparent coordination or consideration of the outputs. We have 

concerns regarding simply using the HTS assays (and data) that were optimized to 

minimize “false negatives” for risk assessment purposes.  

A crowdsourcing evaluation of MLPCN probes suggested to us that academic 

screening may result in a large number of dubious leads when in a drug screening mode 

(12). All of the screening efforts are generating very large quantities of data and there 

would be an expectation that it is freely accessible, requiring databases that can handle 

structures and multiple bioactivity endpoints. Recent NIH funded efforts with the NPC 

browser (15) suggest this is not straightforward (16) and poor data quality will severely 

impact the cost effective but increasingly informatics dependent tools being used for 

repurposing efforts (17). In our opinion there needs to be independent assessment and 

curation of the data produced across the board before embarking on more investments. 

It is also unclear how such data is policed to make sure it goes out in a timely 

manner for maximal exposure. We are not aware of any funding agency mandating data 

to be published along with quality guidelines, although we have suggested  granting 
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bodies should have minimal quality standards for published data (16). An extension to 

this would be that all data generated from publicly funded research should be openly 

available, within a year of generation, in high quality internet databases.  

We think part of the current trend in terms of proliferation of HTS screening 

initiatives is due to lack of coordination of government agencies, creating duplication and 

overlap, as exemplified by numerous chemical databases in North America containing 

approved drugs (Table 1). The government agencies would argue that redundancy in 

funding mitigates risk, however if there is no sharing of data or experience ex post facto, 

then the risk of duplicative failure and unproductive expenditure increases. From what we 

see there is too little collaboration around databases, curation, data quality (16) or even 

openness across the board.   

There has been much discussion in the context of NCATS, about the urgent need 

to revamp how drugs are developed, brought to market faster and what incentives can be 

provided to generate treatments for neglected and rare diseases (13). We question 

however whether any government or academic institute as they currently stand can 

adequately pursue such goals when an entire industry is struggling with the same 

challenges. Many of the techniques proposed (13), just like HTS, will not dramatically 

impact the process alone  because this has not occurred in pharma.  

Public private partnerships and translational informatics 

This begs the question of how we can remove the bottlenecks impeding progress 

now. Academic groups could avoid the “valley of death”, by working more closely with 

CROs and virtual pharmas to do more preclinical and development studies, who in turn 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

12
.6

96
1.

1 
: P

os
te

d 
2 

M
ar

 2
01

2



5 

 

will work with pharmas to purchase the most promising compounds.  To do this there 

needs to be an awareness of what research is going on in the screening centers, and they 

in turn should be aware of groups that can take their hits. 

There is general agreement that the key to breakthrough success is collaboration 

(18). There is also consensus that social networking can provide an effective platform for 

increasing collaboration in biomedical research (19), yet to date this has failed to take 

hold. The reason is fundamental: monetization of intellectual property (IP). There is no 

incentive for research organizations to disclose their current research in an open social 

networking forum where competitors have equal access. This is even true in academic 

research where investigators compete for funding. The key to success of this model of 

collaboration is the security of IP and the ability to selectively disclose IP to a valid 

potential partner in a secure way that results in a mutually equitable outcome for all 

parties (20). Research collaborations are currently most advanced in the areas of 

neglected diseases, where funding comes primarily from public sources, data is more 

open, and potential profits are low or nil. The same situation is true for rare diseases (21, 

22) and one would expect the creation of networks and ways to do more with less funding 

using collaborative software (18, 23) will be essential. In both neglected and rare diseases 

the partners are more likely to share IP because the monetary value of the IP ceases to be 

a barrier.  

Given that research organizations appear to be open to embracing a new paradigm 

of collaboration, how is one scientist to know what other work is currently ongoing in a 

specific therapeutic or disease area when this is private? The key areas for success in 

biomedical research collaborations are for organizations to be able to “identify best-in-
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class capability, evaluate opportunities presented by programs and understand the 

associated risks” (24). To date, there is a lack of support mechanisms to identify and 

foster collaborations, resulting in a time consuming hit-or-miss process that relies on 

networking, internet searching, and attending scientific conferences. New services (25) 

that provide a low cost, efficient means of finding targeted scientific connections for 

research and funding, while protecting intellectual property will be key to connect 

everyone with a role in drug discovery and development.  As virtual companies will have 

nowhere near the resources or experience of a big pharma, much more work will need to 

be performed in silico (17) as well as in a collaborative manner (18) to ensure likely 

success. Another way to look at this is that a new virtual team paradigm has the potential 

to innovate through disruption.    

There have been several collaborative public private partnerships (PPP) in Europe  

to share drug safety data (26), ontologies and models (27) and knowledge management of 

pharmacological data (28), all of which foster collaboration, as well as data sharing from 

industry and academia. In comparison the USA has nothing comparable currently 

ongoing in its research portfolio. Such shared knowledge could help virtual pharmas, 

academics and institutes alongside pre-competitive initiatives like those in informatics 

(29-32) to focus on the best ideas. The key challenge here is to ensure the delivery of 

tools or services to solve common problems to all parties involved and that there is 

coordination, progress and no overlap with the PPP initiatives described above. All of 

these efforts lower the cost of research and remove duplication of efforts. A direct 

example is the structure representation standards documented for the FDA’s substance 

registration system (33) whose recommendations have largely been adopted by ChEMBL 
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(34) and will be implemented into ChemSpider (35) to support the OpenPHACTS  

project (28) for pharmaceutical companies that are participating in this initiative.  

 As big pharma relies more on the CROs and academics, they will focus on 

translational informatics (integrated software solutions to manage the logistics, data 

integration and collaboration) and other efforts such as Pfizer’s ePlacebo. This uses 

placebo dosing data from previously executed clinical trials to augment or potentially 

supplant the need for placebo control groups in clinical trials. A cross-pharma data 

sharing consortium would dramatically impact the cost associated with clinical trial 

recruitment and execution of placebo dosing. In an effort to stimulate data sharing of this 

type the FDA has announced an overhaul of its IT infrastructure (36). A first step is the 

effort to make the historical clinical data in the FDA’s vaults public to be followed by a 

vast amount of de-identified post market surveillance data. By doing this, the FDA hopes 

that the open access movement will stimulate the creation of public private partnerships 

aimed at sharing data relevant to other drug development stages. Could they go further 

and mandate all de-identified clinical data be made public as part of the cost of doing 

business? Although some groups are pro (37) and others con (38) this approach could be 

universally useful for health research. We should be aware of potential barriers to data 

sharing and collaboration. Data and information silos exist at all levels of organizations. 

Allowing for data/information integration across silos is not a technological problem, 

regardless of issues of taxonomies and ontologies, but those will be much easier to 

surmount than the cultural, societal, and behavioral barriers to effective collaboration 

(18). Such non-technical issues generally inhibit translational data analysis on a broad 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

12
.6

96
1.

1 
: P

os
te

d 
2 

M
ar

 2
01

2



8 

 

scale. With all the distributed research efforts we do not want to see creation of new data 

silos. 

Mining by swarm and finding the best collaborators 

While the FDA and the NHS (39) have discussed the ‘big data’ or ‘analytics’ 

future involving analysis of patient data. We are also moving into the era of drug safety 

analysis, drug repurposing and marketing by sentiment analysis using social media 

stream mining tools (40-42). Swarm intelligence is a new subfield of bio-inspired 

artificial intelligence offering solutions to complex problems like pooled health-related 

data from different organizations as well as real time data from social networks (43).  

Emerging and likely disruptive technologies that listen to the crowd passively do not 

appear to be on the agenda (36).   

In summary, if we are to remove bottlenecks we need to provide more confidence 

that lead compounds will have efficacy in vivo and be safe. Some of these aspects could 

be considered using predictive models already assembled and exclusive to the 

pharmaceutical companies. Sharing precompetitive data and models (44, 45), whether 

through a PPP or collaborations, could provide more confidence in the quality of the 

leads produced such that they will attract investment. At the same time the fringes of 

industry and academia may harbor the real innovators that should be funded to transform 

R&D. Both governments and pharmas could use software like Collaboration Finder (25) 

to find the best researchers to fund and collaborators to work with on strategic priorities. 

This would enable NIH to fund continuous innovation, rather than rebuilding academia in 
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the shape of big pharma.  Disruption of the pharmaceutical industry may begin by a 

fundamental rethink of how to reward collaborative researchers in any organization. 
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Table 1. North American small molecule databases containing FDA approved drugs 

 

Database 

name 

Funding  Content and details URL 

PubChem NIH >30M molecules includes 

FDA approved drugs 

http://pubchem.ncbi.nlm.nih.g

ov/ 

NPC 

Browser 

NIH ~10,000 compounds 

includes FDA approved 

drugs 

http://tripod.nih.gov/npc/ 

ToxCast EPA >1000 compounds includes 

some drugs and drug like 

molecules 

http://epa.gov/ncct/toxcast/ 

DailyMed FDA >31,942 labels – many 

labels for the same drug 

http://dailymed.nlm.nih.gov/da

ilymed/about.cfm 

ChemIDplus NIH > 295,000 structures 

including many FDA small 

molecule approved drugs 

http://chem.sis.nlm.nih.gov/ch

emidplus/ 

DrugBank Canadian 6707 drug entries including 

1436 FDA-approved small 

molecule drugs (this may be 

underestimated). 

http://www.drugbank.ca/ 
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