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Abstract:  20 

Background: The consumption of diets high in calories and low in nutrient value is becoming 21 

increasingly common in the modern society, which can lead to metabolic disorders like diabetes 22 

and obesity, and potentially to psychiatric disorders. We have performed studies to assess how 23 

the shift from a healthy diet rich in omega-3 fatty acids to a diet rich in saturated fatty acid 24 

affects the substrates for brain plasticity and function, and anxiety and depression-like behavior. 25 

Methods: Pregnant rats were fed with omega-3 supplemented diet from their 2nd day of gestation 26 

period as well as their male pups for 12 weeks. Afterwards, the animals were randomly assigned 27 

to either a group fed on the same diet or a group fed on a high-fat diet (HFD) rich in saturated 28 

fats for 3 weeks.  Anxiety and depression-like behaviors were assessed by using open field (OF) 29 

and elevated plus maze (EPM). Molecular assessments were performed in the frontal cortex and 30 

hippocampus as dysfunctions in these brain regions are main contributors towards depression, 31 

anxiety-like behavior and stress.   Results: We found that the HFD increased vulnerability for 32 

anxiety and depression–like behavior, and that these modifications harmonized with changes in 33 

the anxiety-related neuropeptide Y (NPY)-1 receptor.  The HFD reduced levels of brain-derived 34 

neurotrophic factor (BDNF), and the BDNF signaling receptor pTrkB, as well as the cyclic AMP 35 

response element binding protein (CREB), in these brain regions. Brain DHA contents were 36 

significantly associated with the levels of anxiety and depression–like behavior in these rats. 37 

Conclusions: These results suggest that the change in dietary lifestyle leading to alteration of 38 

dietary n3/n-6 fatty acids levels imposes a risk factor for anxiety-like behaviors. Dietary DHA 39 

might help for building cognitive reserve that can resist psychiatric disorders. 40 
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Introduction 42 

Depression is about to edge out HIV/AIDS as the world's most significant health problem 43 

according to the World Health Organization. For Americans born a century ago, the chances of 44 

suffering any episode of major depression in the lifetime was only about 1 percent. Today, the 45 

lifetime incidence has increased almost 2000 times and is 19.2 percent (1).  In turn, obesity has 46 

become a worldwide epidemic particularly in US, and a major cause for an increased risk of 47 

depressive disorders (2-4). Increased availability and excessive intake of energy-rich foods 48 

generally found in junk or fast foods is a significant factor contributing to obesity, and has made 49 

invasion in most cultures around the world.  In spite of its poor health consequences, there is 50 

presently little information on how the diet switch to a high-fat diet that contributes to 51 

development of obesity heightens the risk for depression and mood disorders.   52 

In turn, western diets that are high in saturated fat induce metabolic dysfunction and promote 53 

cognitive alterations (5-7). It is well known that diets rich in saturated fat increase oxidative 54 

stress in brain (8, 9), reduce neurogenesis (10, 11), enhance neuroinflammation (12) and exert 55 

anxiety-like behavior (13). Further recent evidences suggest that maternal high-fat diet 56 

consumption may have profound effects on the offspring’s preference and consumption of high-57 

fat high-sugar diets (14, 15). Contrary to what is known about the HF diet, recent clinical 58 

investigations have provided strong evidence that long chain omega-3 polyunsaturated fatty 59 

acids (PUFA) possess significant antidepressant activity(16). Indeed recent meta-analyses have 60 

reported a moderate effect size for omega-3 PUFA in depression comparable to that of 61 

conventional antidepressants, and reduced levels of omega-3 PUFA in the blood of patients with 62 
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depression(17, 18).  Epidemiological observations report an inverse correlation between omega-3 63 

PUFA intake and the development of depression (19, 20). In addition, a diet that is rich in 64 

omega-3 fatty acids is garnering appreciation for supporting cognitive processes in humans(21) 65 

and for up-regulating genes that are important for maintaining synaptic function and plasticity in 66 

rodents(22).   The strong dichotomy between a HF diet and a PUFA diet implies that a switch 67 

from a PUFA diet to a HFD can have dramatic consequences for brain function; however, as far 68 

as we know, this question has not been addressed experimentally.  Accordingly we have 69 

designed studies to determine the effects of this dietary switch on brain function and plasticity, 70 

which results are highly relevant for public health based on the increasingly common dietary 71 

changes related to industrialization and cultural migrations in our modern society. 72 

We have focused these studies on brain-derived neurotrophic factors (BDNF) because of its 73 

described involvement on cognitive function and emotions (23-27), and its action supporting 74 

mechanisms of synaptic plasticity and neuronal excitability(28).  Dietary deprivation of omega-3 75 

fatty acids in rodents result in reduced BDNF levels in striatum (29) and frontal cortex(30) 76 

leading to reduced cAMP response element binding protein (CREB) transcription factor 77 

activation. On the other hand omega-3 supplementation in adult rats has been shown to increase 78 

hippocampal BDNF, and CREB levels which were associated with improved cognition (22).   79 

Accordingly, we designed this study to assess the effects of this dietary transition on plasticity 80 

related molecules in hippocampus & frontal cortex, which in turn may be responsible for 81 

underlying behavior alterations.  82 

 83 
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Methods and Materials  84 

Experimental design 85 

Female Sprague–Dawley rats were obtained on the 2nd day of pregnancy from Charles River 86 

(Portage, MI) weighing between 280 and 300 g were housed in cages and maintained in 87 

environmentally controlled rooms (22–24 °C) with a 12-h light/dark cycle. Pregnant females 88 

were fed an n-3 enriched fatty acid diet (DHA diet). Rats were maintained on this diet through 89 

gestation and lactation, and their pups were weaned to the same diet as their dams. Male pups 90 

were subjected to same diet as their dams for 15 weeks.  The custom diet used was based on the 91 

composition of the American Institute of Nutrition diet and prepared commercially (Dyets, 92 

Bethlehem, PA) as previously described (31). However, several substitutions were made to 93 

produce an n-3 fatty acid enriched diet and this was achieved by adding a small amount of 94 

flaxseed oil and docosahexaenoic acid (Nordic Naturals, Inc. Watsonville, CA, USA) to the n-3 95 

diet. These fats supply LNA and DHA, respectively, as their principal component. The total fat 96 

content in diet was 10 g/100 g of diet, and the amount of n-3 fatty acids in the n-3 diet was 3.8% 97 

of total fatty acids. 98 

Diet transition 99 

A total of 15 male rats were randomly selected for this study with a constraint that at least 2 rats 100 

from each litter were selected. On postnatal day (PND) 90 the male rats were randomly divided 101 

into two subgroups i.e. DHA (n=6) continued on same n-3 enriched diet and high-fat diet (HFD; 102 

n=9) provided with a custom diet high in saturated fatty acids that closely resembles to western 103 
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diet (D12079B, Research Diets, NJ USA). This HFD has 21% total fat but saturated fatty acid 104 

make 62.4% of this total fat. After 3 weeks of diet transition, the rats were subjected to a series 105 

of behavioral tests. A day after the last behavioral test the animals were killed by decapitation 106 

and the blood sample and fresh tissues including frontal cortex and hippocampus were dissected, 107 

frozen in dry ice and stored at −70 °C until use for biochemical analyses for both groups which 108 

are abbreviated throughout in this study as: DHA enriched diet (DHA) and high-fat diet (HFD). 109 

Experiments were performed in accordance with the United States National Institutes of Health 110 

Guide for the Care and Use of Laboratory Animals, and were approved by the University of 111 

California at Los Angeles Chancellor’s Animal Research Committee. The suffering and number 112 

of animals used were minimized. 113 

Open Field 114 

After 3 weeks of diet transition, rats were tested in an open field. The open field consisted of 1.2-115 

m-diameter circular tank with 60 cm walls. An inner circle, 80 cm in diameter was marked on 116 

the tank floor to serve as a central arena. Test began when each rat was placed in the middle of 117 

the central arena and allowed to explore the field for 10 min. The rat behavior was recorded by 118 

an overhead camera. Measurement included time spent in central arena, number of entries into 119 

central arena and the distance the rat travel using AnyMazeTM video tracking software (San 120 

Diego instruments, San Diego, CA).    121 

Elevated plus maze  122 
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The day after OF, rats were subjected to elevated plus maze (EPM) test. EPM assay was carried 123 

out according to the Walf and Frye protocol (32).  Briefly, the EPM apparatus made of laminated 124 

wood consisted of 2 opposing open arms (10 X 50 cm) and 2 opposing closed arms (10 X 50 cm 125 

with 30 cm high walls). The maze was placed 60 cm above the floor. White curtains surrounded 126 

the maze and behavior was recorded by an overhead video camera. Each rat was placed in the 127 

middle of the maze facing the open arm that faced away from the experimenter, and a video 128 

camera recorded over a period of 5 min the time spend in each of the arms and the number of 129 

entries to each arm. A closed arm entry was counted when the rat placed all four paws in a closed 130 

arm. An open arm entry was recorded when the rat placed all four paws in an open arm and/or 131 

when the rat’s hind-limbs were placed in the central area of the maze and both fore-limbs in an 132 

open arm while the head is protruding into the open arm.  The ratio of open and closed entries to 133 

total arm entries was calculate to account for differences in general motor activity in the maze.  134 

Fatty acid analysis 135 

Fatty acid profiles were determined by using gas chromatography. The system consisted of 136 

model 5890A gas chromatograph (Hewlett Packard) and a model 7673A automatic, sampler and 137 

controller (Hewlett Packard). An Omegawax 250 column (30�m, 0.25-mm internal diameter, 138 

0.25-μm film thickness; Sigma-aldrich) was used, with helium as the carrier gas. GC oven 139 

temperature was initially held at 50°C for 2 min and raised with a gradient of 2°Cmin-1 until 140 

220°C and held for 30 min. The injector and detector were maintained at 250°C and 260°C, 141 

respectively. Tissues from middle cortex were grounded to powder under liquid nitrogen and 142 

subjected to extraction of total lipids. Fatty acid methylation was done by heating at 100°C for 1 143 
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hr with 14% boron tri-fluoride–methanol reagent. A 1μl sample of Fatty acid methyl esters 144 

(FAME) was injected in split injection mode with a 100:1 split ratio. Peaks of resolved fatty acid 145 

methyl esters were identified and quantified by comparison with standards (Supelco 37-146 

component FAME Mix). 147 

Western blot  148 

Frontal cortex and hippocampal tissues were homogenized in a lysis buffer using published 149 

protocol (33). Levels of brain-derived neurotrophic factor (BDNF), Neuropeptide Y (NPY) 1, 150 

Phopho tyrosine kinase B (pTrkB), phopho cyclic AMP-response element binding protein 151 

(pCREB), p-synapsin, GAP-43 were analyzed by Western blot. Briefly, protein samples were 152 

separated by electrophoresis on a 10% (12.5 % for BDNF) polyacrylamide gel and 153 

electrotransferred to a PVDF or nitrocellulose membrane (Millipore, Bedford, MA). Non-154 

specific binding sites were blocked in TBS 5% low-fat milk and 0.1% Tween-20 or 2% BSA. 155 

Membranes were rinsed in buffer (0.1% Tween-20 in TBS) and then incubated with anti-actin or 156 

anti-BDNF, pTrkB, (1:500; Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-157 

pCREB(Ser133), anti-CREB, anti p-synapsin and  anti-GAP-43  (1:1000; Millipore, Bedford, 158 

MA), NPY-1R (1:500; Alpha Diagnostics Intl.Inc. San Antonio, Texas) followed by anti-rabbit 159 

or anti goat or anti-mouse IgG horseradish peroxidase-conjugate (1:200,000; Santa Cruz 160 

Biotechnology). After rinsing with buffer, the immunocomplexes were visualized by 161 

chemiluminescence using the ECL plus kit (Amersham Pharmacia Biotech Inc., Piscataway, NJ, 162 

USA) for NPY1R, pTrkB, pCREB  SuperSignal West femto kit (Thermo Scientific , Rockford, 163 

IL) for BDNF. Respective protein size was compared by using Bench mark pre-stained protein 164 
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ladder (Invitogen Technology, Carlsbad, CA). The film signals were digitally scanned and then 165 

quantified using ImajeJ software. Specific Protein sizes were chosen and quantified as β-actin 166 

(42 kDa), NPY-1 (39-42 kDa), BDNF (14 kDa), pTrkB (145 kDa), pCREB (43 kDa). Actin was 167 

used as an internal control for Western blot such that data were standardized according to actin 168 

values. 169 

Statistical analysis 170 

Data are presented as means and their standard errors. Data were analyzed using statistics 171 

software Graph pad 5 and unpaired two tailed t test was applied for the comparison between two 172 

groups. Criterion for significance was set to p≤ 0.05 in all comparisons.  173 

 174 

Results 175 

Diet transition to HFD leads to poor physiological consequences 176 

In the present study animals subjected to diet transition on a HFD for 3 weeks gain significantly 177 

more body weight as compared to their counterparts continued a healthy DHA supplemented diet 178 

(p< 0.001; Figure 1A). The animals fed HFD for 3 weeks also showed significantly higher blood 179 

glucose, cholesterol, triglycerides (p<0.05) and higher uric acid (p<0.01). The results are shown 180 

in Table 1. 181 

Effects of diet transition to HFD on anxiety-like behavior 182 

Both group of animals either fed a HFD or DHA supplemented diet were tested for anxiety-like 183 

behaviors after 3 weeks of diet transition in open field and elevated plus maze. The HFD animals 184 
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showed a remarkably distinct behavior in open field as characterized by significantly less 185 

distance traveled (p<0.001; Figure 1B) compared to DHA fed animals. The animals switched to 186 

HFD made significantly less entries to the center of open field (p<0.001) and spent significantly 187 

less time in center of open field (p<0.001). The animals switched to HFD spent significantly less 188 

time in the open arms of elevated plus maze (p<0.05; Figure 1C-D) as compared to DHA fed 189 

animals.  These results strongly suggest that switching to a saturated HFD increases anxiety and 190 

depressive-like behavior. 191 

Effects of diet transition to HFD on the levels of fatty acids in brain  192 

To assess the effect of diet transition to HFD, we measured the levels of various fatty acids in 193 

brain by using  gas chromatography. Detailed composition of fatty acids in the hippocampus is 194 

shown in Table 2. Most importantly, we found significant decrease (13.48±0.11, n=9, p<0.001, 195 

Figure 2A) in the levels of DHA in the animal group fed on high-fat diet as compared to the 196 

DHA fed diet (14.81 ± 0.05, n=5, p,0.05, Figure 2B) counterpart (Table 2).We observed a 197 

positive correlation of hippocampal DHA levels with distance travelled in open field (r= 0.6567; 198 

p<0.05, Figure2C). The ratio of n-6/n-3 PUFA also showed a strong negative correlation with 199 

distance travelled in open field (r=-0.7746; p<0.01, Figure 2D) suggesting that change in dietary 200 

n-3 levels in HFD animals is associated with increased anxiety-like behavior. 201 

Effects of n-3 deficiency on molecules associated with anxiety-like 202 

behavior: NPY1 203 

Neuropeptides in the brain not only regulates the stress-induced activation of the HPA axis, but 204 

also mediates the behavioral and autonomic changes associated with stress-related illnesses 205 
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including anxiety, depression, and cardiovascular disease. The anxiety-reducing effects of NPY 206 

and the anxiety-enhancing effects of antagonists of NPY receptors are fairly well-documented, 207 

providing strong evidence for NPY’s role in modulating anxiety responses.  In the present study 208 

we checked the modulating effects of DHA or HFD diet on the levels of NPY1 receptor. We 209 

found a significant decrease in frontal cortex (22%, p<0.05; Fig. 3A) and hippocampus (35.5%, 210 

p<0.05; Fig. 3A), when rats were fed with HFD as compared to DHA diet rats. 211 

 212 

Effects of n-3-deficiency on molecules associated with synaptic 213 

plasticity  214 

BDNF signaling in frontal cortex and hippocampus 215 

The results showed that the percentage levels of BDNF were decreased to 31.1 % in the frontal 216 

cortex of rats fed on HFD diet (P<0.0001; Fig. 4A), and in hippocampus the decrease observed 217 

was 35.5 % (p<0.0001; Fig. 4A), as compared to DHA diet.  Reports suggest that mice lacking 218 

functional full-length TrkB specifically in the newborn neuron population of four to six weeks of 219 

age exhibited a markedly enhanced anxiety- like behavior as evidenced by their decreased 220 

explorative activity in the open field and elevated plus maze tests. (34). In our present study, we 221 

observed a significant decrease in frontal cortex (26.33 %, p<0.05; Fig.4B), in the levels of 222 

phosphorylated TrkB in HFD compared to rats fed on DHA diet. Currently, MAP kinase and PI-223 

3 kinase pathways are two of the best-studied BDNF/TrkB-mediated signaling pathways. Both 224 

MAPK and PI-3K signaling pathways lead to the regulation of transcription factor, cyclic AMP 225 

response element binding protein (CREB), which has been reported to be a key mediator of cell 226 
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survival (35). We assessed level of pCREB to further elucidate the effects of HFD on BDNF 227 

signaling. Again we found that levels of phosphorylated form of this nuclear factor dramatically 228 

decreased in frontal cortex (29.22 %, p<0.0001; 4C), and in hippocampus (15.33 %, p<0.05; Fig. 229 

4C) of HFD animals as compared to DHA fed animals. 230 

We observed reduced activation of CaMKII levels as suggested by reduced levels of p-CaMKII 231 

in frontal cortex (19.5%; p<0.05) and in hippocampus (29.11%; p<0.001) after 3 weeks of HFD, 232 

whereas, levels of total CaMKII were not changed. The ratio of p-CaMKII/CaMKII protein 233 

levels is also reduced in hippocampus (23.44%; p<0.001) of animals fed HFD as compared to 234 

DHA fed animals. The levels of GAP-43 protein significantly decline in frontal cortex (28.56%; 235 

p<0.001) and in hippocampus (10.39%; p<0.05) of HFD animals, as compared to DHA fed 236 

animals. 237 

HFD induced alterations in synaptic plasticity protein “p-synapsin”  238 

After 3 weeks of HFD the levels of synaptic plasticity marker protein p-synapsin decline 239 

significantly in frontal cortex (22.06%; p<0.001) and in hippocampus (32.96%; p<0.01) as 240 

compared to DHA fed animals.  241 

HFD induced alterations in BDNF signaling & plasticity related 242 

proteins are associated with behavioral deficits 243 

We observed that the BDNF levels in frontal cortex (r=0.6089; p<0.05) and hippocampus (r= 244 

7787; p<0.001) are strongly correlated to the outcomes in open field such as distance travelled. 245 

The results are presented in figure 5. The number of open arm entries made in elevated plus 246 
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maze are positively correlated with the levels of hippocampal p-CREB (r= 0.6189; p<0.05).  247 

There is a positive correlation between ratio of p-CaMKII/CaMKII protein levels and distance 248 

travelled in open field (r=0.8566; p<0.001). The levels of p-CamKII in frontal cortex (r=0.5328; 249 

p<0.05) are positively correlated with the number of open arm entries. The time spent in open 250 

arms of elevated plus maze is positively correlated to the levels of hippocampal GAP-43 protein 251 

levels (r=0.6857; p<0.01). The levels of GAP-43 in frontal cortex (r=0.6382; p<0.05) are 252 

positively correlated with the distance travelled in open field. The distance travelled in open field 253 

is positively correlated to the levels of p-synapsin protein in frontal cortex (r=0.7453; p<0.01) 254 

and hippocampus (r=0.6110; p<0.05). 255 

Discussion 256 

The purpose of the present study is to understand how changes in dietary habits e.g. transition 257 

from a healthy diet rich in omega-3 fatty acids to a junk food diet deficient in omega-3 but rich 258 

in saturated fatty acids, leads to vulnerability for psychiatric disorders. Here we show that 259 

consumption of a junk HFD for 3 weeks is enough to induce maladaption in anxiety & 260 

depression like behavior, and molecular systems associated with these behaviors.  We found that 261 

the HFD reduced brain DHA contents, and that reduced levels of DHA were associated with 262 

increase in anxiety and depression-like behaviors in these rats.  These data emphasize the 263 

detrimental effects of the HFD on brain function and behavior that are particularly manifested 264 

from switching from a healthy diet.  The results of this study have important implications for 265 

public health, in terms of the risk imposed by poor dietary practices on mood disorders.  266 

HFD increases risk for anxiety and depression-like behaviors 267 
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The rationale for the present study stemmed from our recent findings that animals fed on a diet 268 

deficient in omega-3-fatty acids during gestation, prenatal and postnatal growth periods were 269 

more prone to anxiety-like behavior as compared to animals fed on DHA supplemented diet (36). 270 

Given the positive effects of the DHA diet, it was reasonable to assume that switching to an 271 

unhealthy diet could have detrimental results for brain function. We found that 3 weeks of HFD 272 

increased the vulnerability for anxiety and depression-like behaviors.  A recent study reported 273 

the ability of high-fat diet to exacerbate the depressive-like behavior in a rat model of genetic 274 

depression (37). The pro-depressive effects of high-fat diet in the current study may be mediated 275 

by the pro-inflammatory signalling induced by the high-fat diet consumption. There is 276 

substantial evidence that rodent diet-induced obesity model involves an inflammatory reaction  277 

in key hypothalamic areas critical for regulating food intake (38). A recent study has reported 278 

that hypothalamic inflammation was evident just after 1 to 3 days after onset of high-fat diet 279 

consumption prior to any substantial weight gain (12). In order to evaluate the effects of the HFD 280 

on the body, we measured several metabolic markers in blood and found elevations in glucose, 281 

cholesterol, tryglicerades, and uric acid.  This implies that the HFD influences several parameters 282 

associated with obesity, in conjunction with its effects on the brain. The effects of the HFD 283 

highly contrast with the know roles of essential omega-3 polyunsaturated fatty acids on body and 284 

brain.  Omega-3 fatty acids are crucial for brain function during development and adulthood,  285 

and their deficiency are considered risk factors for anxiety-like behavior in various animal 286 

models (39, 40).  287 

Dietary effects on frontal cortex and hippocampus  288 
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To further elucidate possible differential effects of the diet across brain regions associated with 289 

anxiety-like behavior, we centered our studies in the frontal cortex and hippocampus. The human 290 

orbitofrontal cortex receives reciprocal connections from the hippocampus, nucleus accumbens, 291 

and hypothalamus (41) and is thought to play a significant role in hedonic and emotional 292 

processes implicated in the psychiatric disorders. The frontal cortex, together with hippocampus, 293 

amygdala and hypothalamus, are limbic regions forming part of well-defined anxiety and fear-294 

related circuits in the forebrain Owing to the fact that all these limbic regions play an important 295 

role in mood disorders, it is significant that dietary fatty acids manipulation showed to affect the 296 

hippocampus and frontal cortex.  Accordingly, we assessed neuropeptide Y (NPY) based on its 297 

role both anxiety and depression like behavior, particularly in the frontal cortex and limbic 298 

regions (43). It has been suggested that NPY produces an anxiolytic effects via NPY 1-type 299 

receptors (NPY-1R) (44). The anxiety-reducing effects of NPY and the anxiety-enhancing 300 

effects of antagonists of NPY receptors are fairly well-documented, providing strong evidence 301 

for NPY’s role in modulating anxiety responses. Our results showed that n-3 deficiency 302 

decreased the levels of NPY-1R in the frontal cortex, hypothalaus and hippocampus, in 303 

agreement with the anxiolytic involvement of NPY-1R. In addition, these findings suggest that a 304 

radical shift in dietary omega-3 fatty acids intake to HFD can hinder the animal’s natural ability 305 

to face challenges further in their life and leads to more anxiety-like behavior. 306 

Molecular mechanisms: a potential link between dietary omega-3 fatty acid & BDNF 307 

receptor signaling 308 

Our present study shows that HFD significantly reduced the levels of BDNF in frontal cortex and 309 

hippocampus.  BDNF has been associated with the action of treatments for anxiety (45). 310 
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Previously it has been reported that changes in BDNF signaling in different areas of the adult 311 

brain may be implicated in the pathophysiology of psychiatric disorders, such as depression (46), 312 

(47), (48). Not only this, manipulations of the early environment can affect the expression of 313 

neurotrophins both during development and adulthood (49), (50), (51). BDNF binds with high 314 

affinity to the tropomyosin-related kinase B transmembrane receptor, (TrkB) resulting in BDNF 315 

signaling.  Deficiency in TrkB activation has been linked to psychiatric illness in humans (47), 316 

(52). Furthermore a very recent report showed that an 11 base pair (bp) deletion in the TrkB 317 

promoter could have effects on the anxiety related traits in human (53). 318 

Our current results show a reduction in the activation of BDNF receptor TrkB in the rats fed on 319 

HFD diet in hippocampus.  These results hold well with previous findings that mice lacking 320 

functional full-length TrkB signaling, specifically in the newborn neuron population, exhibit a 321 

markedly enhanced anxiety-like behavior (54). The fact that DHA is a structural component of 322 

the plasma membrane important for membrane fluidity and function of transmembrane receptors, 323 

suggests that DHA regulate the function of TrkB receptors. 324 

Effects of junk HFD on downstream molecular systems to BDNF 325 

The transcription factor, cyclic AMP-dependent response element binding protein (CREB), 326 

regulates the expression of many genes, including BDNF (55), (56) and NPY-1 ((57). It has been 327 

shown that decreases in CREB phosphorylation and NPY expression in the central amygdala 328 

might be associated with anxiety-like behaviors in models of ethanol withdrawal in rats (58). In 329 

our studies, we showed reduction in the activation of CREB with HFD in hippocampus and 330 

frontal cortex. CREB has been implicated in the pathophysiology of depression as well as of 331 

bipolar disorder.  Accordingly, the ability of the HFD to reduce CREB phosphorylation, in 332 
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conjunction with BDNF receptor activation, could be related to elevated risk for anxiety-like 333 

behavior. 334 

Adoption of a HFD is an increasingly common event observed in the modern society which is 335 

tighly related to today’s obesogenic environment where high calorie food is readily available.  336 

According to our results, the switch from a healthy n-3 PUFA diet to the HFD may be 337 

responsible for increased vulnerability to mood disorders, in addition to metabolic dysfunction. 338 

The transition to junk HFD reduced markers of synaptic plasticity in the frontal cortex and 339 

hippocampus. We found that the brain DHA contents were associated with levels of the BDNF in 340 

these brain regions. These data emphasize the importance of maintaining a healthy diet in order 341 

to support substrates that determine the balance between brain health and disease.  342 
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Figure Legends 510 

Fig 1 Effect of diet switch to junk HFD on body weight gain and anxiety & depression-like 511 

behaviors (A) Diet switch to a junk HFDfood significantly increased body weight gain as early 512 

as second week (p<0.0001) which remains significantly higher at the end of three weeks of junk 513 

HFD (p<0.0001) as compared to the rats on a healthy omega-3 supplemented diet. (B) Open 514 

field: significant decrease in the distance travelled in the open field (p<0.001) in rats switched to 515 

a junk HFD was noticed after 3 weeks of diet switch. (C-D) EPM: a non-significant trend toward 516 

decrease in percentage open arm entries in the rats subjected to diet switch to a junk HFD and a 517 

significant decrease in percentage time spent in open arm (p<0.05) in rats subjected to diet 518 

switch to a junk HFD was observed. Values are expressed in mean ±SEM. *p<0.05, *** p<0.001 519 

Vs DHA diet.  520 

Fig 2 Effect of diet switch to junk HFD on brain DHA levels and their association with pro-521 

depressive-like behavior (A) A significant decrease (p<0.01) in brain DHA levels in rats 522 

subjected to a diet switch to junk HFD for 3 weeks as compared to the counterpart rats which 523 

were fed omega-3 supplemented diet (B) An increase (p<0.001) in the ratio of omega-6 524 

(arachidonic acid) to omega-3 (DHA) fatty acids in rats switched to junk HFD was observed. 525 

The distance travelled in the open field was directly proportional to brain DHA levels (C; r = 526 

0.5657; p<0.05), while inversely proportional to the ratio of n6/n3 PUFA (D; r = 0.7746; 527 

p<0.001); indicating that reduced brain DHA levels may be compensated by a corresponding 528 

increase in the brain arachidonic acid. The Values are expressed in mean ±SEM. **p<0.01, *** 529 

p<0.001 Vs DHA diet. 530 
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Fig 3 Effects of diet switch to junk HFD on plasticity markers.   Levels of (A) neuropeptide 531 

Y (NPY) 1 receptor significantly decreased in frontal cortex (p<0.05) as well as in hippocampus 532 

(p<0.05). (B) Phosphorylated TrkB (pTrkB) showed significant decrease in hippocampus 533 

(p<0.001). (c) Brain derived neurotrophic factor (BDNF) showed a significant decrease in 534 

hippocampus (p<0.001) and frontal cortex (p<0.001). (D) A significant decrease in activation of 535 

CREB as depicted by levels of pCREB was observed in the hippocampus (p<0.001) and frontal 536 

cortex) p<0.001). Representative western blot bands are shown for BDNF, pTrkB, pCREB and 537 

actin in hippocampus and frontal cortex. Values are expressed in mean ±SEM. *p<0.05, 538 

***p<0.001 Vs DHA diet. 539 

Fig 4 Effects of diet switch to junk HFD on GAP-43 levels.  (A) A significant reduction in the 540 

levels of GAP-43 was observed in hippocampus (p<0.05) and frontal cortex (p<0.001). (B) The 541 

GAP-43 levels in frontal cortex increased proportional to the distance travelled in the open field 542 

(r = 0.6382; p<0.05).  Values are expressed in mean ±SEM. *p<0.05, ***p<0.001 Vs DHA diet. 543 

Fig 5 Association of plasticity markers with anxiety and depression-like behavior (A-B) The 544 

distance travelled in open field was found to be positively associated with the levels of BDNF in 545 

hippocampus (r = 0.7787; p<0.001) and frontal cortex (r = 0.6089; p<0.05). (C-D)  The distance 546 

travelled in open field was positively correlated with the levels of p-CREB in frontal cortex (r = 547 

0.6908); p<0.001). The number of open arm entries made in elevated plus maze was positively 548 

correlated with the levels of hippocampal p-CREB (r= 0.6189; p<0.05). Values are expressed in 549 

mean ±SEM. *p<0.05, ***p<0.001 Vs DHA diet. 550 
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 552 

Table 1: Effects of diet switching to a high fat diet on metabolic syndrome 553 

related molecules in blood 554 

 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

Diet Glucose (mg/dL) Cholestrol (mg/dL) Triglycerides (mg/dL) Uric Acid (mg/dL) 

DHA 93.83 ± 2.915 62.5 ± 3.51 193 ± 13.22 2.983 ± 0.0654 

HFD 112.3 ± 4.729* 85.89 ± 6.981* 370 ± 60.42* 3.767 ± 0.176** 
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Table 2: Effects of diet transition to HFD on the levels of fatty acids 564 
in brain  565 

Fatty acid DHA HFD 
C14:0 0.22±0 0.25± 0.01 

C16:0 18.4±0.13 17.93± 0.13 

C16:1 0.44±0.02 0.45± 0.01 

C18:0 19±0.14 18.38± 0.16 

C18:1 15.6±0.18 15.19± 0.17 

C18:2n6 (LA) 0.56±0.01 0.84± 0.03 

C20:0 0.61±0.06 0.60± 0.03 

C20:1 1.47±0.06 1.59± 0.03 

C20:2 0.6±0.06 1.05± 0.09 

C20:3n6 0.6±0.05 1.26± 0.06a 

C20:4n6 (AA) 9.36±0.09 9.83± 0.12 

C22:4n6 2.68±0.06 2.91± 0.06 

C22:5n6 (DPA) 0.03±0.01 0.24±0.03 

C24:0 1.61±0.09 1.16± 0.03 

C22:6n3 (DHA) 14.8±0.05 13.48± 0.11a 

Ratio n-6/n-3 PUFA 0.67±0.01 0.81±0.01a 
Each parameter is presented as percentage mean relative to total fatty acids (±SEM) in frontal 566 

cortex. Statistically significant changes are represented ap<0.05 compared with DHA diet. Data 567 

are analyzed by using two tailed unpaired t-test. 568 
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