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[Abstract] This paper presents a novel method to segment/decode DNA sequences based on 
n-gram statistical language model. Firstly, we find the length of most DNA “words” is 12 to 15 
bps by analyzing the genomes of 12 model species. The bound of language entropy of DNA 
sequence is about 1.5674 bits. After building an n-gram biology languages model, we design an 
unsupervised ‘probability approach to word segmentation’ method to segment the DNA sequences. 
The benchmark of segmenting method is also proposed. In cross segmenting test, we find different 
genomes may use the similar language, but belong to different branches, just like the English and 
French/Latin. We present some possible applications of this method at last.  

1 Introduction  

Analyzing the “meaning” of DNA sequence is the key mission of bioinformatics. For gene 
sequence like “ATCGATGGG”, it could be divided into “ATC/ GAT/ GGG” and then decode to 
amino acid sequence “I/ D/ G”. But how to decode such amino acid sequence is still not very clear. 
Moreover, there is still no effective method to “decode” the non-gene regions. Like the gene triplet 
codes decoding, could we decode no-gene sequence and amino acid sequences? This paper just 
discusses this question.  

The sequence decoding operation contains two steps. Firstly, we should segment the sequence 
properly. Secondly, we assign the ‘names’ for these segmented fragments. Such fragment is 
normally called “word”, which may represent the entity or some functions. The sequence 
segmentation is the key operation. We could use a simple example to describe our mission. For a 
sequence “Iloveapple”, we need divide it into “I/ love/ apple”.  

There is also research topic ‘DNA segmentation’ in bioinformatics (1). The length of their 
‘segmentation’ is normally Kbps to Mbps. They mainly concern the classification of long 
sequences, for example, segmenting the DNA into gene regions and non-gene regions. Here we 
discuss the basic meaningful segmentation of DNA, the ‘DNA word’, whose length may be only 
several bps.  

Only after segmenting the sequence, we could detect the meaning of sentence and do other 
analysis. Similarly, correctly segmenting the DNA sequence is also the first key step to understand 
the DNA. For some language like English, the sequence is naturally segmented into words by 
space and punctuation. But for DNA sequence, there is no space or punctuation. In some East-Asia 
language like Chinese, there are also no natural delimiters. It’s also a big problem to deal with 
these languages by computer. In these years, this problem has been solved to great extent. Two 
main methods are usually used to deal with these problems. Some simple methods are normally 
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designed based on the vocabulary. Others use statistical features to improve the segmentation 
methods (1,3,4) . 

In segmentation researches, some does not need the any vocabulary. These methods 
automatically extract the rules from large raw corpus, and then use these rules to segment the 
sequences. Such methods are called unsupervised or self-organized segmentation. These research 
normally uses the Mutual Information to identify words boundary (5,6). Some improved versions 

apply the EM algorithms to train the segmentation model (7,8,9,10). Although supervised 
approaches reach higher accuracy (>95%) than unsupervised ones (normally <85%) in many 
cases, they involve much more human effort. Furthermore, unsupervised approaches are more 
adaptive to relatively unfamiliar languages for which we do not have enough linguistic 
knowledge.  

Still for sequence “Iloveapple”, even we have no an English vocabulary, we could still 
segment it into “I/ love / apple”, if we have many English documents (without any space and 
punctuation). Since we have little knowledge about “words” of DNA, unsupervised method 
seems very appropriate to segment the DNA sequence. We just apply these researches to design 
the DNA segmentation method. 

2 Statistical language model of DNA 

Most segmentation methods in natural language processing area are designed based on 
statistical language models. The most common model is n-gram language model (11).  

N-gram are sequences of ‘n’ words in a running text. N-gram frequencies or more sophisticated 
statistical models of n-gram are widely used for text processing applications such as information 
retrieval, language identification, etc. In a biological context, n-gram can be sequences of amino 
acids or nucleotides. For instance, the sequence “AAACG”, its unigram are A,A,A,C，G. The 

2-grams are AA, AA, AC, CG. Similarly, 3-grams are AAA, AAG, ACG.  

N-gram language model uses the basic statistical properties of n-gram. An n-gram model 

predicts ix based on ( 1) 1, ,i n ix x− − −K . In Probability terms, this is ( 1) 1( | , , )i i n iP x x x− − −K . When 

used for language modeling, independence assumptions are made so that each word depends only 
on the last n-1 words. 

N-gram based methods have already been successfully applied in biological domain (12). For 
example, the relative abundance of n-gram sequence is used as the genome signatures (13). The 
biological language models are applied to study the evolutionary tree (14). N-gram composition of 
amino acid sequences is also used to classify the protein (15).  

The basic statistical feature for an n-gram model is language perplexity or entropy, which 
describe how well the language model predicts a new text composed of unseen sentences. Here we 
use the genome of 12 mode creatures to build n-gram models and calculate the language 
perplexity. The relation of n of “n-gram” and the perplexity of each genome is shown in Fig.1: 
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Fig 1. The relation of n-gram n and perplexity of DNA of model species. The red lines correspond to 
Aspergillus and Schizosaccharomyces. The green lines are Acyrthosiphon, Zebrafish, Strongylocentrotus. The 
other blue lines are Arabidopsis, Caenorhabditis, Fruit Fly, Human, Mouse, Oryza,Xenopus. 

The Fig.1 shows the perplexities reduce with the increase of n till n<14. When n > 14 the 
perplexity of most genomes will increase, which means the language model will not believable for 
data sparse problem. The perplexities of these genomes are about 2.96 to 3.86. The corresponding 
language entropies are about 1.5674 to 1.9485. Correspondingly, the language entropy of Human 
language is about 4 to 10 bits (16). In the following sections, we will detail how to segment DNA 
sequence based on these DNA n-gram language models.   

3 The length of DNA words 

To segment a sequence, we should know the length of “word” first. The ‘word’ length should 
not too short. If the word length is 1, the DNA will have 4 words and could only represent 4 
things. The length should also not too long, for example, if the word length is 1M, there will be 
4^1M words in DNA vocabulary. But the length of most chromosomes is server Ms, which could 
only contain several words. 

We could use a statistical method, “zipf’s laws” to estimate the length of most words. The 
“zipf’s laws” states, in a long enough document, about 50% words only occur once. These words 
are called ‘Hapax legomenon’. In building the n-gram model, we have counted the number of ‘n’ 
length words. The relation of word length ‘n’ and the percentage of Hapax legomenon are shown 
in Fig.2. 
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Fig.2 n-gram count results, (x axis is the word length, y axis is the percentage of hapax legomenon). The red 
lines correspond to Aspergillus and Schizosaccharomyces. The green lines are Human, Mouse, Xenopus. The other 
blue lines correspond to other genomes. 

In Fig.2, we find 50% line of Hapax legomenon corresponding to word length 12 to 15 of most 
genomes, which show 12 to 15 bps is the word length for most DNA words.  

In Fig.1, the upper bound of n of n-gram model for genomes is 15, which shows the fifteen 
letters almost has no relation with the prevous14 letters in a sequence. It also means the lengths of 
most words should be no more than 15. In our experiment, we use the 15 as the maximal length of 
DNA “words”. 

4 Segmenting the DNA sequence 

Till now, we have the n-gram DNA model and know the length of DNA words. We could 
directly use the methods from existing research to segment DNA Sequence. One basic method is 
called ‘probability approach to word segmentation’.  

For an example, a sequence “ATAC”, assume maximal word length is 3, its segmentation could 
be “ATA/ C”, “AT/ AC”, “AT/ A/ C”, “A/ TAC”, “A/ TA/ C”, “A/ T/ AC”, “ A/ T/ A /C”.  

The product of probability of each fragment in one segmentation is the probability of this 
segmentation. We select the segmentation candidate which has the maximal probability as the 
segmentation for the sequence: 

*

( ) ( )
( ) ( )
( ) ( ) ( )

( ) max ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

P ATA P C
P AT P AC
P AT P A P C

P ATAC P A P TAC
P A P TA P C
P A P T P AC
P A P T P A P C

⎧
⎪
⎪
⎪
⎪= ⎨
⎪
⎪
⎪
⎪
⎩

               (1) 
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Based on n-gram model, we could get the probability of each fragment like “ATA”. For 
example:  P(‘ATA/ C’)=P(ATA)P(C). According to n-gram models, we could get: P(C), and 
P(ATA)=P(A)P(T|A)P(A|AT). 

If the sequence length is m, there will be O(2^(m-1)) forms of segmentation. To reduce the 
calculation requirement, dynamic programming methods based on Viterbi algorithm are applied 
(17,18).  

Moreover, we could maintain a ‘vocabulary’ of fragments to reduce the calculation requirement 
further. For example, in 4-gram counting, the frequency of “love” will be much higher than “ilov”, 
so “love” will be added into vocabulary. “ilov” will be disregarded. This underlines one simple 
rule. The DNA word should have the high frequency. We select a frequency threshold for 9-15 bps 
length words. All possible word of 1-9 bps are also added into vocabulary. More detailed work to 
construct the vocabulary from raw corpus could refer to (19,20). These are also some interesting 
work discussing the vocabulary in DNA (21). They all apply the similar methods.   

Here is an example. A sequence in human genome is as follows:  

“TGGGCGTGCGCTTGAAAAGAGCCTAAGAAGAGGGGGCGTCTGGAAGGAACCGCAAC
GCCAAGGGAGGGTG” 

Our method will segment it into: 

“TGGGCGTG/  C/  G/  CT/  TG/  AAAA/  G/  AGCCT/  AAGAA/  
GAGGGGGCGTCTGGA/  AGGAA/  CC/  G/  CA/  A/  C/  GCCA/  AGGGAGGG/  
TG/” 

After having a DNA sequence segmentation methods, we should also set an evaluation 
benchmark. In natural language processing research, we normally use the precision to measure the 
effect of a segmentation method. It’s the ratio of number of rightly segmenting words to that of all 
words in the sequence. Since we didn’t know the DNA words beforehand, we design a stability 
indicator to evaluate the effect of DNA sequence segmentation.  

For a sequence of “CCCTAAACC”, assume its segmentation is “CCC/ TAAA/ C/ C”. Then we 
delete the first letter of original sequence, the new sub sequence is “CCTAAACC”. If its 
segmentation is “CC/ TAAA/ C/ C”, it has one different “word” compared to previous sequence. 
But if the segmentation is “CCT/ AAA/ CC”, it will become a completely different sequence. So a 
good segmentation method should ensure the sub sequence is segmented into the same form with 
the original sequence, which explains why we set the stability as the benchmark of segmentation 
method.  

The segmentation stability is defined as follows: 

a= the number of consecutive segmentation position pairs in sub sequence which also appear in 
original sequence 

b= the number of consecutive segmentation position pairs in sub sequence 

Segmentation stability=a/b 
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The sub sequence is constructed by delete the first letter of original sequences.  

Back to previous, sequence of “CCCTAAACC”, assume two segmenting methods botj divide it 
into “CCC/ TAAA/ C/ C/”. If we delete the first letter “CCTAAACC/”, its segmentation is “CC/ 
TAAA/ C/ C/” for first segmenting method and “CCT/AAAC/C/” for second. The first 
segmentation has 3 same consecutive segmentation positions pairs with original segmentation, so 
the stability of the first method is 1. For the second, it has 2 segmentation positions pairs, but only 
has one same pair with original segmentation. So its stability is 0.5. This process is illustrated in 
Fig.3. 

 Fig 3. For segment method 1, Consecutive Segmentation pairs number in sub sequence is 3, Number of same 
segmentation pairs with original sequence is 3,so Stability:3/3=1. For method 2, Consecutive Segmentation pairs 
number in sub sequence is 2, Number of same segmentation pairs with original sequence: is ,so stability:1/2=0.5. 

We randomly select a group of 70 bps length DNA sequences from each genome and run the 
segmentation stability test by corresponding segmentation models. The average stability ranges 
from 0.9 to 0.95. The stability is shown in Table.1 

Table.1: segmentation stability of different genomes 

genomes Acyrthosiphon Arabidopsis Aspergillus Caenorhabditis Zebrafish Fruit Fly 

stability 0.980074 0.986467 0.973245 0.98359 0.963535 0.983323 

genomes Human Mouse Oryza Schizosaccharomyces Strongylocentrotus Xenopus 

stability 0.974546 0.965113 0.969982 0.983754 0.970433 0.973462 

 

5 Language of different species 

The previous segmentation process is based on one assumption: DNA languages vary among 
different species. What if different species share same languages? If so, we could build a single 
DNA language model for all species. 

A simple feature to identify the similarity of language is the perplexity. We use the genomes of 
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human as experimental data and use other genome language models (15-gram) to calculate its 
perplexity. The results are shown in table2: 

Table.2: cross perplexity of different language models  

Model Acyrthosiphon Arabidopsis Aspergillus Caenorhabditis Zebrafish Fruit Fly 
perplexity 4.32231 4.2982 5.71065 4.51787 4.08221 4.31425 
Model Human Mouse Oryza Schizosaccharomyces Strongylocentrotus Xenopus 
perplexity 3.32347 3.7709 4.15448 5.29441 4.04256 3.97019 

 

Moreover, we could use the segment method to test the similarity of languages. We select a 
group of sequences from human genome and segment them by different genomes language 
model. Similar to the definition of segmentation stability, we could compare their number of 
same segmentation positions. Here we use the segmentation of human genomes models as 
original segmentation. Then calculate the ratio of same segmentation position pairs in other 
segmentation forms segmented by other genomes models. The results are shows in Table 3: 

Table. 3: cross segmentation stability of different language models (15-gram model) 

genomes Acyrthosiphon Arabidopsis Aspergillus Caenorhabditis Zebrafish Fruit Fly 
stability 0.156297 0.29616 0.22841 0.248332 0.279579 0.272185 
genomes Human Mouse Oryza Schizosaccharomyces Strongylocentrotus Xenopus 
stability 1 0.43824 0.245956 0.251887 0.242873 0.322274 

 

Since many long length words do not appear in other sequences, the stability is low for short 
genomes. Then we reduce the word maximal length to 9 and run this test again. The results are 
shown in Table.4:  

Table.4 cross segmentation stability of different language models (9-gram model) 

genomes Acyrthosiphon Arabidopsis Aspergillus Caenorhabditis Zebrafish Fruit Fly 
stability 0.210119 0.395024 0.311142 0.326513 0.3877 0.363938 
genomes Human Mouse Oryza Schizosaccharomyces Strongylocentrotus Xenopus 
stability 1 0.598926 0.354348 0.345124 0.335542 0.464246 

The average segmentation stability increases with lower word maximum length. If we use two 
completely different languages, for example, English and Chinese PinYin (represented by English 
letters), to segment a same sequence, such stability value will close to zero.  

The cross perplexity and stability tests show the different genomes may use the similar 
languages, but they belong to different branches, just like the English and French/Latin in world 
language system. So we could build a single n-gram model and segmenting rule for all genomes.  
A simple way is to train a new n-gram language model by all available genomes. Here we 
randomly selected 100M data from 12 genomes and build a new 15-gram language model. The 
segmentation stability of segmenting method based on this new model is shown in Table.5: 

Table.5: segmentation stability of mixed data model  

genomes Acyrthosiphon Arabidopsis Aspergillus Caenorhabditis Zebrafish Fruit Fly 
stability 0.942446 0.953038 0.949611 0.933767 0.904238 0.93521 
genomes Human Mouse Oryza Schizosaccharomyces Strongylocentrotus Xenopus 
stability 0.914045 0.898843 0.909858 0.957075 0.919044 0.92456 
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Although we could use the different language models for different species, a universal 
biology n-gram language model will bring more benefit in analyzing the DNA. More research 
works about the adaptation of n-gram models could refer to (22,23). 

6 Some applications 

After having a segmentation method, we could identify the corresponding entity or function of 
each “word”. This task may leave for experimental biology. Although we didn’t know the 
meanings of DNA words, we could still find some interesting application of DNA statistical 
language models. This model builds a bridge between natural language processing and DNA 
research. Almost all the technology in information research could be applied in DNA analyzing. 

Firstly, we could build a DNA search engine like Google (24). Most current DNA search and 
comparing methods are similar to BLAST/FASTA algorithm, which compares one sequence with 
the other sequences on by one. Although many heuristic and pre-index methods could greatly 
reduce the search time, it’s still difficult to meet the challenge in DNA information explosion 
period. Many researchers agree that high performance search algorithm is demanding in the field 
of bioinformatics.  

 For mass data like Internet information, the inverted index based search systems are almost 
the only choice. To build a DNA search engine like Google, we only need segment the DNA 
sequence into ‘words’. Then using the mature search engine technology, we could easily indexing 
all current DNA sequences and provide the ms level search services. 

The second is DNA “automatic proofreading” functions. Checking the mutant gene or 
mistakes in DNA sequencing is also a challenging task in bioinformatics. In search engine or 
word processing software, we can find correction hints when inputting the wrong words or 
phrase. One simple spell error check method could be designed based on vocabulary (25). 
Because we still have no an explicit DNA vocabulary, we could also refer to the phrase error 
check methods or some automatic proofreading research in East-Asia language (26,27,28). Most 
of these methods apply the n-gram language models. They mainly check the probability of 
sequence. If the probability is very low, the sequence is regarded an error sequence. Since we 
have built the n-gram DNA languages model, some n-gram based automatic proofreading 
methods could be directly applied in DNA sequence analyzing.  

Methods and materials  

We use the SRILM to build the language model of DNA with Good-turning as discount 
method (29). All genomes data are downloaded from NCBI (30). The source code of segmentation 
method of this paper could be found in (31). 
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Entropy and perplexity  

The entropy is the average uncertainty of a single random variable: 

2( ) ( ) log ( )
x X

H X p x p x
∈

= −∑                                               (1) 

For example, the DNA sequence, { , , , }x A T C G∈ , the entropy of one random variable is: 

2 2 2 2( ( ) log ( ) ( ) log ( ) ( ) log ( ) ( ) log ( ))p A p A p T p T p C p C p G p G− + + +        (2) 

Then for n random variables, corresponding to n length sequence, its entropy: 

 1 2 2 1 2( , , ) log ( , , )
i

n n
x X

p x x x p x x x
∈

− ×∑ L L                                 (3) 

For example, the entropy of n=2 length sequence: 

2 2 2 2

2 2

( ( ) log ( ) ( ) log ( ) ( ) log ( ) ( ) log ( )
( ) log ( ) ( ) log ( ))
p AA p AA p AT p AT p AC p AC p AG p AG

p TA p TA p GG p GG
− + + + +

+ +L
          (4) 

According to Shannon-McMillan-Breiman theorem: 

 2 1 2
1( ) lim{ log ( , , , )}nn

H X P x x x
n∞ →∞

= − L                                 (5) 

This value is defined as the language entropy. Its unit is bit. Normally, we use a very long 
sequence to evaluate this value.  

In terms of n-gram analysis, perplexity is a measure of the average branching factor and can be 
used to measure how well an n-gram predicts the next juncture type in the test set. Perplexity 
could be calculated by entropy: 

( )2H X  

Here we use the method of SRILM to calculate the perplexity. SRILM define the perplexity as: 

10log ( )

10
P T

Word
−

, here ‘T’ is the sequence, ‘Word’ is the word number in this sequence. 

Segmenting method: 

The segmentation problem could be defined as: 

1 2 nS c c c= L  is a sequence of DNA letters. 

1 2 mW w w w= L  is a sequence of the word segmentation. 

What we need is get  
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* arg max ( | )WW P W S=              (6) 

The most probable sequence of segmentation. 

According to the Bayes Formula: 

* * ( ) ( | )arg max ( | ) arg max arg max ( ) ( | )
( )W W W

P W P S WW P W S W P W P S W
P S

= ⇒ = ⇒          (7) 

Because the P(S|W) is same for all segmentations, that leaves us only maxP(W). 

1

( ) ( )
m

i
i

P W P w
=

=∏                                                           (8) 

The maximal probability segmentation method obtains a segmentation having maximal P(W). A 
common way to solve this problem is a dynamic programming method based Viterbi algorithm. 
Its main idea is as follows: 

When read to letter i, we could calculate the maximal probability (1, )P i till the letter i. When 

read to letter k, we only need calculate: 

(0, ) { (1, max )* ( max 1, ),
(1, max 1)* ( max 2, ),
(1, 2)* ( 1, )}

P K MAX P k Len p k Len k
P k Len P k Len k
P k p k k

= − − +
− + − +

…… − −
        (9) 

Here maxLen is the maximal word length. It’s the dynamic programming equation of 
segmentation method. The time complexity of this method is O(maxLen*N), with N the sequence 
length. 
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