

Grid Potential Analysis and Docking Studies on a Dataset of N-Arylsulfonyl-3-AcetylIndoles as Anti-HIV Agent

Surendra Kumar, Meena Tiwari

Computer Aided Drug Design Lab, Department of Pharmacy, Shri G.S. Institute of Technology & Science,

23, Park Road, Indore-452003 (M.P.), India

A grid potential analysis employing the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking the AutoGPA module in MOE2009.10 was performed on a dataset of 42 molecular docking simulations were also employed to position the inhibitors to their binding mode for different conformations of molecule. The uniqueness of AutoGPA module is that, it automatically builds the 3D-QSAR model on the pharmacophore based molecular alignment. The best AutoGPA 3D-QSAR model obtained in the present study gives the crossvalidated q² value of 0.588 and r²pred value of 0.701 among the fifty six 3D-QSAR model developed. Furthermore, the steric and electrostatic contour maps for AutoGPA model along with the 3D structure of protein (binding residue of active site) inlaid were obtained to better understand the structural requirements against HIV and interaction between binding residues of protein and inhibitors. The study shows that **hydrophobic** and **hydrogen bonding potential groups** are favorable for optimization of parent nucleus for better activity.

Background

Grid Potential Analysis Workflow

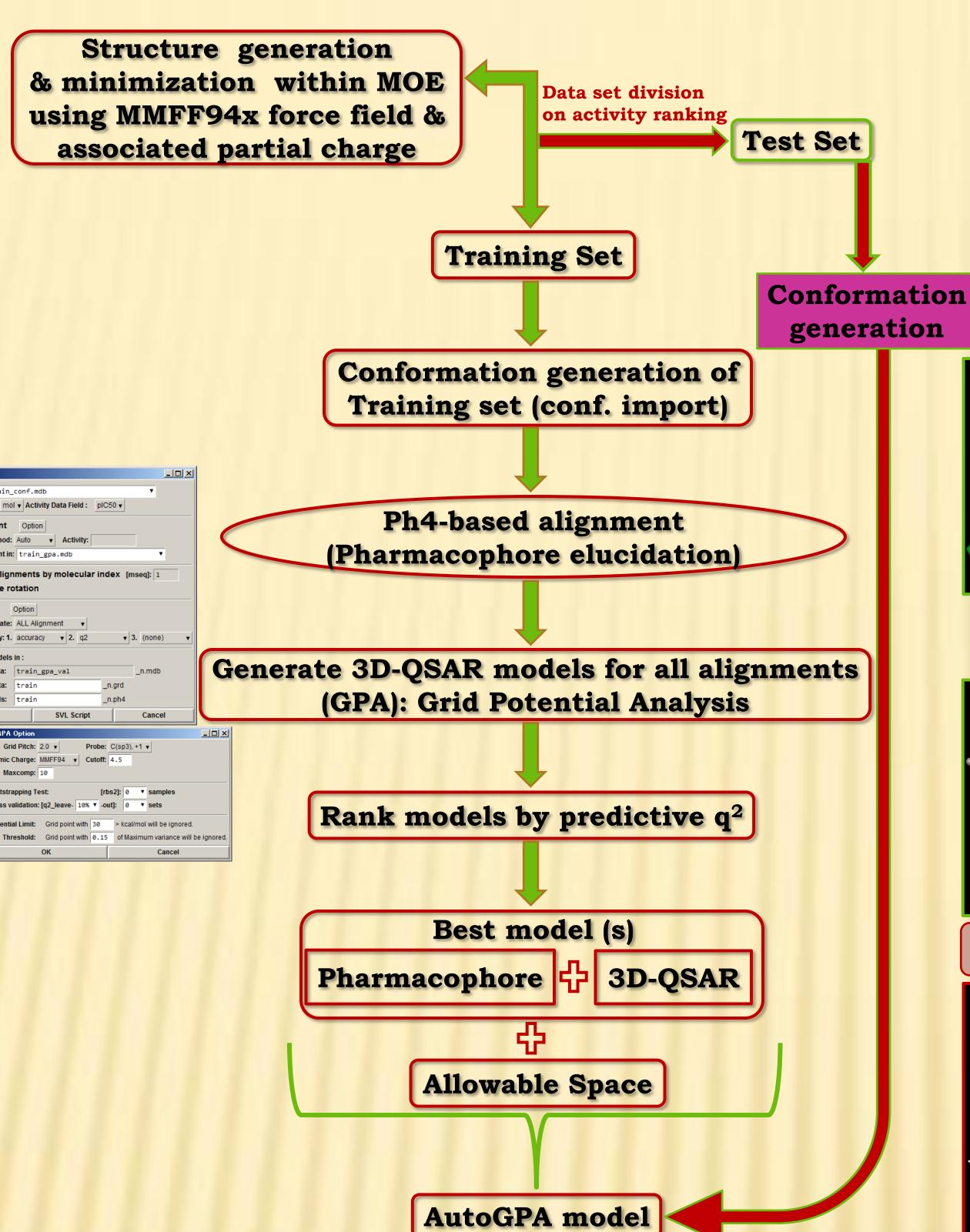
Grid Potential Analysis Contour plots

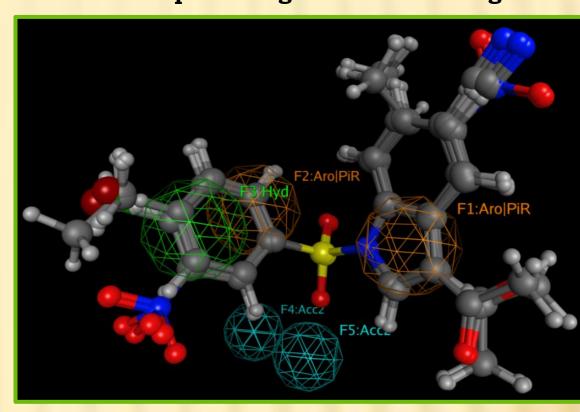
Pharmacophore alignment of training set

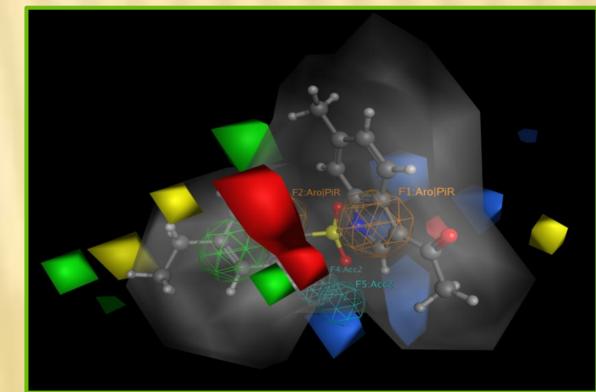
AutoGPA model of (cmpd:35) potent compound

AIDS: Leading Global public health threat

Flaws of current therapy:

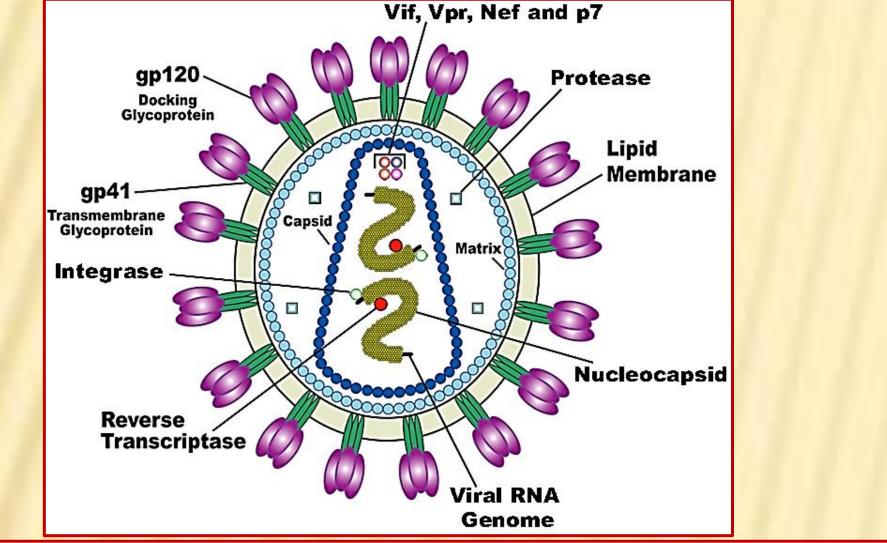

- Low oral bioavailability
- Development of drug-resistant HIV strains
- Long term toxicity


Challenges:


• Discovery & Development of new antiretroviral drugs

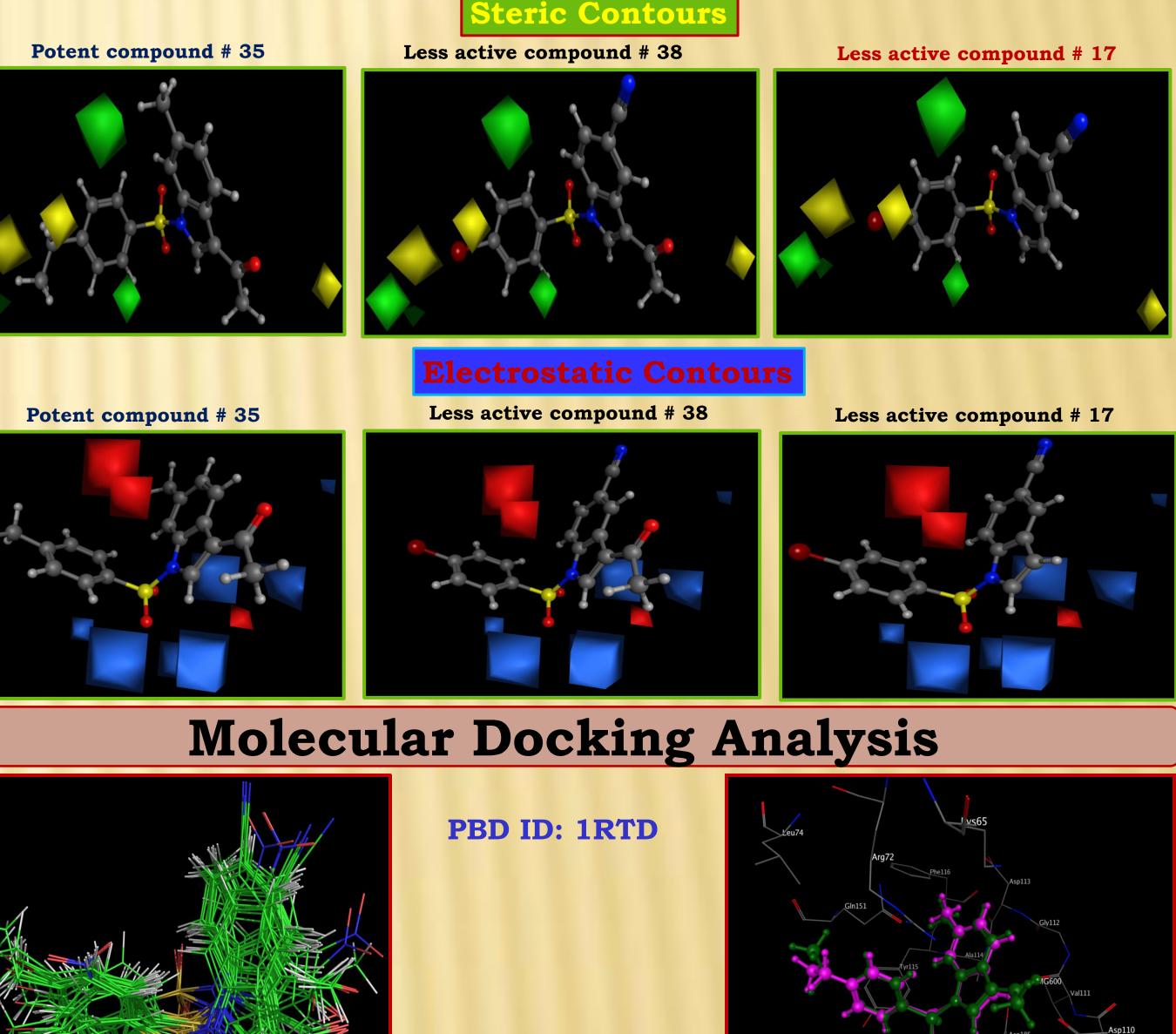
with reduced toxicity

Enhanced potency



• Different mechanism of action & better resistance profile

• Reduced prevalence of adverse drug-drug interactions

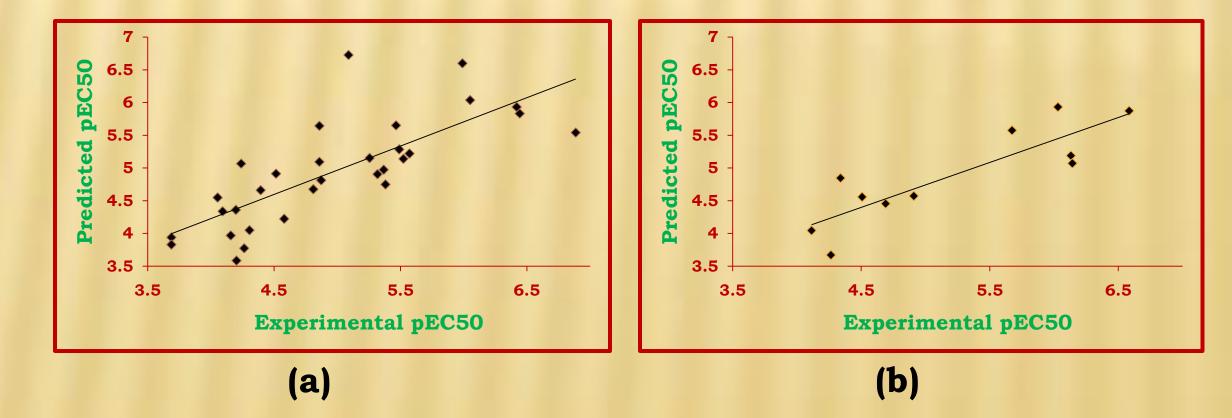


Materials & Methods

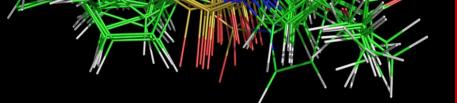
Data taken from literature: Synthesis & anti-HIV-1 activity of some N-arylsulfonyl-3-acetylindoles in vitro Source: Bioorganic & Medicinal Chemistry Letters; 20(2010):3534-3536

Compounds: 42 compounds of N-arylsulfonyl-3acetylindoles active against C8166 cells (EC_{50} activity) **Computational Methods:**

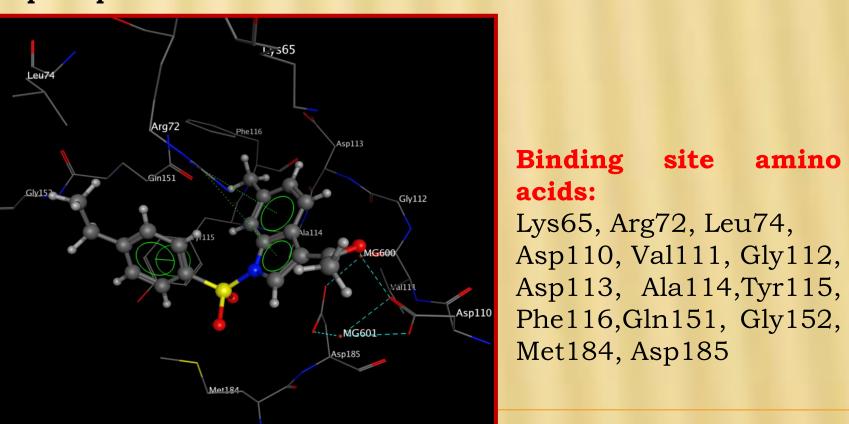
Molecular Modeling: MOE2009.10 and SYBYL 8.0


Table: Structure & activity (pEC₅₀) of N-arylsulfonyl-**3-acetylindole analogues**

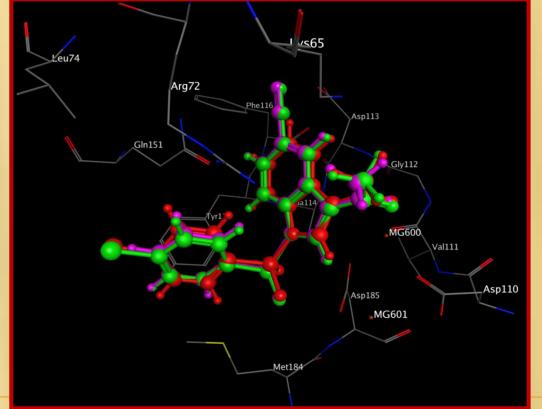
R_1 N SO_2 R_2 N					
Cmpd	-			Activity	Surflex
No.	R ₁	R ₂	R ₃	pEC50 (M)	Docking Score
01*	Н	Н	Н	6.032	3.3769
02	Н	4-CH ₃	Н	4.874	3.9371
03*	H	3-NO ₂	H	6.131	5.1782
04	H	3-NO ₂ , 4-Cl	H	6.420	4.8127
05*	H	4-Br	H	4.690	3.5419
06*	Н	4-C1	Н	4.909	4.0570
07	$5-NO_2$	4-Br	Н	4.203	4.3979
08	$5-NO_2$	Н	Н	5.318	3.6853
09	$5-NO_2$	4-CH ₃	Н	4.580	4.0788
10	6-CH ₃	Н	Н	6.051	4.0956
11	6-CH ₃	4-Br	Н	4.859	4.9591
12*	6-CH ₃	3-NO ₂	Н	6.585	3.9074
13	6-CH ₃	4-CH ₃	Н	5.523	4.9370
14	6-CH ₃	$4 - C_2 H_5$	Н	5.089	5.9300
15*	6-CH ₃	4-C1	Н	6.143	4.4550
16	5-CN	4-CH ₃	Н	4.198	3.9453
17	5-CN	4-Br	Н	4.158	2.9797
18	5-CN	Н	Н	5.491	3.8609
19	5-CN	4-C1	Н	4.305	3.7107
20	5-CN	3-NO ₂	Н	4.394	5.0225
21	5-CN	$4-C_2H_5$	Н	5.381	4.7412
22	Н	Н	COCH ₃	5.572	6.3285
23*	Н	4-CH ₃	COCH ₃	4.507	5.7842
24*	Н	3-NO ₂	COCH ₃	5.674	5.5133
25	H	3-NO ₂ , 4-C1	COCH ₃	5.465	5.2328
26	Н	4-Br	COCH ₃	4.093	5.6113
27	H	4-C1	COCH ₃	4.054	3.8191
28*	$5-NO_2$	4-Br	COCH ₃	4.264	4.8947
29*	5-NO ₂	Н	COCH ₃	4.339	4.6456
30	5-NO ₂	4-CH ₃	COCH ₃	3.688	4.9212
31	6-CH ₃	Н	COCH ₃	6.444	4.3350
32	6-CH ₃	4-Br	COCH ₃	5.368	6.2735
33	6-CH ₃	3-NO ₂	COCH ₃	5.991	6.2671
34	6-CH ₃	4-CH ₃	COCH ₃	4.859	4.5898
35	6-CH ₃	4-C ₂ H ₅	COCH ₃	6.886	7.3071
36	6-CH ₃	4-C1	COCH ₃	5.257	5.5371
37*	5-CN	4-CH ₃	COCH ₃	4.114	4.7752
38	5-CN	4-Br	COCH ₂	3.697	3,9379



Results & Discussion


Statistical Data for AutoGPA model				
PLS statistics	AutoGPA model			
q ²	0.588			
r ²	0.833			
MSE	0.113			
r ² pred	0.701			
maxcomp	10			
r ² m	0.732			
Contribution				
Steric:	0.202			
Electrostatic:	0.798			

Experimental and Predicted activity (pEC50) for training (a) & test set (b) data



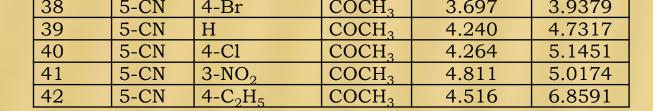
Superimposition of all docked molecule

Ligand-interaction diagram for most potent ligand (comp35) which has best docking pose

Binding orientation of comp14 (Cyan) & 35 (Green)

Binding orientation of least active comp26 (red), 38 (green) & 39 (magenta)

Conclusion


Phe116,Gln151, Gly152,

• Grid Potential analysis results concluded that hydrophobic substituent at R₁ & R₃ position provides better inhibition in the data set, whereas presence of hydrogen bonding groups at R₃ position further enhances the activity.

 Molecular Docking results are well accordance with grid potential analysis results which further supported the results obtained from 3D-QSAR analysis.

References

- 1. Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steriods to carrier proteins. Richard D. Cramer, David E. Patterson, Jeffrey D. Bunce, J. Am. Chem. Soc., 1988, 110, 5959-5967
- 2. AutoGPA: A novel 3D-QSAR method based on grid potential analysis and pharmacophore alignment. Naoyuki ASAKAWA, Seiichi KOBAYASHI, Junichi GOTO, Noriaki HIRAYAMA Poster presentation at InCoB 2011 and 1st ISCB-Asia Joint Conference (http://www.incob2011.org).

*Test Set

