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Lentiviral vectors (LVs) were a powerful tool for transgene expression in vivo and in vitro. 

However, the construction of LVs is of low efficiency, due to the large sizes and lack of 

proper clone sites. Therefore, it is critical to develop efficient strategies for cloning LVs. 

Here, we reported a combinatorial strategy to efficiently construct LVs using EGFP, hPlk2 

wild type (WT) and mutant genes as inserts. Firstly, site-directed mutagenesis (SDM) was 

performed to create BamH I site for the inserts; secondly, pWPI LV was dephosphorylated 

after BamH I digestion; finally, the amounts and ratios of the insert and vector DNA were 

optimized to increase monomeric ligation. Our results showed that the total percentage of 

positive clones was approximately 51.3%±15.2%. Using this model, almost all the vectors 

could be constructed through two or three minipreps, therefore, our study provided an 

efficient quantitative model for constructing large-size vectors. 
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Lentiviral vectors (LVs) are a powerful tool for gene transduction in vitro and in vivo, 

because of the following advantages. Firstly, LVs can transduce not only mitotically active 

cells, but also slowly dividing cells, and even nondividing terminally differentiated cells1-4. 

Secondly, transgenes delivered by LVs are more resistant to transcriptional silencing, 

whereas, it is a common phenomenon associated with retroviral vector transduced cells after 

prolonged in vitro or in vivo transplantation2-4. In addition, LVs can accommodate the use of 

various ubiquitous or tissue-specific transcriptional promoters3, 5. Furthermore, the 

self-inactivating safety modification of LVs, which permanently disables the viral promoter 

within the viral long-terminal repeat after integration, enables transgene’s expression in the 

targeted cells to be controlled solely by internal promoters3, 6. Finally, self-inactivating 

modification of LVs does not reduce viral titers significantly6. These advantages make LVs 

to be a powerful tool for stable gene transfer and expression7-9. 

 

However, it is highly challenged to subclone interested genes into the third-generation 

bicistronic LVs, due to their large sizes and limited clone sites, therefore, it is important to 

develop efficient strategies for LV subcloning. Classically, two different matched sites are 

used to directly subclone the inserts into vectors by ligation and transformation10. Because of 

the limited clone sites, this strategy is almost not applicable for LV cloning. To create 

matched clone sites, the incorporation of restriction sites into the primers used for PCR is 

perhaps the most common strategy, but this method decreases ligation efficiencies due to the 

inability of some restriction endonucleases to cleave sites efficiently near the termini of DNA 

molecules10-13. Another strategy is to create blunt ends for the vectors and/or inserts with the 

Klenow fragment of DNA Polymerase I or T4 DNA Polymerase, but this method can 
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generate recessed ends due to their 3’-5’ exonuclease activity14. As a result, the efficiencies 

of afterward ligation and transformation are also significantly decreased. SDM was first 

established at 1978 by Hutchison et al., and it is essential in gene functional studies, genetic 

engineering, protein engineering, and vector modifications15-17. Currently, the QuikChangeTM 

SDM System developed by Stratagene is a commonly used kit for mutagenesis using plasmid 

double-stranded DNA as templates. The advantage of this strategy is that the products after 

mutagenesis are circular, double-stranded DNA. After restriction endonuclease digestion and 

purification by agarose gel electrophoresis, theoretically, 100% of the linearized DNA 

fragments are with correct-digested ends. Therefore, maximal efficiencies of ligation can be 

achieved.  

 

Up to now, to our knowledge, there are still no reports on how to efficiently construct LVs 

with restriction-dependent cloning strategies. The aim of this study is to optimize a 

combinatorial method to efficiently construct LVs, and the strategy described herein is also 

suitable for constructing other expression vectors. In order to investigate the relationship 

between human polo-like kinas 2 (hPlk2) expression and α-synuclein phosphorylation in 

vitro, we adopted a modified pWPI LV, which carried an EF1α-IRES-Neomycin (Neo) 

cassette for the expression of dual genes, to construct LVs of hPlk2 WT and mutants, K111M, 

T239D, T239V, and enhanced fluorescence protein gene (EGFP) as control, respectively. The 

size of the pWPI vector is about 11.4 kb, and there is a unique BamH I clone site within the 

vector. To quantitatively establish an efficient model for constructing LVs, we developed a 

combinatorial method, which included inserting a BamH I site at the 3’-ends of hPlk2 and 

EGFP through SDM to create compatible clone sites; dephosphorylating the vector DNA 
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after BamH I digestion by calf intestinal phosphatase (CIP) treatment to protect the 

self-ligation of vectors; optimizing the amounts and ratios of the insert and vector DNA to 

facilitate the monomeric ligation; and using Top10 competent cells as hosts to improve the 

transformation efficiencies. With our optimized methods, we successfully constructed five 

LVs, and the percentages of positive clones containing EGFP, hPlk2 WT, K111M, T239D, 

and T239V inserts, were 51%±16.5%, 37%±15.2%, 52%±33.6%, 45%±16.2%, and 

75%±25%, respectively. This study provided an important quantitative model for efficient 

construction of LVs.  

 

Results 

 

BamH I site insertion and mutagenesis of hPlk2 mutants 

 

SDM was performed by PCR, and the parental template DNA was digested with Dpn I. 

Different annealing temperatures were used for pcDNA3.1 BamH I insertion and hPlk2 

mutagenesis, representing approximately Tm-5°C, Tm
*+2°C, and Tm

*-5°C (Figure 1, Table 1, 

2 and 3), respectively. After transformation and identification by sequencing, we found that, 

when lower annealing temperatures (approximately Tm
*-5°C) were adopted, more colonies 

could be obtained, and the mutagenesis efficiencies were approximately 90% for 

pcDNA3.1/hPlk2/BamH I insertion, 50% for K111M mutagenesis, 60% for T239D and 90% 

for T239V mutagenesis, respectively (Table 1, 2). Whereas, when higher annealing 

temperatures (approximately Tm-5°C) were used, no colonies were obtained (Table 3). 

Interestingly, when the mutagenesis reactions were annealed at Tm
*+2°C, a few colonies 
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were obtained after transformation, but the mutagenesis efficiencies were 100% (Table 3). 

These data suggested that lower annealing temperatures were more efficient both for the 

BamH I insertion and hPlk2 mutagenesis, however, higher annealing temperatures resulted in 

decreased transformation colonies (Table 1, 2 and 3). Our results were in accordance with 

other report that the annealing temperatures should be determined empirically case by case10. 

In addition, although the Statagene developed protocol suggested that the primer pairs should 

be of 25~45 bases in length with melting temperature (Tm)≥78°C, our experiments showed 

that correct mutagenesis was achieved with longer primers up to 56 bases, and the mutations 

ranged from 2 to 6 bases (Table 1). DH5α competent cells were also used for transformations, 

but no positive clones were obtained after sequencing (Data not shown). Therefore, for low 

efficiency mutagenesis, Top10 cells were recommended as transformation hosts, because 

their transformation efficiency could reach up to 1×109 cfu/µg supercoiled DNA, whereas, 

DH5α only about 106 cfu/µg supercoiled DNA (Invitrogen). In addition, we also performed 

mutagenesis for pEGFP-N1 BamH I site insertion, after annealed at 62°C, the mutation 

efficiency was about 83.5% (Figure 1, Table 2). These data demonstrated that the designed 

mutagenesis was successfully achieved. 

 

CIP treatment improved the rates of recombinant vectors 

 

A unique BamH I site of pWPI/Neo/BamH I LV was employed as clone site. To protect the 

vector self-circularization, we removed the 5’-phosphate groups of the vector DNA with CIP 

treatment following BamH I digestion. This treatment could diminish the background of 

transformed bacterial colonies that carried empty plasmids. At the same time, the colony 

number would be significantly decreased after transformation10, 18, 19. Insert (EGFP, hPlk2 

WT, K111M, T239D and T239V, respectively) and vector DNAs were pooled together in 

10µl ligation reactions with total DNA concentrations around 19.0~25.3 ng/µl, and insert to 
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vector molar ratios about 1~3:1 (Table 4). To improve the transformation efficiencies, Top10 

cells were used for transformation. Compared with DH5α cells, more colonies were obtained 

from Top10 cell transformations, ranging from 19 to about 200 colonies from one 

transformation of each; whereas, totally 1 to 7 colonies were gained from 3 DH5α cell 

transformations of each, respectively (Table 4). 14 to 20 of those colonies were selected 

(totally 83 colonies) for identification, and the results showed that only one colony of 

pWPI/hPlk2 WT/Neo was empty vector (Figure 3A), five colonies contained unknown DNA 

(Figure 3, A, B and D), and all the other colonies contained inserts (Figure 2 and 3; Table 4), 

therefore, the total percentage of recombinant vectors was up to 92.8% [(83-5-1)/83]. Among 

them, the individual percentages of inserted vectors of EGFP, hPlk2 WT, K111M, T239D, 

and T239V, were 100%±0, 78%±2.9%, 85%±17.2%, 100%±0, and 95%±11.2%, respectively. 

Interestingly, the percentages of inserted vectors between EGFP/K111M, EGFP/T239D, 

EGFP/T239V, hPlk2 WT/K111M, K111M/T239D, K111M/T239V, and T239D/T239V, had 

no significant differences (P>0.05), but those between EGFP/hPlk2 WT, T239D/hPlk2 WT, 

and T239V/hPlk2 WT were significantly different (P<0.05) (Table 4), although the sizes of 

the hPlk2 WT and mutants were same, and among them, 2 or 3 bases were changed (WT to 

T239V: ACG to GTG; WT to T239D: ACG to GAC). These data demonstrated that the CIP 

treatment efficiently protected the self-ligation of the vectors, and increased the rates of 

recombinant vectors. 

 

 

Efficient construction of LVs with monomeric, correct orientations 

 

After miniprep, the insert numbers and orientations were primarily identified by Not I 

digestion. Because there was a unique Not I restriction endonuclease site inside 

pWPI/Neo/BamH I vector at 1145 nucleotide (nt) and the BamH I clone site at 3502 nt. There 

7 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

12
.6

87
6.

1 
: P

os
te

d 
10

 F
eb

 2
01

2
N

at
ur

e 
P

re
ce

di
ng

s 
: d

oi
:1

0.
10

38
/n

pr
e.

20
12

.6
87

6.
1 

: P
os

te
d 

10
 F

eb
 2

01
2



was also a Not I site at the 3’-end of EGFP (about 0.75kb), therefore, after Not I digestion, if 

the vector was empty, one band was detected by Agarose Gel Electrophoresis; if the vector 

contained one copy of the insert and in correct orientation, two bands of ~3.1 kb and ~9 kb 

sizes were detected; and if the inserts were in opposite orientation, two bands of ~2.4 kb and 

~9.75 kb sizes were detected (Figure 2). In addition, within the 5’-BamH I-hPlk2-3’-BamH I 

fragment (about 2.1kb), there was a Not I site at 118 nt as well. As a result, if the vector 

contained one copy of the insert and in correct orientation, two bands of ~2.5 kb and ~11 kb 

sizes were detected; and if the inserts were in opposite orientation, two bands of ~4.4 kb and 

~9.2 kb sizes were detected (Figure 3). All the positive vectors were further confirmed by 

sequencing. Our data revealed that the total percentage of monomeric inserted vectors of 

EGFP, hPlk2 WT, K111M, T239D, and T239V, was approximately 88%, and the individual 

percentages of those were 95%±10%, 78%±2.9%, 85%±17.2%, 83%±15.6%, and 

95%±11.2%, respectively. In addition, the percentages of monomeric inserted vectors 

between EGFP/K111M, EGFP/T239D, EGFP/T239V, hPlk2 WT/K111M, hPlk2 WT/T239D, 

K111M/T239D, K111M/T239V, and T239D/T239V, had no significant differences (P>0.05), 

but those between EGFP/hPlk2 WT, and hPlk2 WT/T239V were significantly different 

(P<0.05) (Figure 2 and 3; Table 4). Furthermore, the total percentage of positive clones of 

EGFP, hPlk2 WT, K111m, T239D, and T239V, in which monomeric, corrected-oriented 

inserts were carried, was about 51.3%±15.2%, and the individual percentages of those were 

about 51%±16.5%; 37%±15.2%; 52%±33.6%; 45%±16.2%; and 75%±25%, respectively 

(Table 4). Finally, the percentages of positive clones between hPlk2 WT/T239V had 

significant difference (P<0.05), but all the others were not significantly different (P>0.05). 
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As controls, pWPI vector DNA, which was not treated with CIP, was also used for ligation 

with the inserts, EGFP, hPlk2 WT, K111M, T239D and T239V, respectively. After 

transformation into Top10 cells, 10 clones of each were selected for identification. Our 

results revealed that, among the 50 clones identified, 5 clones were with monomeric insert, 

and one clone of pWPI/hPlk2T239V/Neo was with monomeric corrected-oriented insert 

(Table 5). The total percentage of positive clones was 2%±4.5%, compared with the 

CIP-treated experiment data, the difference between them was highly significant (2%±4.5% 

vs 51.3%±15.2%, P<0.01).  

 

Discussion  

Creation of compatible ends between vectors and inserts is the first step for subcloning, and it 

is critical that the ends of DNA fragments are correctly generated after restriction digestion, 

particularly for large-size, low-efficiency subcloning. Regular vectors, such as pcDNA3 and 

pcDNA4 (Invitrogen), contain multiple clone sites, therefore, it is convenient to choose two 

different clone sites between the vectors and inserts for directional subcloning. Generally, 

LVs carry limited clone sites, and a unique clone site usually used for subcloning, such as 

BamH I or EcoR V5, 20 etc. Therefore, it is necessary to create compatible clone sites between 

the vectors and inserts. The incorporation of restriction endonuclease sites into the primers 

for PCR is a commonly used strategy, but the extra 3-4 bases at the terminal restriction sites 

are insufficient for stable association with and cutting by certain restriction endonucleases, 

therefore the cloning efficiencies were low, for example, as reported ≤0.05%11, 13. Another 

strategy is to create blunt ends for the vectors and/or inserts with Klenow fragment of DNA 

Polymerase I or T4 DNA Polymerase. This method is also of low efficiency due to two 

reasons. One is the low efficiency of blunt end ligation compared with cohesive ends, and the 

other is the inefficiency of creation of correct blunt ends, for example, the filling-in 
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efficiency of Klenow was reported as ≤50%14, 21, 22. In our previous LV vector subcloning 

experiments, blunt end was created for the inserts with Klenow and T4 DNA polymerase 

treatment, after dozens of ligations and transformations with Top10 cells, no positive clones 

were obtained (Data not shown). SDM is a powerful tool to change DNA sequences at 

specific positions in genetic engineering, including insertion of restriction sites16, 17, 23. 

According to the working format of the QuikChangeTM SDM System, using double-stranded 

plasmid DNA as templates, the mutagenesis products after Dpn I digestion and 

transformation are circular double-stranded plasmid DNAs (Stratagene). Therefore, after 

restriction digestion, 100% of the purified linearized DNA fragments through Agarose Gel 

Electrophoresis were theoretically with correct ends. Whereas, the correct cutting ends could 

not be confirmed with the method of incorporating of restriction sites into PCR primers11, 13. 

Our data demonstrated that the clone efficiencies were significantly improved with this 

strategy. The total percentage of recombinant clones was about 92.8%, and the percentage of 

positive clones with monomeric, corrected-oriented inserts was around 51.3%±15.2% (Table 

4, Figure 2, 3). 

 

Design of the primers is crucial for successful mutagenesis. According to the guide of the 

QuikChangeTM SDM System of Stratagene, complementary primer pairs were employed in 

the same PCR. One disadvantage of using complementary primer pairs is the formation of 

“primer dimers” in PCR reactions, therefore the yield of successful transformants is reduced. 

This phenomenon is particularly severe in SDM, because the primers used include 

mismatched nucleotides for generating the desired mutations23. Another disadvantage of the 

Stratagene strategy is that the newly synthesized DNA is “nicked”. Therefore, they cannot be 

used as templates for subsequent amplification compared with regular PCR. This constraint 

also leads to lower PCR efficiency17. To circumvent these problems, several modifications 

were developed, such as using primers containing extended non-overlapping sequences at the 

3’ end (significantly larger than suggested in Ref. 24) and primer-primer complementary 
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sequences at the 5’ end 17, running two PCR reactions in parallel with each one of the 

forward and reverse primers23 and so on. At the present study, we adopted the classical 

Stratagene strategy, and encountered problems in transformation using DH5α cells with 

Stratagene suggested annealing temperatures. After optimizing the annealing temperatures 

(approximately Tm
*-5°C), and employing Top10 cells as transformation hosts, the 

mutagenesis efficiencies were approximately 90% for pcDNA3.1/hPlk2/BamH I insertion, 

50% for K111M mutagenesis, 60% for T239D and 90% for T239V mutagenesis, respectively 

(Table 1, 2). In addition, compared with DH5α cells, Top10 cells were more applicable for 

low-efficiency transformation. This was further proved by our ligation and transformation 

experiments (Table 4). 

 

Ligation and transformation are complicated procedures, and many factors could affect their 

efficiencies, such as the dephosphorylation of the vectors, the concentrations and ratios of the 

vector and insert DNA, the amount of DNA used for transformation, and so on. Removing 

the 5’-phosphate residues from both termini of the vector DNA can efficiently minimize the 

recircularization of vector DNA (Figure 1), and therefore, decrease the background with 

empty transformants. In our experiment, a unique BamH I site was used as clone site (Figure 

1), and the total percentage of recombinant clones after CIP treatment of the vector DNA was 

up to about 92.8%. Our data were consistent with other reports18, 19. As a control, without CIP 

treatment of the vector DNA, the clone efficiency was highly significantly lower than the 

CIP-treated experiment data (2%±4.5% vs 51.3%±15.2%, P<0.01). Some reports 

recommended that DNA concentration of ligation was about 10ng/µl, the ratio of insert to 

vector DNA could be around 1 to 1, and the transformation volume was less than 10% of the 

competent cells10, 25. Considering these recommendations, we used around 19.0~25.3 ng/µl 

DNA, low insert to vector molar ratios (1~3:1) for ligation due to the large size of the vector, 
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and 2 µl (about 40-50 ng) volume of the ligation products for transformation (Table 4). We 

found that these optimizations resulted in high efficiencies for the construction of LVs with 

monomeric, corrected-oriented inserts (Table 4). When EGFP (about 0.75kb) and hPlk2 WT 

(about 2.1kb) were used as inserts, their recombinant rates were significantly different (100±

0 vs 78%±2.9%, P<0.05), this finding suggested that the sizes of the inserts significantly 

affected the ligation efficiencies. Furthermore, when the recombinant rates were compared 

among hPlk2 WT, T239D, and T239V mutants, their recombinant rates had significant 

differences (78%±2.9%, 100%±0, 95%±11.2%, respectively, P<0.05), whereas the 

recombinant rate of K111M had no significant difference with them (85%±17.2%, P>0.05). 

These data suggested that two or three base pair changes could significantly affect the 

ligation efficiencies between the vector and inserts, although they were of the same length. 

This might be because T239V mutant gene was easier to be ligated into the vector with 

correct orientation than hPlk2 WT gene. In addition, the transformation data also indicated 

this viewpoint, in which much less transformation colonies of pWPI/hPlk2 WT/Neo were 

obtained than the others (Table 4). 

 

Here we reported a quantitative model to construct LVs, which circumvented the barriers for 

efficient subcloning of large-size vectors. Firstly, creation of clone site by SDM could 

guarantee that 100% of the linearized DNA fragments were with correct cutting-ends. 

Secondly, dephosphorylation of vector DNA could confirm that most of the transformants 

(92.8%) were with recombinants. Thirdly, optimization of the amount and ratio of the insert 

and vector DNA could increase the rate of monomeric, corrected-oriented recombinants 

(51.3%±15.2%). Finally, Top10 cells could improve the transformation efficiencies, and 

therefore facilitate to obtain more colonies for identification. As a result, five bicistronic LVs 
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were successfully constructed. These vectors were further used to infect HEK293 and 

SHSY5Y cell lines, neural progenitor cells26, respectively (Data not shown). This study 

provided an important quantitative model for subcloning large-size, low-efficiency vectors, 

such as LVs, and furthermore, accelerated the establishment of in vitro gain-of-function 

models for gene function analyses. 

 

Material and methods 

Design of SDM primers. Two-step SDM strategies were performed to sequentially 

insert BamH I sites for plasmids pcDNA3.1/V5-His-Snk/hPlk227 (pcDNA3.1/hPlk2, 

Addgene plasmid 16015) and pEGFP-N1 (Clontech) at the 3’-end of hPlk2 WT and EG

open reading frames, respectively, and then create hPlk2 mutants: K111M, T239D, and 

T239V with pcDNA3.1/V5-His-Snk/hPlk2-BamH I as template (Figure 1). All primers, 

including BamH I insertion and mutagenesis of hPlk2 mutants, were designed according to 

the guide of Stratagene’s QuickChange

FP 

rated 

 and 

TM SDM kit, synthesized and purified by Integ

DNA Technologies. For all primers, mutagenized positions were denoted in lower case

underlined. 

pcDNA3.1/hPlk2 WT/ BamH I insertion forward: 

5’-CATCATCACCATCACCATTGAggatccGTTTAAACCCGCTGATCAGCC-3’; 

pcDNA3.1/hPlk2 WT/BamH I insertion complement: 

5’-GGCTGATCAGCGGGTTTAAACggatccTCAATGGTGATGGTGATGATG-3’; 

pcDNA3.1/hPlk2 K111M/BamH I forward: 

5’-CAAAGTCTACGCCGCAAtgATTATTCCTCACAGCAG-3’; 
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pcDNA3.1/hPlk2 K111M/BamH I complement: 

5’-CTGCTGTGAGGAATAATcaTTGCGGCGTAGACTTTG-3’; 

pcDNA3.1/hPlk2 T239D/BamH I forward: 

5’-GAACCCTTGGAACACAGAAGGAGAgacATATGTGGTACCCCAAATTATCTC-3’; 

pcDNA3.1/hPlk2 T239D/BamH I complement: 

5’-GAGATAATTTGGGGTACCACATATgtcTCTCCTTCTGTGTTCCAAGGGTTC-3’; 

pcDNA3.1/hPlk2 T239V/BamH I forward: 

5’-CTAGAACCCTTGGAACACAGAAGGAGAgtGATATGTGGTACCCCAAATTATCTC

TC-3’; 

pcDNA3.1/hPlk2 T239V/BamH I complement: 

5’-GAGAGATAATTTGGGGTACCACATATCacTCTCCTTCTGTGTTCCAAGGGTTCTA

G-3’; 

pEGFP-N1/BamH I insertion forward: 

5’-GTACAAGTAAAGCGGCCGCggatccGACTCTAGATCATAATCAG-3’; 

pEGFP-N1/BamH I insertion complement: 

5’-CTGATTATGATCTAGAGTCggatccGCGGCCGCTTTACTTGTAC-3’. 

The melting temperatures (Tm, primer-to-template annealing temperature) and primer-pair 

self-annealing temperatures (Tm
*) were calculated by Stratagene Quikchange Primer Tm 

Calculator (http://www.stratagene.com/QPCR/tmCalc.aspx), and Integrated DNA 

Technologies SciTools OligoAnalyzer 3.1 

(http://www.idtdna.com/analyzer/applications/oligoanalyzer/default.aspx), respectively 
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(Table 1). Hairpin and self-dimmer formation of the primers were analyzed by Integrated 

DNA Technologies SciTools OligoAnalyzer 3.1 as well (Table 1). All the DNA preparation 

kits, including Miniprep, Maxiprep, and Gel extraction kits, were purchased from QIAGEN. 

The DNA purifications used in experiments were tested by NanoDrop-1000 

Spectrophotometer (NanoDrop Technologies), and all the A260/280 values were ≥ 1.80. 

 

Mutagenesis. The PCR reactions were carried out with GeneAmp® PCR System 2700 

(AB Applied Biosystems). The 50 µl PCR reaction was carried out with 50 ng templates, 125 

ng of each forward and complement primers, 20 µM of each dNTP (Invitrogen), 2.5 U of 

PfuUltra DNA polymerase in 1×reaction buffer (Stratagene). The thermal cycler program for 

amplifications was as follows: denaturation at 94°C for 2 min; 18 cycles at 94°C for 30 sec, 

annealing for 30 sec, at 59°C for pcDNA3.1 BamH I insertion and K111M mutagenesis, 63°C 

for T239D and T239V mutagenesis, 62°C for pEGFP-N1 BamH I insertion, respectively 

(Table 2), and at 72°C for 8 min for pcDNA3.1/hPlk2 template, 5 min for pEGFP-N1 

template; followed by a final extension at 72°C for 10 min. When the amplifications were 

finished, 1 µl (10 U) of Dpn I (Stratagene) was added into each reaction, and incubated at 

37°C for 1 hour. Finally, 1 µl reaction products were used for transformation into 50 µl DH5α 

or Top10 competent cells (Invitrogen), respectively, according to the manufacturer’s guides. 

All the transformants were used to spread plates. Transformation colonies were selected and 

their plasmids were isolated by miniprep, and the positive mutants were identified by 

sequencing. 

 

15 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

12
.6

87
6.

1 
: P

os
te

d 
10

 F
eb

 2
01

2
N

at
ur

e 
P

re
ce

di
ng

s 
: d

oi
:1

0.
10

38
/n

pr
e.

20
12

.6
87

6.
1 

: P
os

te
d 

10
 F

eb
 2

01
2



Preparation of vector and insert DNA. The bicistronic LV pWPI (Addgene plasmid 

12254) was modified by creating a BamH I site at 3502nt and replacing EGFP sequence with 

Neo, to form pWPI/Neo/BamH I (a gift from Robert Strome). pWPI/Neo/BamH I DNA was 

digested with BamH I (NEW ENGLAND BioLabs), then divided into two aliquots, one 

aliquot of the vector DNA was used directly for ligation, and another aliquot was treated with 

CIP (NEW ENGLAND BioLabs) to remove the 5’-phosphate groups10 (Figure 1) as follows: 

in a 300µl reaction, containing digested pWPI/Neo DNA (about 15 µg), 50 U CIP in 

1×NEBuffer 3, at 37°C water bath for 1 hours. Both aliquots of pWPI/Neo vector DNA 

(CIP-treated and not treated) were purified by 1% Agarose Gel Electrophoresis to remove 

CIP, and recovered by QIAGEN Gel Extraction Kit. pcDNA3.1/BamH I plasmids carrying 

hPlk2 WT and mutants K111M, T239D, and T239V, respectively, and plasmid 

pEGFP-N1/BamH I were digested with BamH I, then the inserts, hPlk2 WT, K111M, T239D, 

T239V and EGFP, were also recovered by 1% Agarose Gel Electrophoresis and gel 

extraction procedure, respectively. 

 

Ligation. To achieve the molar ratios of inserts to vector about 1 to 3:1, 5 µl of pWPI/Neo 

vector DNA and 3.5 µl of each insert DNA were pooled together (Table 4, 5), warmed at 

45°C for 5 min, then chilled on ice for 2 min, and then ligated with 0.5 µl (1000 U) 

high-concentration T4 DNA ligase (NEW ENGLAND BioLabs) in 1×T4 DNA ligase buffer 

(Figure 1). The 10 µl reaction mixtures were incubated in GeneAmp® PCR System 2700 at 

16°C for 16 hours followed by inactivation at 65°C for 10 min, and then set at 4°C until 

transformation10. 

 

16 
 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

12
.6

87
6.

1 
: P

os
te

d 
10

 F
eb

 2
01

2
N

at
ur

e 
P

re
ce

di
ng

s 
: d

oi
:1

0.
10

38
/n

pr
e.

20
12

.6
87

6.
1 

: P
os

te
d 

10
 F

eb
 2

01
2

http://www.addgene.org/pgvec1?f=c&identifier=16015&atqx=pcDNA3.1-hplk2%2Fv5-his&cmd=findpl
http://www.addgene.org/pgvec1?f=c&identifier=16015&atqx=pcDNA3.1-hplk2%2Fv5-his&cmd=findpl
http://www.addgene.org/pgvec1?f=c&identifier=16015&atqx=pcDNA3.1-hplk2%2Fv5-his&cmd=findpl


Transformation and identification. 2 µl (about 40~50 ng) volumes of the ligation 

products were used to transform 50 µl of DH5α and Top10 competent cells according to the 

manufacturer’s instructions (Table 4). In order to obtain more colonies, all the transformation 

cells were used to spread plates. Positive colonies were primarily analyzed by Not I (NEW 

ENGLAND BioLabs) digestion, and further confirmed by DNA sequencing. 

 

Data Statistics. Data were analyzed by mean ± SD and Student’s t-Test. 
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Tables 

 

Table 1. Characteristics of mutagenesis primer pairs 

Primer name Length/mutation 

(bases) 

Tm 

(°C) 

Tm* 

(°C) 

Hairpin 

formation 

Self-Dimer 

formation 

pcDNA3.1/hPlk2 WT/ BamH I insertion 

forward 

48/6 87.9 68.6 No Yes 

pcDNA3.1/hPlk2 WT/BamH I insertion 

complement 

48/6 87.9 68.6 No Yes 

pEGFP-N1/BamH I insertion forward 44/6 86.7 66.7 No Yes 

pEGFP-N1/BamH I insertion complement 44/6 86.7 66.7 No Yes 

pcDNA3.1/hPlk2 K111M forward 36/2 76.6 64.1 No Yes 

pcDNA3.1/hPlk2 K111M complement 36/2 76.6 64.1 No Yes 

pcDNA3.1/hPlk2 T239D forward 51/3 80.9 66.5 No Yes 

pcDNA3.1/hPlk2 T239D complement 51/3 80.9 66.5 No Yes 

pcDNA3.1/hPlk2 T239V forward 56/2 84.2 66.8 No Yes 

pcDNA3.1/hPlk2 T239V complement 56/2 84.2 66.8 No Yes 

 

Note: Tm: primer-to-template annealing temperature, which considered the mismatches of 

the bases; Tm
*: primer-pair self-annealing temperatures.  
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Table 2. Mutagenesis efficiency of BamH I insertion and hPlk2 mutants 

mutagenesis Annealing 

Temperature 

(°C) 

Hosts of 

transformation 

No. of 

obtained 

colonies 

No. of sequenced 

colonies 

Percentage of 

positive 

colonies 

pcDNA3.1/BamH I 59 Top10 13 (n=1) 10 90% (9) 

pEGFP-N1/BamH I 62 Top10 6 (n=1) 6 83.3% (5) 

K111M  59 Top10 ~200 (n=1) 10 50% (5) 

T239D  63 Top10 ~200 (n=1) 10 60% (6) 

T239V  63 Top10 19 (n=1) 10 90% (9) 

 

Note. pcDNA3.1/BamH I: pcDNA3.1/hPlk2WT/ BamH I insertion;  

pEGFP-N1/BamH I: pEGFP-N1/BamH I insertion; 

K111M: pcDNA3.1/hPlk2K111M/BamH I; 

T239D: pcDNA3.1/hPlk2T239D/BamH I;  

T239V: pcDNA3.1/hPlk2T239V/BamH I. 
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Table 3. Mutagenesis efficiencies with different annealing temperatures 

Mutagenesis  Hosts of 

transformation 

Annealing temperature 

(°C) & total No. of   

transformation colonies 

No. of 

identified 

colonies 

Percentages of 

positive mutagenesis 

pcDNA3.1/BamH I Top10 83/0 (n=1) 70/8 (n=1) 4 100% (4/4) 

K111M Top10 72/0 (n=1) 66/1 (n=1) 1 100% (1/1) 

T239D Top10 76/0 (n=1) 68/0 (n=1) 0 0/0 

T239V Top10 79/0 (n=1) 68/1 (n=1) 1 100% (1/1) 
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Table 4. Construction efficiencies of lentiviral vectors with CIP-treated 

vector DNA 

 

Vector 

Molar ratio & 

concentration of 

inserts/vector  

Hosts of 

transformation 

Total No. of 

transformed 

colonies 

Total No. 

of 

identified 

colonies 

Percentage of 

inserted vectors 

(Mean±SD) 

Percentage of 

monomeric inserted 

vectors (Mean±SD) 

Percentage of  

Corrected-oriented 

inserts  (Mean±SD) 

EGFP 1.7 : 1 

(23.0ng/µl) 

Top10/DH5α ~200 (n=1) 

/2a (n=3) 

20 (n=4) 

/2 (n=1) 

100%±0a, b 

(20)/100% (2) 

95%±10% a, b 

(19)/100% (2) 

51%±16.5%a (10) 

/0 (0) 

hPlk2 

WT 

1.8 : 1 

(21.4 ng/µl) 

Top10/DH5α 19 (n=1) 

/1a (n=3) 

14 (n=3) 

/1 (n=1) 

78%±2.9%a, b 

(11)/100% (1) 

78%±2.9%a, b 

(11)/100% (1) 

37%±15.2%a, b (5) 

/100% (1) 

K111M 3.2 : 1 

(25.3 ng/µl) 

Top10/DH5α ~100 (n=1) 

/3a (n=3) 

14 (n=4) 

/3 (n=1) 

85%±17.2%a 

(12)/100% (3) 

85%±17.2%a 

(12)/100% (3) 

52%±33.6%a (7) 

/66.7% (2) 

T239D 2 : 1 

(21.8 ng/µl) 

Top10/DH5α ~200 (n=1) 

/7a (n=3) 

18 (n=5) 

/6 (n=1) 

100%±0a, b   

(18)/100% (6) 

83%±15.6%a   

(15)/100% (6) 

45%±16.2%a (8) 

/83.3% (5) 

T239V 1 : 1 

(19.0 ng/µl) 

Top10/DH5α ~100 (n=1) 

/4a (n=3) 

17 (n=5) 

/4 (n=1) 

95%±11.2%a, b 

(16)/100% (4) 

95%±11.2%a, b 

(16)/100% (4) 

75%±25%a, b (13) 

/100% (4) 

 

Note. Data in boldfaces are obtained from Top10 cell transformation 

Percentage of inserted vectors=No. of inserted vectors/total No. of identified colonies; 

Percentage of monomeric inserted vectors=No. of monomeric inserted vectors/total No. of 

identified colonies; 

Percentage of positive colonies=No. of vectors with monomeric correct-oriented insert/total 

No. of identified colonies. 

a Values in the same column indicates no significant difference (P>0.05);  
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bValues in the same column have significant difference (P<0.05).  

EGFP: pWPI/EGFP/Neo; hPLK2WT: pWPI/hPlk2WT/Neo; K111M: 

pWPI/hPlk2K111M/Neo; T239D: pWPI/hPlk2T239D/Neo; T239V: pWPI/hPlk2T239V/Neo. 

 

Table 5. Construction efficiencies of lentiviral vectors with vector DNA 

untreated by CIP 

 

Vector 

Molar ratio & 

concentration of 

inserts/vector  

Hosts of 

transformation 

Total No. of 

identified 

colonies 

Percentage of 

inserted vectors  

Percentage of 

monomeric inserted 

vectors  

Percentage of  

Corrected-oriented 

inserts   

EGFP 3.7 : 1 

(21.6 ng/µl) 

Top10 10  0% (0/10) 0% (0/10) 0% (0/10) 

hPlk2 

WT 

1.1 : 1 

(21.0 ng/µl) 

Top10 10 10% (1/10) 10% (1/10) 0% (0/10) 

K111M 1.1 : 1 

(20.9 ng/µl) 

Top10 10 10% (1/10) 10% (1/10) 0% (0/10) 

T239D 2.1 : 1 

(24.1 ng/µl) 

Top10 10 0% (0/10) 0% (0/10) 0% (0/10) 

T239V 2.7 : 1 

(26.1 ng/µl) 

Top10 10 30% (3/10) 30% (3/10) 10% (1/10) 
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Figure Legends 

 

Figure 1. Schematic representation of the LV construction strategy. A BamH I 

clone site was inserted at the 3’-ends of EGFP and hPlk2 WT gene by SDM, 

respectively. Then, K111M, T239D and T239V mutants were created through 

SDM using hPlk2 WT gene as template. And then, the inserts were digested 

with BamH I, and purified, at the same time, pWPI vector was digested by 

BamH I, and treated with CIP to protect the self-circulization of the vector DNA. 

Finally, LVs were constructed through ligation and transformation. 
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Figure 2. Agarose gel electrophoresis for identification of pWPI/EGFP/Neo 

digested by Not I. Lane M: GeneRulerTM 1kb DNA Ladder Plus (Fermentas). Lanes 1-14: 

Colonies 1-14 of pWPI/EGFP/Neo digested with Not I, among them colonies #3, 4, 7, 9, 12, 

13, 14, were positive with correct orientation; colonies # 1, 2, 5, 6, 8, 11, were negative with 

opposite orientation; colony #10 was with two copies of EGFP gene.  
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Figure 3. Agarose gel electrophoresis for identification of bicistronic lentiviral 

vectors carrying hPlk2 WT and mutants digested by Not I. 

A: pWPI/hPlk2WT/Neo digested by Not I. Lane M: GeneRulerTM 1kb DNA Ladder Plus. 

Lanes 1-14: Colonies 1-14 of pWPI/hPlk2WT/Neo digested with Not I, among them colonies 

#2, 4, 9, 13, 14, were positive with correct orientation; colonies #3, 5, 6, 7, 11, 12, were 

negative with opposite orientation; colony #8 was empty vector; colonies #1, 10 were 

unknown DNAs.  

B: pWPI/hPlk2K111M/Neo digested by Not I. Lane M: GeneRulerTM 1kb DNA Ladder Plus. 

Lanes 1-14: Colonies 1-14 of pWPI/hPlk2K111M/Neo digested with Not I, among them 

colonies #2, 3, 6, 9, 10, 11, 12, were positive with correct orientation; colonies #4, 5, 7, 8, 13, 

were negative with opposite orientation; colonies #1, 14 were unknown DNAs. 

C: pWPI/hPlk2T239D/Neo digested by Not I. Lane M: GeneRulerTM 1kb DNA Ladder Plus. 

Lanes 1-14: Colonies 1-14 of pWPI/hPlk2T239D/Neo digested with Not I, among them 

colonies #1, 2, 7, 8, 9, 10, 12, were positive with correct orientation; colonies #4, 5, 6, 13, 14, 

were negative with opposite orientation; colonies #3, 11 were with two copies of 

hPlk2T239D genes. 

D: pWPI/hPlk2T239V/Neo digested by Not I. Lane M: GeneRulerTM 1kb DNA Ladder Plus. 

Lanes 1-14: Colonies 1-14 of pWPI/hPlk2T239V/Neo digested with Not I, among them 

colonies #1, 3, 5, 6, 7, 8, 9, 10, 11, 14, were positive with correct orientation; colonies #4, 12, 

13, were negative with opposite orientation; colonies #2 was unknown DNA. 
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