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ABSTRACT

The effect of colchicine on phenotypic classes ratio of the enzyme locus controlling 

alcohol  dehydrogenase  (ADH1)  in  sugar  beet  agamospermous  progenies  was 

analysed.  The  obtained  data  are  indicative  of  the  thing  that  colchicine  causes 

polytenization of homological chromosome regions carrying marker locus  Adh1 

alleles. Theoretical calculation of the formation of egg cells frequencies and those 

of further development of cells entering embryogenesis without fertilization, also 

the diminution calculation of excessive chromosome regions carrying marker locus 

alleles have been made. The coincidence of theoretical and experimental ratios of 

phenotypic classes indicates the existence of post-meiotic apozygotic combinatory 

process in plants.
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1. INTRODUCTION

To explain the variability in agamospermous plant progenies, including 

sugar beet, a hypothesis based on the supposition about chromosome polyteny in 

cells of plant capable of setting seeds by agamospermy and about the diminution 

of  excessive  chromatids  from  a  cell  that  has  entered  embryogenesis   was 

suggested  [1,  2].  This  hypothesis  is  based  on  the  investigation  results  of 

agamospermy in sugar beet [3–6] and the known literary data on polyteny and 

chromatin  diminution  in  animals  and  plants  during  the  first  divisions  in 
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embryogenesis [7–13].

It  is  supposed that  chromosome polyteny in plant  generative organs is 

differential  and various  chromosome sites  have  a  different  endoreduplication 

degree [1, 2]. Diminution of excessive chromatids or copies of allelic chromatid 

regions is independent and equiprobable, and it is only the one pair of allelic 

chromatid  regions  attached  to  the  nuclear  membrane  or  nuclear  matrix  that 

remains  in  a  cell  that  has entered  embryogenesis  [1,  2].  A pair  of  allelic 

chromatid  regions  carrying  marker  locus  alleles  and  preserved  in  this  cell 

determines  the  genotype  of  a  developing  embryo.  An  equal  diminution 

probability  of  excessive  chromatid  regions  copies  leads  to  the  combinatory 

process which determines the ratio of phenotypic classes in an agamospermous 

progeny. As a result of this combinatory process the ratio of phenotypic classes 

in  an  agamospermous  progeny  is  determined  by  the  ratio  of  number  of 

chromatid threads carrying marker alleles in a mother plant [1, 2].

Alongside with polyteny, polyploidy and, to be more precise, mixoploidy 

expressed as an admixture of tetraploid cells [14] among the bulk of diploid 

ones,  may  be  a  reason  for  agamospermous  plant  progenies  variability.  If  a 

tetraploid  mother  cell  of  megaspores  enters  meiosis,  then  it  gives  rise  to  a 

diploid megaspore from which, during further divisions, an embryosac, having 

diploid cells capable of entering embryogenesis without a male gametes [14], is 

forming.

The  phenotypic  ratio  in  agamospermous  progenies  is  determined  by 

combinatory processes different in their nature, such as chromosome divergence 

in meiosis and also loss of excessive copies of chromatid regions by a cell that 

has entered  embryogenesis.  Both  these  processes  may  proceed  under  the 

agamospermous  progeny  formation  of  one  and  the  same  plant.  Therefore, 

comparison  of  each  of  these  processes  contribution  to  the  revealed 

polymorphism is of great concern. In connection with the above-formulated, the 

aim  of  the  present  study  was  searching  for  an  experimental  proof  of  the 

proposed theoretical model and accepted approximations. 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
73

8.
1 

: P
os

te
d 

30
 D

ec
 2

01
1



2. MATERIAL AND METHODS

Agamospermous progenies of two pollen-sterile plants from the collection 

of Plant Populational Genetics Laboratory, ICG SB RAS, were involved in the 

study.  Before  germination,  seeds  of  this  progenies  were  treated  with  0.1% 

colchicine solution under the conditions that affected the genome but did not 

lead to plant polyploidization (during 6 hours at 180C in the dark); then they 

were washed in flowing water, germinated in the thermostat and planted in the 

hydroponic greenhouse. Control plants were grown from untreated seeds. The 

developed roots were subjected to vernalization аnd, after vernalization, plants 

were grown in the ground. During flowering, plants having only non-functional 

pollen, belonging to  ms0 and  ms1 according to F.W. Owen classification [15] 

were left in the field, fertile and semi-fertile ones being eliminated. Flowering 

plants were isolated from alien pollen penetration with the help of unbleached 

calico isolators. Strict selection for pollen sterility and using the isolators were 

the necessary conditions in developing agamospermous plants. Isozyme alcohol 

dehydrogenase spectrum (ADH1, E.C. 1.1.1.1.) controlled by locus  Adh1 was 

used as a marker trait. Electrophoresis in starch gel and detection of isozymes 

were made according to the standard methods described earlier [16, 17].

Theoretical  calculations  of  phenotypic  frequencies  were  arranged 

according  to  J.B.C.  Haldane  method  based  on  the  use  of  hypergeometrical 

scheme of probability distribution to describe combinatory processes [18].

3. RESULTS AND DISCUSSION

Polymorphism on alcohol dehydrogenase was revealed in the analyzed 

agamospermous progenies, each of progenies having three phenotypic classes 

(Figure  1;  Table  1).  Isozyme  spectrum ADH1 of  homozygous  plants  Adh1-

F/Adh1-F (short – FF) and Adh1-S/Adh1-S (short – SS) is presented by one band 

in the electrophoregram with fast  (FF) or slow (SS) electrophoretic mobility, 
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respectively. Three-banded isozyme spectrum FS, easily distinguished from each 

of two types of homozygotes, is revealed in heterozygotes Adh1-F/Adh1-S (short 

– FS) (Figure 1).

+

     1       2        3        4        5

Figure 1. Isozyme patterns of alcohol dehydrogenase (ADH1) in sugar beet seeds. 
1,  2 –  homozygote  Adh1-F/Adh1-F;  3,  4 –  heterozygote  Adh1-F/Adh1-S;  5 – 
homozygote Adh1-S/Adh1-S. Migration is toward the anode.

The symmetricity of the revealed ratio of phenotypes stands out (Table 

1). It is indicative of the thing that, in these progenies formation, there was no 

pollination  process  usually  accompanied  by  manifestation  of  self-

incompatibility genes that lead to distortion of ratios of phenotypic classes [19].

Table 1. Ratio of alcohol dehydrogenase (ADH1) phenotypic classes in sugar beet 

agamospermous plants

Studied form Experimental  conditions, 
number of plants 

ADH1
phenotypes χ2 

(3:8:3) χ2 
(1:4:1)

FF   FS   SS
No1 Control, n=1 18   48   17 0.044 2.952

Colchicine, n=2 31   59   29 2.858 15.735**

No2 Control, n=3 17   36   17 0.933 7.314*

Colchicine, n=1 67   92   68 25.596** 68.802**
Probability of affinity with theoretically expected ratios: 

* – P<0.05; ** – P<0.001
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The  ratio  of  phenotypic  classes  18FF  :  48FS  :  17SS  in  control 

agamospermous progeny  No1-Contr well  corresponds to the ratio 3:8:3 (χ2 = 

0.044; P > 0.05) which is typical  of gametes in case when polymorphism is 

conditioned  by  the  meiosis  of  tetraploid  cells  having  two  chromatids  and, 

consequently, two copies of allele in each chromosome, i.e. FF FF SS SS (Table 

1).  This  ratio  is  typical  just  of  the  case  when  segregation  proceeds  on  the 

chromatid type (Table 1). A good correspondence to this segregation type was 

also  revealed  in  experimental  progenies  of  this  form  No1-Colch where  the 

phenotypic  ratio  was  31FF  :  59FS  :  29SS  (χ2 =  2.858;  P  >  0.05).  The 

correspondence to ratio 3:8:3 is in favor of the supposition on the thing that cells 

which have entered embryogenesis developed as a result of tetraploid mother 

cell megaspores meiosis.

It  is  well  known  that,  in  polyploid  cell  meiosis,  genetic  segregation 

depends  on  the  degree  of  marker-gene  remoteness  from  the  centromere. 

Segregation proceeds on chromosome type under close linkage of marker-gene 

with the centromere and the ratio of gametes, e.g. in the teraploid, is equal to 

1:4:1 [18]. At this ratio, the share of heterozygotes is 0.668, which is higher than 

that under chromatid segregation 3:8:3 typical of loci of a tetraploid which are 

distant  from the centromere at more than 50% of the cross-over [18].  In the 

tetraploid eight  chromatids  belonging  to  four  chromosomes  participate  in 

chromatid segregation and, in this case, the share of heterozygotes is only 0.572.

In form No1-Contr, the phenotypic ratio corresponds to both models 3:8:3 and 

1:4:1.  However,  in  the  experimental  form No1-Colch,  there  is the 

correspondence  only  to  ratio  3:8:3  where  the  heterozygotes  share  is  smaller 

(Table 1). The total phenotypic ratio 17FF : 36FS : 17SS in form No2-Contr 

progenies  corresponds  to  ratio  3:8:3  (χ2 =  0.933;  P > 0.05),  but  it  does  not 

correspond to ratio 1:4:1 (χ2 = 7.314; P < 0.05) which is connected with not a 

high  heterozygotes  share.  The  heterozygotes  share  is  even  smaller  in  the 

experimental progeny of this form No2-Colch. Here in the phenotypic ratio is 

67FF : 92FS : 68SS and it is significantly different from both ratios 3:8:3 (χ2 = 
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25.596; P < 0.001) and 1:4:1 (χ2 = 68.802; P < 0.001) (Table 1).

Thus,  in  both  control  groups  (No1-Contr and  No2-Contr),  the 

correspondence  to  ratio  3:8:3  is  indicative  of  the  thing  that  the  segregation 

process  is  of  chromatid  type.  However,  in  No2-Colch progeny,  the  revealed 

considerable decrease of heterozygotes share leading to the incorrespondence to 

ratio  3:8:3  is  indicative  of  the  presence  of  additional  factors  that  affect 

polymorphism in agamospermy.

An unusual phenotypic ratio in No2-Colch progeny can be accounted for 

by  the  thing  that  polymorphysm  in  the  agamospermous  progeny  may  be 

conditioned by several successive processes. In more detail these processes can 

be presented the following way: e.g.  Tetraploid cells having genotype FFSS, 

respectively, were present in the bulk of diploid mother megaspore cells of plant 

No2-Colch which is heterozygous FS on the marker-locus. As a result of meiosis 

and chromatid segregation type, also further gametogenesis, diploid egg cells of 

three genotypes formed from these cells at ratio 3FF : 8FS : 3SS, and this can be 

expressed  with  the  following  sum  of  frequencies:  0.214FF  +  0.572FS  + 

0.214SS. Polytenization of chromosomes occurred in egg cells under the delay 

of  embryogenesis  caused by the absence  of  pollen and merging of  gametes. 

Also,  pre-treatment  of  mother  plant  by  colchicine  contributed  to  this 

polytenization. Polytenization  of  marker-locus  region in  homoallelic  cells 

carrying one allele does not lead to the combinatory process in the aftermath, 

whereas polytenization in heteroallelic cells carrying both marker-alleles does 

lead  to  the  revealable  combinatory process which  determines  the phenotypic 

classes  ratio  in  a  progeny.  Suppose  that,  during  embryogenetic  delay,  one 

polytenization cycle of chromosome regions carrying alleles F and S proceeded 

in diploid egg cells of genotype  FS. Then these plant egg cells will have two 

copies  of  each  of  alleles.  The  state  of  the  locus  located  in  the  polytenized 

chromosome region can be designated with the notion of ”polygenotype” [20] 

which  characterizes  locus  allelic  composition,  number  of  chromosomes  and 

chromatids carrying each of alleles. In the considered situation, it is possible to 
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designate the marker-locus polygenotype in heteroallelic cells as F2S2.

According to the earlier-suggested hypothesis, the embryogenesis-entered 

cell releases itself of the excess of whole chromatid copies or its certain regions 

[1, 2]. It is supposed that diminution proceeds according to probability laws that 

allow us to calculate the genotypic ratio in a progeny. It is necessary to point out 

one more approximation.

The  earlier-obtained  numerous  facts  of  the  existence  of  abnormal  and 

unexpected phenotypic  classes  in  agamospermous  progenies  allow  us  to 

hypothesize  that  cross-over  processes  and exchange of  chromatid  regions  of 

polytenized  regions  occur  in  an  embryogenesis-entering  cell  before  its  first 

division. This means that a chromatid region belonging to one chromosome may 

be replaced by the analogous chromatid region belonging to other chromosome. 

Thus, we suppose that the same exchange of chromatid regions as during the 

first meiotic division occurs in an embryogenesis – entering cell at the moment 

of its first division. Also the specificity of recombination process in sugar beet 

that drastically differs it from many plant species and consists in, e.g. extreme 

localization of recombination points [21], indicates such a possibility.

Considering the accepted approximations, it  is possible to calculate the 

frequencies  of  genotypes  originating  from  diploid  egg  cells  FS that  had 

polygenotype F2S2. From cells of polygenotype F2S2, as a result of equiprobable 

diminution of allelic copies, there occurs the three cell types formation at the 

following  shares:  1FF  :  4FS  :  1SS,  which  can  be  expressed  as  a  sum  of 

frequencies:  0.166FF  + 0.668FS  + 0.166SS.  This  ratio  coincides  with  those 

calculated by J.B.C. Haldane for the variants of two alleles chosen out of four 

among which there were two dominant and two recessive ones [18]. Thus, we 

obtain frequency 4/6 for cells of genotype FS. Integrating expression 0.214FF + 

0.572FS + 0.214SS that describes the egg cells ratio with expression 0.166FF + 

0.668FS + 0.166SS that describes the phenotypic ratio forming as a result  of 

excessive chromatids diminution from egg cells FS, we obtain:

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
73

8.
1 

: P
os

te
d 

30
 D

ec
 2

01
1



0.214FF + 0.572FS + 0.214SS =

= 0.214FF + 0.572 (0.166FF + 0.668FS + 0.166SS) + 0.214SS =

= (0.214 + 0.572 × 0.166)FF + 0.572 × 0.668FS + (0.214 + 0.572 × 0.166)SS =

= 0.309FF + 0.382FS + 0.309SS

These calculations show that a certain part of heteroallelic egg cells, after 

diminution,  gives  rise  to  the  embryos  that  add  to  classes  of  homoallelic 

genotypes and this leads to a decrease of heteroallelic ones.

The experimentally found ratio 67FF : 92FS : 68SS quite well accords with the 

theoretical  one  (χ2 =  0.529,  P >  0.05).  It  is  indicative  of  the  thing  that  the 

assumptions  made  are  legitimate  and  the  used  model  is  correct.  Thus,  the 

obtained data contribute to the explanation of agamospermous plant progenies 

variability  and  allow  us  to  state  the  thing  that,  alongside  with  known 

combinatory processes conditioned by chromosome divergence in meiosis and 

gametes random convergence, there exists one more post-meiotic combinatory 

process  conditioned  by  chromosome  polytenization  and  equiprobable 

diminution (loss)  of  excessive  chromatid  copies  during  the  first  divisions  of 

embryogenesis.

A good correspondence of experimental to theoretical data also proves the 

supposition concerning the existence of exchange by chromatid regions among 

homological chromosomes in an embryogenesis – entering cell at the moment of 

its first division. Absence of a vividly expressed decrease of heterozygotes share 

in form No1-Colch points out sugar beet plant polymorphism on the ability of 

chromosome regions polytenization.

Investigations of the whole number of species demonstrated the thing that 

colchicine causes inherited changes of many morphological and physiological 

traits  without doubling of  chromosome number [22–26].  The authors believe 

that the revealed changes are mutations. However, the drawback of these good, 

on the whole, studies – in our viewpoint – is that the control of chromosome 

number was not accompanied by measurement of DNA quantity in cells, i.e., in 

these  researches,  the  possibility  of  the  presence  of  polyteny  that  causes  an 
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increase of DNA content in the cell was not checked. 

However, with the example of enzyme locus Gpi2, earlier we showed the 

thing that it  is the increase of gene dosage with a high frequency leads to a 

change  of  its  alleles  [20]  expression.  This  fact  allows us  to  believe  that,  in 

treated  plants,  cochicine  initiates  a  multi-step  process  whose  first  step  is 

polytenization of different parts of genome leading to a change of expression of 

genes located in them. Such an outlook makes us closer to the explanation of 

colchicine effect which, in many authors standpoint, so far, remains unclear [22–

26].  The  data  we  obtained  herein  and  earlier  [20],  and  those  known  from 

literature [27] point out the thing that the polytenization ability of homological 

chromosome regions is different. This allows us to believe that different degree 

of polyteny is one more type of genetic polymorphism. Besides, chromosome 

polytenization  can  be  considered  as  an  important  mechanism  of  genome 

transformation and evolution.
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