Temporal trends in groundwater levels from Saskatchewan, Canada

Sierra Rayne ^{a,*} and Kaya Forest ^b

^a Chemologica Research, PO Box 74, 318 Rose Street, Mortlach, Saskatchewan, Canada, S0H 3E0

^b Department of Environmental Engineering, Saskatchewan Institute of Applied Science and Technology, Palliser Campus, PO Box 1420, 600 6th Avenue NW, Moose Jaw, Saskatchewan, Canada, S6H 4R4

* Corresponding author. Tel.: +1 306 690 0573. E-mail address: rayne.sierra@gmail.com (S. Rayne).

Groundwater resources play a key role in supplying water for domestic, industrial, agricultural, and ecological functions on the North American prairies [1]. Prior to the construction of small and large reservoirs, groundwater was often the dominant, if not only, source of water for human activities – particularly during the overwinter periods. In some areas, especially the High Plains aquifer in the central United States, large rates of groundwater abstraction over the past century have led to rapid and substantial declines in regional groundwater tables [2]. On the Canadian prairie provinces of Alberta, Saskatchewan, and Manitoba, there have not been similar reports of large reductions in available groundwater resources. Indeed, very few studies available in the open scientific literature have examined broad-scale trends in groundwater levels from these locations.

As part of a graduate level thesis, Perez-Valdivia [3] considered a network of 33 groundwater wells in Alberta, Saskatchewan, and Manitoba with available time series records, and which were unaffected by pumping. The author found that groundwater levels in north-central areas of the Canadian prairies either exhibit no temporal trends or have decreasing trends, whereas increasing groundwater level time trends are evident in southern regions. The general spatial distribution of the various trends was correlated with changes in evaporation over the respective periods of record. In the current work, we investigate potential temporal trends in groundwater levels in the Canadian province of Saskatchewan over the past several decades. The monitoring network of wells employed includes both relatively undisturbed and heavily anthropogenically impacted aquifers.

In Saskatchewan, there are about 2,650 groundwater abstraction licenses with a total annual allocation of 145,600,000 m³ (145,600 dam³) [4]. The Saskatchewan Research Council (SRC) has operated an observation well network since 1964, with most wells being constructed between 1964 and 1970. Wells established during this period were intended to monitor natural groundwater levels and variability in aquifers not subject to anthropogenic influences such as production and artificial recharge. Beginning in 1988, the Saskatchewan Watershed Authority (SWA) started to also monitor wells influenced by human activities. At present, the observation network has 72 active wells, of which 54 are monitored by the SRC and 18 by the SWA. Wells are equipped with automatic water level recorders or dataloggers that allow continuous monitoring of groundwater levels [5].

Monthly median and daily average water level measurements were obtained for the SWA observation well network. The data has been corrected to manual measurements and barometric pressure. Median monthly and daily average data was calculated from hourly recordings using the digital water level recorders. Where gaps existed in the dataset for median monthly values, linear interpolations were used to estimate missing levels. Average annual groundwater levels at each site were taken as the average of all median monthly groundwater levels for the respective years. Only years with complete median monthly groundwater levels (measured and/or interpolated) were used in the analyses.

Details on the 54 groundwater monitoring stations under study are provided in Table 1. Locations of the stations are shown in Figure 1. Average groundwater type (major ion signature) and quality (as total dissolved solids [TDS]) is also given for each station. Four of the stations did not have groundwater quality data available. Among the remaining 50 stations, the groundwater type varies from calcium-bicarbonate (n=12), calcium-sulfate (n=4), calcium/magnesium-bicarbonate (n=6), calcium/magnesium-sulfate (n=7), magnesium-bicarbonate-sulfate (n=1), magnesium/calcium-sulfate (n=1), sodium-bicarbonate (n=6), sodium-bicarbonate-sulfate (n=1), sodiumchloride (n=2), sodium-sulfate (n=8), to sodium-sulfate/chloride (n=2).

Average TDS values in the groundwater range from 240 mg/L (Beauval [calcium-bicarbonate]) to 8300 mg/L (Fife Lake 002 [sodium-sulfate]). Average TDS concentrations (±std. dev.) in each groundwater type range are as follows (error bar not provided where n=1; values in mg/L): calcium-bicarbonate, 467±155; calcium-sulfate, 2710±962; calcium/magnesium-bicarbonate, 898±314; calcium/magnesium-sulfate, 2508±795; magnesium-bicarbonate, 1320; magnesium/calcium-sulfate, 3260; sodium-bicarbonate, 1330±563; sodium-bicarbonate-sulfate, 1100; sodium-chloride, 3058±1517; sodium-sulfate, 4092±2242; and sodium-sulfate/chloride, 3683±2705. As expected based on mineral solubility considerations, generally higher TDS values are found in predominantly sodium and/or chloride/sulfate groundwater types.

Time series plots of average annual groundwater levels at each monitoring well over the available hydrogeological record are provided in Figure 2. A number of stations exhibit clear trending reversals and/or stabilizations over their available record lengths that preclude a meaningful linear regression analysis or other statistical trend tests. Armley displays a smooth, continuous decline until 1992, after which levels have continuously (and smoothly) increased to near its original value. Baildon 60 underwent a significant increase in levels between 1981 and about 1997 (which followed a decline between 1975 and 1980), after which levels again appear to be slightly declining. Both Conquest No. 504 and Coronach had sharp declines in levels during the 1980s, but appear to have stabilized and slightly increased over the past 20 years. Estevan No. 1/2 and Outram had stabilized levels prior to a sharp pumping induced drop-and-recovery period that began in the late-1980s [6; 7], with the recovery occurring up to the present. Vanscoy has a similar pattern, except with the drop-and-recovery period occurring in the middle to late 2000s. Levels at Goodale Farm 009 declined linearly from 1975 to 2003/2004, but increased sharply and linearly (and recovered all prior losses) over the past 6-7 years. Instow appears to have generally stablized over the past decade, following a steep decline between 1985 and 1989 and a slower and smaller decline during the 1990s.

Lilac displays a sharp increase during the 1980s and 1990s, followed by stable levels during the 1990s and a sharp decline-and-reverse trend during the 2000s. Meadow Lake had a slight decline during the 1990s, a sharp decline between 2000 and 2004, with apparently stable levels after this time. Similarly, Melfort saw an increase between the late-1960s and mid-1970s, followed by a continuous (but variable) decline up to 2004, after which levels rose rapidly to equal the maximum that existed during the mid-1970s. Nokomis appears to have had increasing levels from the late-1960s to mid-1970s, with a subsequent decline until the mid-1980s, followed by increasing levels back to the mid-1970s maxima at present. Levels at Saskatoon increased between the late-1960s and the mid-1970s, then stabilized until the mid-2000s, and have sharply increased over the past five years. Simpson 13-04, Simpson 16-05, and Swanson appear to have experienced declining levels at present near or above previous maxima.

For the 37 remaining stations, statistical analyses of average annual groundwater levels were conducted using the nonparametric Mann-Kendall test for the linear trend and the nonparametric Sen's method for the magnitude of the trend [8-10]. Details and linear trends (where significant at p<0.05) are provided in Table 2. Fifteen stations have no significant trends, 16 have significantly increasing trends (Baildon 59, Bangor A, Bangor B, Bruno, Conquest No. 500, Conquest No. 502, Conquest No. 503, Crater

Lake, Garden Head, Regina 530, Riceton, Shaunavon, Stenen, Tyner, Unity, Warman No. 2), and six stations have significantly decreasing groundwater level trends (Atton's Lake, Fife Lake 002, Hague, Hearts Hill, Smokey Burns A, and Verlo). The suitability of applying linear trend analyses for many of these stations is unknown given the large variability in the underlying dataset. A spatial map of the trendings, including those estimated visually by non-statistical methods as discussed above, is shown in Figure 3. There appear to be no spatial clusterings of trend directions. Regions with co-existing increasing, decreasing, or no observable trends in groundwater levels are located throughout the province.

The time trends at Estevan No. 1/2 and Outram also allow for statistical trend analyses of the pre-pumping and post-pumping recovery periods (Figure 4). The recovery periods for both wells can be adequately fit using a logistic function with three parameters of the general form $y(x)=a/(1+((x-1993)/c)^b))$, where a, b, and c are constants, y(x) is the groundwater level in masl for year x, and x is the year:

Estevan: $y(x)=568.68/(1+((x-1993)/1.411\times10^{-6})^{-0.202})$; r=0.995 Outram: $y(x)=564.93/(1+((x-1993)/1.112\times10^{-3})^{-0.394})$; r=0.956

At both stations, a decline in groundwater levels existed between the start of the hydrological records (1966 at Estevan 1/2, and 1967 at Outram) and the initiation of pumping in 1988, which can be well-described using a linear function of the general form y(x)=a+bx, where a and b are constants, y(x) is the groundwater level in masl for year x, and x is the year:

```
Estevan: y(x)=636.88-0.0395x; r=-0.864; p<0.05
Outram: y(x)=595.10-0.0205x; r=-0.655; p<0.05
```

If the pre-pumping linear decline is extrapolated, it intersects with the projected recovery curve in the year 2055 at Estevan 1/2 and in the year 2038 at Outram. The projected recovery curves at both sites reach the corresponding groundwater levels at the start of the available hydrogeological records in the years 2120 and 2100, respectively. Extension of the projected recovery curves to an infinite length yields estimated groundwater levels of 568.68 and 564.93 masl at Estevan 1/2 and Outram that are 14 and 16 meters above the respective start-of-record levels of 554.98 and 558.89 (for comparison, ground surfaces at the two stations are 577.82 and 577.65 masl, respectively). The recovery period at the Vanscoy station is too short (n=4) for a similar analysis.

We note that although groundwater levels at the Estevan No. 1/2, Outram, and Vanscoy stations are considered increasing due to their recent temporal trends, all three stations have current groundwater levels below their predisturbance values. As noted previously, other stations also have recent trends (or absence of trends) and/or absolute groundwater levels that potentially conflict with prior trends and/or historical levels at each location. Thus, while some stations have recently increasing trends, the current levels may still be below the historical average, and vice versa. Overall, the large majority of areally distributed stations throughout Saskatchewan with increasing groundwater level time trends suggests that this hydrogeological resource is growing in quantity and is not under current threat from depletion.

Acknowledgements

We are grateful to Kei Lo (M.A.Sc, P.Geo.), the Senior Hydrogeologist in the Engineering and Geoscience Division at the Saskatchewan Watershed Authority for kindly providing the groundwater data.

References

[1] Council of Canadian Academies Expert Panel on Groundwater. *The sustainable management of groundwater in Canada: Report of the Expert Panel on Groundwater*. Council of Canadian Academies: Ottawa, ON, Canada, 2009.

[2] Sophocleous M. "Review: Groundwater management practices, challenges, and innovations in the High Plains aquifer, USA - Lessons and recommended actions." *Hydrogeology J.* (2010) **18**: pp. 559-575.

[3] Perez-Valdivia C. *Groundwater in the Canadian prairies: Trends and long-term variability.* M.A.Sc. Thesis (Environmental Systems Engineering), University of Regina: Regina, SK, Canada. 2009.

[4] Maathuis H & Thorleifson LH. *Potential impact of climate change on prairie groundwater supplies: Review of current knowledge*. Saskatchewan Research Council: Saskatoon, SK, Canada, 2000.

[5] Anonymous. *Ground water*. Saskatchewan Watershed Authority: Moose Jaw, SK, Canada, 2011 (Available online at http://www.swa.ca/WaterManagement/Groundwater.asp (accessed 30 November 2011).

[6] Maathuis H & van der Kamp G. "Predictions, observations and analysis of the drawdown and recovery for the Estevan Valley Aquifer due to 6 years of pumping." In: *Geohydro 2011*: Quebec City, PQ, Canada. 28-31 August 2011.

[7] van der Kamp G & Maathuis H. "The unusual and large drawdown response of buried-valley aquifers to pumping." *Ground Water* (2011): doi: 10.1111/j.1745-6584.2011.00833.x.

[8] Mann HB. "Non-parametric tests against trend." *Econometrica* (1945) 13: pp. 245-259.

[9] Kendall MG. Rank correlation methods. Charles Griffin: London, UK, 1975.

[10] Salmi T, Maatta A, Anttila P, Ruoho-Airola T & Amnell T. Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen's slope estimates. Finnish Meteorological Institute: Helsinki, Finland, 2002.

Table 1.	Details t	for the	groundwater	level	monitoring	stations	under study	v.
			• • • • • • • • • • • • • • • • • • •					

140	te 1. Details for the g			bils under study.	5 4 ()	a 1 b b	
ID	Name	Latitude (°N)	Longitude (°W)	Datum (masl)	Depth (m)	Groundwater type	TDS (mg/L)
1	Agrium 43	52.0200	-107.1105	500.229	17.50	calcium/magnesium-bicarbonate	1040
2	Armley	53.0529	-103.9409	364.309	154.83	sodium-chloride	4130
3	Atton's Lake	52.8203	-108.8706	536.448	16.15	calcium-bicarbonate	490
4	Baildon 59	50.3021	-105.4775	583.277	30.42	calcium-bicarbonate	790
5	Baildon 60	50.2585	-105.5004	590.184	13.05	calcium/magnesium-bicarbonate	480
6	Bangor A	50 8928	-102 2966	527 505	39.16	calcium/magnesium-sulfate	1990
7	Bangor B	50 8928	-102 2966	527 630	15.27	calcium-bicarbonate	540
8	Beauval	55 1182	-107 7606	134 340	16.15	calcium-bicarbonate	240
0	Duahar No. 2/4	52 0247	106 2070	510 082 (1065 1007)	70.25 (1065.1007)	adjum sulfate	240
,	Diuchei No. 3/4	52.0547	-100.2070	519.985(1903-1997)	(1903-1997)	sourum-sunate	3080
10	Dana	52 2520	105 5152	521.001 (1998-present)	30.03 (1998-present)		2420
10	Bruno	52.2529	-105.5153	570.784	180.06	calcium/magnesium-suitate	2430
11	Conquest No. 500	51.5694	-107.1638	555.202	19.16	calcium-sulfate	2350
12	Conquest No. 501	51.5839	-107.3044	572.625	8.24	calcium-bicarbonate	660
13	Conquest No. 502	51.5694	-107.3044	572.015	19.21	calcium-sulfate	1610
14	Conquest No. 503	51.5694	-107.3044	572.411	7.85	calcium-sulfate	3870
15	Conquest No. 504	51.5694	-107.3044	572.094	82.80	calcium/magnesium-sulfate	3565
16	Coronach	49.1235	-105.6678	801.898	36.88	calcium/magnesium-bicarbonate	1240
17	Crater Lake	50.9523	-102.4626	524.158	11.58	calcium-sulfate	3010
18	Dalmeny	52.2676	-106.7297	515,188	26.52	calcium/magnesium-sulfate	2735
19	Duck Lake No 1	52 9215	-106 2331	502.920	13.26	calcium-bicarbonate	300
20	Duck Lake No. 2	52.9215	-106 2331	502 920	124.60	sodium-sulfate/chloride	5595
20	Estevan No. 1/2	10 2680	103 1836	577 810	1/15 08	sodium bicarbonate	1680
21	Esteval No. 1/2 Eife Lake 002	49.2080	105.1650	910 040	0.04	sodium sulfate	8200
22	File Lake 002	49.1931	-103.6304	610.049	9.94	sourial-surface	8300 450
23	Forget	49.7046	-102.8532	606.552	5.94	calcium-bicarbonate	450
24	Garden Head	49.7494	-108.5231	899.160	22.62	sodium-bicarbonate	1105
25	Goodale Farm 009	52.0638	-106.5155	511.159	10.06	calcium-bicarbonate	410
26	Hague	52.5004	-106.2800	468.609	49.68	sodium-sulfate	3275
27	Hearts Hill	52.0779	-109.5621	688.848	76.81	sodium-bicarbonate	1110
28	Instow	49.7640	-108.3424	922.020	554.94	sodium-bicarbonate	1980
29	Lilac	52.7621	-107.9269	548.640	122.53	calcium/magnesium-bicarbonate	1175
30	Meadow Lake	54.1727	-108.3402	477.317	73.14	sodium-sulfate/chloride	1770
31	Melfort	52.9510	-104.4586	451.104	10.64	calcium/magnesium-sulfate	3435
32	Nokomis	51.5110	-105.0654	516.267 (1967-2008)	99.67 (1967-2008)	sodium-sulfate	3050
				516.151 (2008-present)	99.97 (2008-present)		
33	Outram	49.1377	-103.2642	577.651	111.25	sodium-bicarbonate	1680
34	Pierce No. 1	54 5074	-109 7722	528 344	111.56	n/a	n/a
35	Pierce No. 2	54 5074	-109 7722	528 498	71 32	n/a	n/a
36	Pierce No. 3	54 5074	-109.7722	528 508	10.80	n/a	n/a
27	Pagina 520	50 5207	101 6754	501 070	28.56	alaium/magnasium biaarbanata	n/a 575
20	Regilla 550	50.5207	-104.0734	570 120	22.40	calcium/magnesium-bicarbonate	575
20	Niceton Sealasteau	50.1709	-104.5155	512.064	22.40	sources and sources and foto	22(0
39	Saskatoon	52.1050	-100.5394	512.064	27.05	magnesium/calcium-sullate	3260
40	Shaunavon	49.6911	-108.5006	896.112	15.67	sodium-bicarbonate-sulfate	1100
41	Simpson 13-04	51.4527	-105.1826	496.620	7.22	calcium-bicarbonate	350
42	Simpson 16-05	51.4527	-105.2060	493.776	6.04	calcium-bicarbonate	350
43	Smokey Burns A	53.3729	-103.0497	319.101	37.12	sodium-chloride	1985
44	Smokey Burns B	53.3729	-103.0497	318.903	6.25	magnesium-bicarbonate-sulfate	1320
45	Stenen	51.8165	-102.4201	499.872	14.63	calcium-bicarbonate	485
46	Swanson	51.6562	-107.0551	534.921	9.18	calcium-bicarbonate	540
47	Tessier	51.8743	-107.5041	554.736	26.05	calcium/magnesium-sulfate	1400
48	Tyner	51.0306	-108.4343	591.312	113.69	sodium-sulfate	2820
49	Unity	52,4713	-108.9657	673.608	26.72	calcium/magnesium-bicarbonate	880
50	Vanscov	52,0056	-107 0391	512.064	88 70	sodium-sulfate	2440
51	Verlo	50 3757	-108 9034	737.616	12.80	sodium-bicarbonate	425
52	Warman No. 2	52 3401	-106 6638	518 160	108 51	sodium-sulfate	2270
52	Vorkton No. 517	51 1732	-102 5004	513.643	10.31	calcium/magnesium sulfate	2000
55	Vorkton No. 510	51.1732	102.5094	513.049	6 57	n/2	2000 n/a
54	101KI011 INU. J19	51.1/55	-104.3074	J1J.440	0.54	11/ a	11/ a

Table 2. Summary of non-parametric Mann-Kendall test statistics for temporal trends in average annual groundwater levels at the monitoring stations under study Values are in masl/year for O and masl for B

study. values ale III	masi year I	or y anu m	u51 II	Mann-	Kendall trend			Sen's slo	pe estimate	e	
Station name	First vear	Last vear	n	Test Z ^a	Significance ^b	Oc	Omin 05 ^d	Omax 05 ^e	Bf	B _{min 05} ^g	B max osh
Agrium 43	1972	2010	39	-1.60	n/s	-0.0065	-0.0132	0.0021	497.750	497.956	497.544
Atton's Lake	1967	2010	44	-6.44	*** (-)	-0.0241	-0.0294	-0.0187	528.459	528.543	528.346
Baildon 59	1975	2010	36	4.64	*** (+)	0.0652	0.0424	0.0850	572.914	573.635	572.343
Bangor A	1971	2010	40	3 1 3	** (+)	0.0111	0.0057	0.0164	514 633	514 756	514 477
Bangor B	1971	2010	40	3 30	*** (+)	0.0117	0.0065	0.0170	514 512	514 638	514 363
Beauval	1975	2010	36	1 46	n/s	0.0097	-0.0062	0.0269	429 744	430 184	429 321
Blucher No. 3/4	1966	2010	45	-0.05	n/s	-0.0001	-0.0050	0.0054	518 767	518 837	518 674
Bruno	1981	2010	30	3 35	*** (+)	0.0270	0.00000	0.0051	545 447	545 940	544 845
Conquest No. 500	1972	2010	39	7 94	*** (+)	0.0317	0.0267	0.0386	538 815	538 989	538 593
Conquest No. 501	1972	2010	39	0.68	n/s	0.0064	-0.0099	0.0219	567 227	567 641	566 878
Conquest No. 502	1972	2010	39	4 69	*** (+)	0.0004	0.0185	0.021)	562 071	562 378	561 933
Conquest No. 502	1972	2010	30	3.10	** (+)	0.0200	0.0105	0.0281	567 157	567 431	566 899
Crater Lake	1972	2010	30	4 04	*** (+)	0.0100	0.0074	0.0201	517 717	518 299	517 268
Dalmeny	1967	2010	11	-0.37	(') n/s	-0.0071	-0.0387	0.0000	507 682	508 367	506 003
Duck Lake No. 1	1966	2010	45	0.19	n/s	0.00071	-0.0050	0.0232	499 177	499 339	499 096
Duck Lake No. 7	1966	2010	45	-1.30	n/s	-0.0032	-0.0050	0.0003	470 352	479.557	470 211
Fife Lake 002	1075	2010	36	-1.50	***()	0.0472	0.0607	0.0017	802 / 38	802 774	802 145
Forget	1975	2010	30 45	-4.02	n/s	0.0472	-0.0007	0.00339	604.030	604 260	603 879
Garden Head	1967	2010	43	0.15	11/5 *** (⊥)	0.0000	0.0484	0.0070	807 580	802 673	802 168
Hagua	1967	2010	11	5.00	(') *** ()	0.0343	0.0404	0.0028	465 303	165 516	465 300
Hearts Hill	1966	2010	44	-7.07	(-) *** (_)	-0.0302	-0.0392	-0.0238	681 558	681 620	681 /02
Diarca No. 1	1003	2010	19	-7.07	(-) n/s	0.01/9	0.0225	0.0240	507 331	508 325	506 056
Pierce No. 2	1993	2010	18	0.15	11/5 n/s	0.0148	-0.0099	0.0249	525 031	526 677	525 208
Dierce No. 3	1995	2010	10	0.15	11/5 n/s	0.0012	-0.0182	0.0201	516 530	517 370	515 732
Regina 530	1995	2010	32	-0.85	11/5 *** (+)	0.0092	0.0757	0.0141	556 140	556 559	555 666
Riceton	1060	2010	12	0.05	(+) *** (+)	0.0000	0.0757	0.1058	564 210	564 223	564 214
Shaunayon	1967	2010	44	3.11	(') ** (+)	0.0000	0.0037	0.0000	803 070	204.223 204.134	803 864
Smakey Burns A	1907	2010	44	_1 01	*** (_)	-0.0262	-0.0328	-0.0103	304 076	30/ 213	303 825
Smokey Burns B	1071	2010	40	-4.71	(-) n/s	-0.0202	-0.0528	0.0235	315 026	316 560	31/ 071
Shlokey Dullis D	1971	2010	40	-0.75	11/5 *** (⊥)	0.0118	0.0065	0.0235	102 180	102 506	102 315
Tessier	1968	2010	43	1 70	n/s	0.0118	-0.0015	0.0180	5// 003	545 217	5// 656
Typer	1908	2010	45	8.52	11/5 *** (⊥)	0.0108	-0.0013	0.0231	581.008	581 025	581 871
Unity	1968	2010	43	5.52	(+) *** (+)	0.0100	0.0147	0.0172	656 560	656 648	656 128
Verlo	1966	2010	45	_0 11	(') *** (_)	-0.0776	-0.0844	-0.0716	733 370	733 510	733 774
Warman No. 2	1900	2010	32	-9.11 2.68	(=) ** (+)	-0.0770	0.0044	0.0710	155.570	151.071	155.224
Vorkton No. 517	1979	2010	36	2.08	n/s	0.0147	0.0049	0.0237	510.033	511 495	510 524
Vorkton No. 510	1975	2010	35	-1.19	11/5 n/s	-0.0090	-0.0284	0.0081	510.955	510.858	510.024
The absolute value	of the test	$\frac{2010}{\text{statistic}(7)}$	js co	1.45	to the standard	normal cu	-0.0047	distributi	$\frac{510.425}{000}$	o if there	$\frac{510.052}{10.052}$
f significance Δ n	ositive (neg	ative) value	$r_{13} colored r$	indicat	es an unward (d	ownward)	trend ^b]	The smalle	est signific	ance level	a with w
ill hypothesis of n	o trend sho	uld be rejec	ted	n/s=not	vignificant *=si	onificant s	$\alpha = 0.05$	**=signi	ficant at a	=0.01 ***	^k =signific
an hypothesis of fi	slone of th	e linear tra	nd ^d	The low r	er limit of the 04	5% confid	ence inter	val of O ($\alpha = 0.05$	^e The upp	er limit of
$f \cap (\alpha = 0.05)^{-f} E_{eff}$	timate of th	e constant I	1u. 2 in +	he equat	ion f(Ver)= $0^{1/2}$	Vear-Fire	t Vear)+B	for a line	u = 0.03).	Estimate	of the cor
$1 \neq (u = 0.05)$. ES (Vear)= $0 = -*(Ver)$	ar-First Vee	$()+B = f_0$	יוו כ r 050	he equal	ence level of a^{1}	inear tran	d h Estim	ate of the	constant E	Louinate	
$V_{ear} + B = c_{min,95} + C_{rec}$	u-riist ieal	$J + D_{min,95} = 10$	1 937 2 line	o conna		mear trent	a. Estim		constant E	max,95 III UI	e equation
1 cal) + D _{max,95} 101 93	/o connuello		a mite								

Figure 3. Map of groundwater level monitoring stations with decreasing (red circles) or increasing (green circles) temporal trends, or no temporal trends (blue circles), as well as cities and towns throughout the region.

Figure 4. Statistical analysis of pre-pumping and post-pumping recovery period average annual groundwater levels at the Estevan 1/2 and Outram monitoring stations.

