LogMap 2:

Towards Logic-based, Scalable and Interactive Ontology Matching

Ernesto Jiménez Ruiz - ernesto@cs.ox.ac.uk
Bernardo Cuenca Grau - berg@cs.ox.ac.uk
Yujiao Zhou - yujiao.zhou@cs.ox.ac.uk

LogMap project:

http://www.cs.ox.ac.uk/isg/projects/LogMap/

LogMap Matching Tool

- LogMap 1 addressed the first two challenges:
 - Only matching tool that has shown to scale with large ontologies such as NCI, FMA or SNOMED.
 - It also implements scalable algorithms for `on the fly' unsatisfiability detection and repair.
- Fastest tool and second best results in the Ontology Alignment Initiative Evaluation (OAEI) 2011.

New in LogMap 2

- LogMap 2 is even more scalable and robust, and
- presents an infrastructure to allow experts to interactively contribute in the matching process.

Preliminary Results

- LogMap 2 identifies 2692 candidates for FMA-NCI, and
- > automatically discards 117 conflictive mappings.
- The expert would *only* need to <u>assess 585 mappings</u>.

UNIVERSITY OF OXFORD

DEPARTMENT OF

COMPUTER SCIENCE

Motivation

- Ontology mappings are crucial to exchange or migrate data between ontology-based applications.
- Creating such mappings manually is often infeasible due to the size and complexity of modern ontologies.
- > Automatic techniques are error prone.

Challenges

- Implement scalable techniques to deal with medium and large size ontologies (>500 classes).
- Detect and repair <u>logical inconsistencies</u> caused by the extracted mappings.
- Support the user in a <u>semi-automatic curation</u> of the mappings.

LogMap 2 Interactive Method

Input: \mathcal{O}_1 , \mathcal{O}_2 : input ontologies; \mathcal{M} : input mappings Output: \mathcal{M} : mappings; \mathcal{O}'_1 , \mathcal{O}'_2 : fragments.

- 1: $\langle \mathcal{O}_{1}^{'}, \mathcal{O}_{2}^{'} \rangle := \mathsf{OverlappingEstimation}(\mathcal{O}_{1}, \mathcal{O}_{2})$
- 2: Compute lexical indexation of \mathcal{O}_1' and \mathcal{O}_2'
- 3: $\langle \mathcal{M}^{act}, \mathcal{M}^? \rangle := \mathsf{CandidateMappings}(\mathcal{O}_1', \mathcal{O}_2')$
- 4: $\mathcal{M} := \mathcal{M} \cup \mathsf{Repair}(\mathcal{M}, \mathcal{M}^{act})$
- 5: $\mathcal{M}^{act} := \emptyset$
- 6: Compute structural indexation for \mathcal{O}_1' , \mathcal{O}_2' and \mathcal{M}
- 7: Extract mappings $\mathcal{M}^{\perp} \subseteq \mathcal{M}^{?}$ in conflict with \mathcal{M}
- 8: $\mathcal{M}^? := \mathcal{M}^? \setminus \mathcal{M}^\perp$
- 9: Compute partial order of $\mathcal{M}^?$
- 10: **if** $((\checkmark)$ Interactive Process) and $\mathcal{M}^? \neq \emptyset$ **then**
- 11: (\checkmark) Select $\mathcal{M}^{act} \subseteq \text{top-k mappings in } \mathcal{M}^?$
- 12: $\mathcal{M}^? := \mathcal{M}^? \setminus \mathcal{M}^{a\overline{ct}}$
- 13: Go to Step (4)
- 14: **else**
- 15: Automatically select $\mathcal{M}^{act} \subseteq \mathcal{M}^?$
- 16: $\mathcal{M} := \mathcal{M} \cup \mathsf{Repair}(\mathcal{M}, \mathcal{M}^{act})$
- 17: **end if**
- 18: **return** \mathcal{M} , \mathcal{O}_1' and \mathcal{O}_2'

We want you...

- > ... to test LogMap and give us feedback.
- ... to suggest us new use cases and matching problems.

Selected References

- LogMap: Logic-based and scalable ontology matching. In:10th International Semantic Web Conference. 2011.
- LogMap results for OAEI 2011. In 6th International Workshop on Ontology Matching. 2011.