Smrita Singh

All India Institute Of Medical Sciences

ANNS

- Information processing paradigm that is inspired by the way biological nervous systems, such as the brain process information.
- Key element ---- Novel structure
- Composed of large number of highly interconnected processing elements (neurones) working in unison to solve specific problems.
- Configured for a specific application, (eg.... Pattern recognition or data classification through a learning process.)
- Learning in biological system involves adjustments to the synaptic connections that exist between the neurones.

Historical Background

- NNS Recent development.
- Initial period of enthusiasm Frustration and disrepute.
- Minsky and papertPublished a book in 1969.
- First artificial neuronproduced in 1943 (Warren McCulloch & Walter Pits).

Why Use Neural Network?

To extract patterns and detect trends Complex to noticed by either humans or other computer technique.

Features

- Adaptive learning
- Self Organization
- Real Time Operation
- Fault Tolerance via Redundant Information Coding

Ne

Neural Network versus Von Neumann

- Trained by adjusting connection strengths thresholds & structure.
- Parallel & asynchronous
- Self organization during learning.
- Recalling by generalization
- Cycle time governs processor speed and occurs in milliseconds.

Programmed with instructions (if then anal logic)

Sequential & synchronous

- Software dependent.
- Recalling by memorization.
- Cycle time corresponds to processing one step of a program and occurs in nanoseconds.

Humans and Artificial Neurons – Investigating the similarity

How the Human Brain Learns?

Learning occurs by changing the effectiveness of the synapses (Influence of one neuron on another changes)

From Human Neurones to Artificial Neurones

- ➤ Deduce the essential features of neurones and their interconnections.
- Program a computer to simulate features.

An Engineering Approach (A Simple Neuron)

Device with many inputs and one output.

Modes of operation

Neuron

Training Mode

Using Mode

Training Mode —

Neuron Trained Fire/N

For Particular input patterns

Using Mode

Neuron Taught input

pattern Fire/N

If the Input pattern doesn't belong in the taught list of input patterns, Firing rule Used to determine (F/N)

Firing Rules

- A firing rule determines how one calculates whether a neuron should fire for any input pattern.
- Relates to all input patterns, not only the ones on which the node was trained.
- A firing rule can be implemented by using Hamming Distance Technique.

Hamming Distance Technique

> A 3 – input Neuron taught to output 1 when the input

X1 111 or 101

X2 111 or 101

X3 111 or 101 &

To output 0 when the input

X1 000 or 001

X2 000 or 001

X3 000 or 001

Truth Table

Probability & Possibility

X1	0	0	0	0	1	1	1	1
X2	0	0	1	1	0	0	1	1
Х3	0	1	0	1	0	1	0	1
Out	0	0	0/1	0/1	0/1	1	0/1	1

Generalization of the Neuron

Applying the HDT (Nearest Pattern) (111,101---1 & 000, 001----0)

X1	0	0	0	0	1	1	1	1
X2	0	0	1	1	0	0	1	1
Х3	0	1	0	1	0	1	0	1
Out	0	0	0/1	0/1	0/1	1	0/1	1
X1	0	0	0	0	1	1	1	1
X1 X2	0	0	0	0	1 0	1 0	1	1
X2	0	0	1	1	0	0	1	1

010---1E, 001---2E, 101---3E, (If --- tie ---- undefined state)

Pattern Recognition

- Pattern recognition ---- Implemented by using feed forward modeltech..
- Neural network identifies the input pattern and tries to output the associated output pattern.
- The power of neural network ---- interesting when a pattern has no output associated with input pattern.
- Gives output that corresponds to a taught input pattern.
- The output pattern ---- least different from the given pattern.

Generalization

Generalization Contd......

X21	0	0	0	0	1	1	1	1
X22	0	0	1	1	0	0	1	1
X23	0	1	0	1	0	1	0	1
Out	0	0/1	1	0/1	0/1	0	0/1	0
		_		_	<u> </u>	_		
X31	O	O	0	0	1	1	1	1
X32	0	0	1	1	0	0	1	1
X33	0	1	0	1	0	1	0	1
Out	1	0	1	1	0	0	1	0

Mc Culloch & Pitts Model (CN)

- Inputs are weighted, the effect that each input has at decision making is dependent on the weight of the particular input.
- Weighted inputs Wt of an input (N),* Input.
- Weighted inputs Added
- The weighted inputs > Threshold value F/ NF
- Very flexible
- The MCP neuron Adapt FPS...... By Changing its weight and /or threshold
- Various Algorithms exist

Mc Culloch & Pitts Model (CN)

X1W1+X2W2+X3W3+X4W4+..... > T

Architecture of Neural Networks

Feed- Forward Network

- Allows signals to travel only one way
- From Input ---- Output
- No feedback (loops)
- Extensively used in pattern recognition
- Referred as bottom up or top down

Feed Back Network

- > Allows signals to travel in both directions
- Loops
- Dynamic ; state changes continuously untill they reach an equilibrium point

Network Layers (SLO)

- 3 layers.
- Input units Raw information fed into the network
- Activity of each hidden unit Determined by the activities of the input units and the weights on the connections between the input and the hidden units.
- Behaviour of the output units depends on the activity of the hidden units and the weights between hidden and output units

MLO/ MLN (Perceptrons)

- 1960's Frank Rosenblatt Coined the term
- The perceptron (neuron with weighted inputs) & additional, fixed, pre processing
- Mimic the basic idea behind the mammalian visual system.
- Untill 80's not realized that the appropriate training, multilevel perceptrons can do these operations (Determining the parity of a shape & whether shape is connected or not)

Memorization of patterns (Paradigm)

- Associative Mapping : Relationship among patterns
- Regularity Detection: Respond to a particular properties of the input (FD & KR)

Two mechanisms of associative mapping

- Auto association
- Hetero association
- Related to two recall mechanism
- Nearest neighbour Recall
- Interpolative Recall

Categories of Neural Networks

Fixed Networks

dW/dt = 0

Weight fixed according to the problem to solve (prior)

Adaptive Networks

dW/dt N = 0

Learning Methods ---

Supervised & unsupervised

Learning Process

- Supervised learning: Incorporates an external teacher, so that each output unit is told what its desired response to input signals ought to be.
- Global information requires.
- Error correction learning, Reinforcement learning & stochastic learning.
- Error convergence
- Unsupervised learning: No external Teacher. Based upon local information
- Self organization

Transfer Functions

- Input output functions.... Behaviour of ANN
- 3 Categories of function
- Linear (Ramp) Output activity proportional to the total weighted output
- Threshold units Total input is greater than or less than to the threshold value
- Sigmoid units Output varies continuously but not linearly as the input changes

Application of Neural Network

- Speech Recognition & Synthesis
- Image Processing & Coding
- Pattern Recognition & Classification
- Power Load Forcasting
- Interpretation & prediction of Financial trends for Stock market
- Processing Modelling, Monitoring & Control
- Optimization
- Vibration control Problem

Thank You