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Abstract 

Background.  The complexity and inter-related nature of biological data poses a difficult challenge for 

data and tool integration.  There has been a proliferation of interoperability standards and projects over the 

past decade, none of which has been widely adopted by the bioinformatics  community.  Recent attempts 

have focused on the use of semantics to assist integration, and Semantic Web technologies are being 

welcomed by this community. 

Description. SADI – Semantic Automated Discovery and Integration – is a lightweight set of fully 

standards-compliant Semantic Web service design patterns that simplify the publication of services of the 

type commonly found in bioinformatics and other scientific domains.  Using Semantic Web technologies at 

every level of the Web services “stack”, SADI services consume and produce instances of OWL Classes 

following a small number of very straightforward best-practices.  In addition, we provide codebases that 

support these best-practices, and plug-in tools to popular developer and client software that dramatically 

simplify deployment of services by providers, and the discovery and utilization of those services by their 

consumers. 

Conclusions.  SADI Services are fully compliant with, and utilize only foundational Web standards; are 

simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive 

way by biologist end-users.  In addition, the SADI design patterns significantly improve the ability of 

software to automatically discover appropriate services based on user-needs, and automatically chain these 

into complex analytical workflows. We show that, when resources are exposed through SADI, data 

compliant with a given ontological model can be automatically gathered, or generated, from these 

distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system.  

Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a 

manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services 

and Semantic Web technologies 

 

Background 

Two Web technologies - Web services and the Semantic Web – hold the promise to achieve integration and 

interoperability among the currently disparate bioinformatics resources on the Web; however, this promise 

is not being widely achieved in practice.  The causes of failure are varied, but often relate to the 

fundamental differences between the Web service and Semantic Web technologies themselves, and the 

widely varying approaches taken by different projects who have attempted to superimpose one technology 

over the other. 

 Archetypal Web services adopt a request/response model that utilizes HTTP POST as the transport 

layer, and a technology called Simple Object Access Protocol (SOAP) to surround the input/output 

messages with informative metadata.   The functions made available by the Web service are described via a 

machine-readable specification called Web Services Description Language (WSDL)[1], which in turn 

utilizes XML Schema to describe the syntactic structure of the each function's input and output messages.    

If the "meaning" of the syntactic XML elements of an output message, and a desired subsequent input 

message, are known (or can be inferred) it is possible to chain Web services together into workflows.  

However, because of the lack of shared semantics regarding the meaning of elements in an XML Schema, 
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workflow design is most commonly done manually in an editing environment such as Taverna [2], and the 

promise of automated Web service interoperability and workflow construction is only truly successful 

within well-defined, often project-specific situations. 

 Defining these shared semantics is one of the aims of the emergent Semantic Web initiative [3].  

The Semantic Web can be thought of as a directed-graph in which the nodes are anything that can be 

named (a concept, a document, a person) and the labelled edges are meaningful properties that describe the 

relationships between the nodes.  Resource Description Framework (RDF) [4] is a way of encoding these 

nodes and labelled edges such that they can be explored and traversed by machines, and most of the data on 

the Semantic Web is currently stored in RDF documents made available by HTTP GET, or in "triple-

stores", which are the RDF equivalent of relational databases.  All nodes and properties in RDF datasets are 

referenced by globally unique identifiers (Uniform Resource Identifiers (URIs)), and thus the encoding 

provided by RDF is precise, unambiguous, and ideally suited for automated processing by software.  

Moreover, it is possible to use logical reasoning to derive new facts which are not explicitly stated in the 

data.  Description logics (DL) are typically employed for this purpose due to their improved computational 

characteristics in comparison to first order logic, and OWL [5] is the family of description logics that has 

been developed for use with the Semantic Web.  

 Here we describe our attempt to merge these two technologies in a way that directly addresses the 

needs and behaviours of a specific end-user community, namely bioinformaticians, who have strong 

resource and data interoperability requirements.  SADI - Semantic Automated Discovery and Integration - 

is a novel Semantic Web service design-pattern, and supporting codebase together with a reference 

implementation, that utilizes Semantic Web standards at all levels of the Web services "stack", including 

discovery, messaging, and service description.   Following Carole Goble's advice that "any integration 

technology should only be as heavy as it needs to be, and no heavier" [6] SADI does not propose any new 

technologies, standards, messaging formats or structures, metadata structures, result codes, or unusual Web 

behaviours. SADI simply comprises a set of standards-compliant conventions and suggested best-practices 

for data representation and exchange between Semantic Web services that fully utilizes Semantic Web 

technologies to achieve the integrative behaviours required by our target community.   

 For service providers, adopting SADI has many advantages: 

 The SADI design patterns are supported by an accompanying codebase and plug-in tools that 

almost completely automate the provision of resources as a Semantic Web service, leaving the 

provider to focus entirely on their business-logic. 

 The simplicity of the approach also means that there are few places a provider can go wrong 

outside of the data model and their own business logic. 

 Many of the decisions that need to be made when deploying Web services (of any kind) have been 

made in these design patterns, and have been made specifically to enhance service discoverability 

and interoperability.  This simplifies the planning process for providers, by reducing the number of 

'arbitrary' decisions they need to make. 

 SADI services are easy to integrate with one another, greatly facilitating the construction of 

analytical pipelines, and therefore enhancing the usability of these services by the target end-users.  

This is made even simpler by the availability of SADI plug-ins to popular workflow clients such as 

Taverna [7] and data exploration environments such as the Knowledge Explorer [8] that 

dramatically simplify service discovery and pipeline creation.   

 SADI is cluster/cloud-ready, and the specification was specifically designed to support multiplexed 

messages.  This allows service providers to distribute incoming requests over their computational 

resources without any requirement for request/response tracking; responses from each processor 
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may simply be concatenated regardless of order.  Moreover, we utilize standard RDF-based 

approaches to avoid passing large datasets through workflows, and rather allow clients and 

providers to pass-by-reference. 

 SADI enforces other best-practices in Web development (e.g. that all URIs must resolve), thus 

helping providers generate robust, error-free systems, and tools are available to regularly evaluate 

and validate service functionality.  This results in high up-time, automated failure alerts, and 

therefore a higher quality of service for end-users. 

 Service providers do not need to "buy-in" to any particular ontology, specialized protocol or 

message scaffold.  SADI is agnostic to which ontologies are used to describe its messages, 

reducing the "friction" of bringing the technology into a new environment.  SADI simply requires 

that providers utilize the Semantic Web standards of RDF and OWL for their data representation 

and modelling, under whichever ontological framework they wish. 

 SADI is not in conflict with any existing network security software or protection model.  It 

concerns itself only with how services behave, and simply passes plain-text messages via the 

standard HTTP Protocol. 

 Here we will first describe the SADI approach to Web service provision (an extension of the 

description here [9]).  We will then briefly describe two implementations that show how the conventions 

and practices defined by SADI enable novel data discovery, interoperability, and integrative behaviors that 

we believe closely mirror the needs and expectations of our specific end-user community.  Finally, we will 

engage in an extensive discussion of how SADI compares to peer technologies and other Semantic Web 

service projects.   

 The next section of this manuscript examines SADI iteratively, with increasing levels of detail at 

each iteration, such that the simplicity of the approach is made apparent before discussing the finer points 

of how SADI's integrative behaviours are achieved. 

 

Construction and Content 

Introduction - Hello World 

Figure 1 shows a simple, synchronous interaction with a SADI service.  A client calls HTTP GET on the 

service endpoint in order to retrieve the service interface document (Figure 1A).  This document contains 

two OWL Class definitions, one describing the properties that must be carried by input data, and the other 

describing the properties that will be carried by the output data (Figure 1B).  The client utilizes the input 

OWL Class to validate their desired input data (through logical reasoning), then passes that data verbatim 

to the service endpoint through a standard HTTP POST (Figure 1C).  The service processes the input, and 

returns RDF data carrying the properties described in its output OWL Class; these represent the output of 

the service's processing (Figure 1D).  While this appears to be (and is) an extremely straightforward and 

standard Web transaction, it embodies several simple constraints that make Web services modeled in this 

way highly discoverable and interoperable.    

 

SADI Approach to Semantic Web service modeling 
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Figure 1.  The most basic SADI service transaction.  In (A) the client calls HTTP GET on the service endpoint.  This results in the retrieval of a 

service interface document (B) containing references to OWL classes (defined anywhere on the Web) that describe the input and output datatypes 

of that service.  The client finds RDF data matching the service's input OWL class (based on the property restrictions of that class) and passes that 

data to the service endpoint using simple HTTP POST (C).  The service strips the properties from the input RDF node, uses that information to 

execute its analysis, and adds the results as new properties of the input node before returning it to the client as appropriately typed output (D). 
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Before describing SADI in detail, it is important to emphasise what SADI is not.  SADI is not a protocol 

(e.g. not a replacement for SOAP), is not a registry (e.g. not a replacement for UDDI[10]), is not a data-

typing system or ontology (unlike BioMoby[11]), and is not a service metadata or annotation schema (e.g. 

not a replacement for OWL-S[12], SAWSDL[13], or Feta[14]).  SADI simply consists of a number of 

recommendations for how services themselves should be implemented and described in order to achieve a 

set of useful, interoperable behaviors that can be leveraged by existing Web service standards.  As such, 

SADI is extremely lightweight compared to many other approaches to Semantic service provision.  It 

consists of two key best-practices: 

1. All service input and output data are RDF instances (i.e. owl:Individual's) of OWL classes 

2. The URI of the output instance is the same as the URI of the input instance.   

 Best-practice #1enables sophisticated and flexible matchmaking between in-hand data and tools 

that can operate on that data, and does so using an increasingly widely-used data representation format - 

RDF.  Best-practice #2 effectively standardizes the behaviour of all services by making them all 

“annotators”, where the input becomes decorated by additional information before being returned to the 

client.  This latter constraint has several very useful consequences, perhaps the most important being that 

the semantics of the underlying service functionality becomes extremely transparent.  This greatly 

facilitates automated service discovery and pipelining as will be discussed and demonstrated below. 

 In the following sections, we will first describe the fundamental recommendations that apply to all 

SADI-compliant services, and will then describe extensions to the core recommendations that apply to, for 

example, asynchronous services or services that require additional parameters to alter service functionality. 

 

The Base SADI Specification 

The core recommendations/requirements for a SADI compliant Web Service are listed in Table 1.  

Examining each of these recommendations in more detail will clarify more precisely what the service 

behaviour should be, why the decision was made and/or what benefit is gained by following the 

recommendation. 

 

 Table 1:  Core Recommendations of SADI 

1 SADI Web services are stateless and atomic. 

2 SADI service endpoints respond to HTTP GET by returning the interface definition of the service. 

3 Service interfaces (i.e., inputs and outputs) are defined in terms of OWL-DL classes; the property 

restrictions on these OWL classes define what specific data elements are required by the service 

and what data will be provided by the service, respectively.  

4 SADI services consume and produce data in RDF format.  

5 SADI services are invoked through plain HTTP POST of RDF data to the service endpoint. 

6 Input RDF data - data that is compliant with (i.e. classifies into) the input OWL Class definition - 

is "decorated" or "annotated" by the service provider to include new properties until it fulfills the 

Class definition of the service's output OWL Class.  Importantly, in so doing, the URI of the input 

OWL Class Instance is preserved and becomes the URI of the output OWL Class Instance. 
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Explanation/Justification for Base Recommendations 

SADI Web services are stateless and atomic 

This decision is simply pragmatic, and describes the vast majority of services in the bioinformatics domain.  

Restricting the range of possible service behaviours to only those that are in-use simplifies the architecture. 

Services that cannot be modeled in a stateless manner - for example, simulation services - are not the 

immediate target of the SADI recommendations.  That said, the flexibility of SADI's input and output data-

typing should allow service providers considerable leeway in implementing services that behave in ways 

we had not anticipated; however, defining these behaviours is beyond the scope of the core SADI 

recommendations. 

Service interface is retrieved by HTTP GET 

It is useful to have a standard way of locating the service interface description for any given service.   With 

WSDL-based services, locating these documents was only possible through a priori knowledge of the URL 

of the WSDL, or through querying a service registry.  With SADI, we have standardized this such that the 

service endpoint itself responds to a GET by returning its service interface document (Figure 1A/B).  Since 

(as described below) all SADI services function through HTTP POST, there is no barrier to restricting the 

use of GET in this way. 

 SADI does not define the format of the service interface document; however currently all SADI 

services return an RDF-XML instance (owl:Individual) of the serviceDescription Class from the 

myGrid/Moby service ontology [15].  This was chosen because the myGrid/Moby ontology has useful 

features for assisting with, for example, automated service monitoring, and moreover these annotations are 

compatible with the BioCatalogue[16] global registry of Web services.  We are, however, actively 

monitoring  alternatives, such as  OWL-S, to determine if they become more widely accepted and/or more 

appropriate for the needs of SADI.   

SADI services consume and produce RDF instances of OWL-DL Classes 

Included in the service interface document are references to the OWL-DL classes that define the input and 

output data-types that the service will consume and produce.  The ontologies defining those classes may 

exist anywhere on the Web, and may or may not be "owned by" the service provider; however, the URI of 

the input and output class must resolve, through HTTP GET, to an OWL document.  SADI allows any 

provider to utilize classes from any OWL ontology within the definition of their own service interface. 

 The data consumed by a SADI service is an instance of the OWL-DL class that describes the input 

of the service (Figure 1C).  Likewise, the output is an instance of the output class (Figure 1D).   Both RDF-

XML and RDF-N3 serializations are currently supported, and is indicated in the Content-type element of 

the HTTP header.   

 Since both the client and the service are operating on potentially very large RDF Graphs, it is 

important to indicate what URI(s) within that graph represent the "root" of the data instances.  Here again 

we rely entirely on Semantic Web standards, requiring that the input instance must be classified according 

to the service provider's input class, and explicitly typed using the rdf:type predicate  (See the 

"hello:NamedIndividual" node in Figure 1C).  This serves to reduce the complexity of service provision by 

not requiring providers to reason over incoming data - an important consideration with respect to 

encouraging widespread adoption of SADI.  Moreover, it allows services to be written in languages that do 
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not have strong support for logical reasoners, such as Perl.  When accepting incoming data, a provider 

simply extracts the URI from the input document that has the rdf:type property with a value equivalent to 

that service's input class.  Client software can similarly expect that the service provider has added the 

rdf:type property to its root output data node (see the "hello:GreetedIndividual" node in Figure 1D), in 

accordance with its output class, and thus it is similarly straightforward for the client to identify output data 

elements within the returned graph. 

Services are invoked by HTTP POST 

SADI services are invoked by passing an RDF graph to the service end-point via HTTP POST (Figure 1C), 

and any tool that can execute an HTTP POST (e.g. Unix "curl") can be used to invoke a SADI service.    

Importantly, SADI uses a non-parameterized POST - i.e. does not use the HTTP FORM encoding.  As 

such, all information required for service invocation must be present in the data itself, since the invocation 

happens via a single anonymous "package" of data.  SADI accomplishes this by distinguishing various data 

or service control elements by their ontological type, as described below. 

Input data is "decorated" until it becomes an instance of the Output Class. 

This is the critical aspect of the SADI specification that leads to SADI's striking interoperable behaviours; 

moreover, this manner of modeling services also provides simple solutions to problems that would 

otherwise require project-specific standards (e.g. the mapping of input to output in a multiplexed 

invocation, as described later).  Simply put, after a service analyses the predicate/values attached to a given 

input node, it then adds the analytical output to that same node through one or more new predicate/values.  

The output is associated to the input as a new property of that input URI (compare the URI of the main 

node "person:1" in both Figure 1C and Figure 1D).  All of the predicates and values added by a service are 

defined in the Output OWL Class, and as such, output data is then rdf:type'd according to that output Class 

definition.  More importantly, appropriate services can be discovered based on the properties they add.  For 

example, Figure 2 shows the SADI Plug-in to the IO Informatics Knowledge Explorer[8].  The UniProt 

protein P09416 has been selected, and in the panel to the right, the SADI plug-in is displaying all of the 

properties of that protein (e.g. 3D Structure, GO Annotations, etc.) that are available through invocation of 

one or more SADI services.  Similarly,  Figure 3 shows the plug-in to Taverna, where a similar menu of 

property/values is provided based on the data-type that will emerge from the output port of the currently 

selected service on the canvas. N
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Figure 2.  The SADI Plug-in to the IO Informatics Knowledge Explorer. In this image, we have selected a node on the canvas representing UniProt 

protein P09416 and a right-click has raised the SADI Plug-in menu. The menu is derived by requesting the rdf:type information for the selected 

node, and then searching the SADI registry for all Semantic Web Services that consume that data class. From the discovered services, the RDF 

predicates that are created by those services are then displayed in the menu for the user to select. Clicking "GO" invokes the selected services and 

the returned data is added to the graph on the canvas. 

 

 Given the rapidly increasing size of bioinformatics datasets, and the movement to cloud-based 

computing, SADI natively supports the ability to pass data by reference.  In the case of both input and 

output data, the URI of the owl:Individual may be annotated with an rdfs:isDefinedBy predicate.  The 

Object URI of that predicate, when resolved, should provide triples containing any missing data for that 

Individual.  As such, it is possible to pass large data objects from service-to-service without necessarily 

passing the data, but still provide the ability to retrieve that data in a standards-compliant way.   
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Figure 3.  The SADI Taverna Plug-in.   In this image, the user has already placed the SADI service "KEGG-Pathway-to-Gene" on the canvas.  This 

service reports that it consumes data of type "KEGG_PATHWAY_Record" (upper/input port) and attaches the predicate "has participant" with a 

value of "KEGG_Record" - the participants in this KEGG pathway (lower/output port).  The user has now right-clicked on the output port of this 

service to obtain the SADI Plug-in window.  SADI has semantically examined the properties of the output from the KEGG-Pathway-to-Gene 

service and has discovered services capable of operating on those properties.  Among these is a service "getUniprotByKeggGene" (selected and 

highlighted in blue) which will provide the "encodes" annotation on any genes that appear in that service output.  To add the service, the user 

simply clicks the "Connect" button, and the services will be automatically, and accurately, pipelined together with no additional manual 

intervention required. 

 

Concrete Examples of SADI Service Description and Invocation Messages 

Figures 4, 5, 6, 7, 8 and 9 provide concrete examples of the guidelines described above, in the context of a 

"Hello World" style example.   Figure 4 shows the service's description, which is obtained by performing 

an HTTP GET on the service's endpoint.  This document contains both the human-readable annotations of 

the service, as well as the machine-readable pointers to the service's input and output OWL Class 

definitions.  Figure 5 shows the ontology describing the input and output OWL Classes.  The input Class is 

composed of a single property restriction indicating that any incoming data must have at least one "name" 

predicate.  In this way, SADI allows data to be re-classified as valid input to a service, even if it had been 

generated from another ontological framework, so long as it carries the required properties.   This provides 

extreme flexibility in data-to-service matchmaking.  The output OWL Class  is similarly composed of a 

single property restriction indicating that the output from the service will include the "greeting" predicate.  

It is this "greeting" property that is indexed by the prototype SADI registry, and can be used for service 

discovery.  Put another way, the function of this service is to generate the "greeting" property of an input 

URI based on its "name" property.  This equivalency between a Web service's function and the creation of 

novel properties, to our knowledge, completely unique to the SADI Web service model, and is largely 
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responsible for the semantic behaviours that will be demonstrated in the Utility section of this manuscript.  

Figure 6 shows a complete input message, passed by HTTP POST to the service's endpoint.  As described 

earlier, the message has no additional scaffold or messaging format.  It is simply an RDF individual 

corresponding to the service's input OWL class.  Similarly, Figure 7 shows a complete output message 

from the same invocation of the Hello service.  Once again, it is nothing more than an RDF individual of 

the service's output OWL class, but importantly, the URI of that individual has not changed.  In this way, it 

is trivial to determine which output was derived from which input when multiplexing service invocations. 

 

Figure 4.  An SADI service description in N3 format (for readability).  The document describes an instance of 

the serviceDescription class from the mygrid-moby-service ontology.  In this "Hello" example, there is a 

single operation (all SADI services consist of a single operation), with a single input parameter that is of type 

NamedIndividual from the "hello.owl" ontology, and a single output parameter of type "GreetedIndividual" 

from the same ontology.  This document can be retrieved (in RDF/XML format) by calling HTTP GET on 

the service's endpoint at http://sadiframework.org/examples/hello 

 

@prefix : <http://www.mygrid.org.uk/mygrid-moby-service#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

<http://sadiframework.org/examples/hello>     a :serviceDescription; 

 :hasOperation <http://sadiframework.org/examples/hello#operation>; 

 :hasServiceDescriptionText "A simple Hello"; 

 :hasServiceNameText "Hello"^^<http://www.w3.org/2001/XMLSchema#string> . 

 

<http://sadiframework.org/examples/hello#operation>     a :operation; 

 :inputParameter <http://sadiframework.org/examples/hello#input>; 

 :outputParameter <http://sadiframework.org/examples/hello#output> . 

<http://sadiframework.org/examples/hello#input>     a :parameter; 

 :objectType <http://sadiframework.org/examples/hello.owl#NamedIndividual> .  

<http://sadiframework.org/examples/hello#output>     a :parameter; 

 :objectType <http://sadiframework.org/examples/hello.owl#GreetedIndividual> . 
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Figure 5.  The OWL Ontology, shown in both N3 format (above the divider) and in Manchester OWL syntax (below the 

divider), describing the "Hello" service's input and output classes.  The NamedIndividual (input) class declares that the 

service consumes any URIs that include at least predicate of type "name", from the FOAF ontology.  The GreetedIndividual 

(output) class indicates that the SADI service will add the "greeting" property to the input data, and that "greeting" is a 

Datatype Property. 

 

 

 

 

 

@prefix : <http://www.w3.org/2002/07/owl#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

 

 <>     a :Ontology; 

 :imports <http://xmlns.com/foaf/0.1/name> . 

 

  <#NamedIndividual>     a :Class; 

 :equivalentClass  [ 

  a :Restriction; 

  :minCardinality "\n1\n"^^<http://www.w3.org/2001/XMLSchema#int>; 

  :onProperty <http://xmlns.com/foaf/0.1/name> ] . 

 <#GreetedIndividual>     a :Class; 

 :equivalentClass  [ 

  a :Restriction; 

  :minCardinality "\n1\n"^^<http://www.w3.org/2001/XMLSchema#int>; 

  :onProperty <#greeting> ] . 

 

<#greeting>     a :DatatypeProperty . 

========================================================================================== 

Ontology: <> 

Import: <http://xmlns.com/foaf/0.1/name> 

Datatype: rdfs:Literal 

DataProperty: <http://xmlns.com/foaf/0.1/name> 

DataProperty: <#greeting>     

Class: <#NamedIndividual> 

    EquivalentTo:  

        <http://xmlns.com/foaf/0.1/name> min 1 rdfs:Literal 

Class: <#GreetedIndividual> 

    EquivalentTo:  

        <#greeting> min 1 rdfs:Literal 
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Figure 6.  Invocation Message.  This is the full HTTP message sent to invoke the "hello world" service.  

It utilizes the HTTP POST method, and is sent to the service endpoint at 

http://sadiframework.org/examples/hello.  The message body consists of an RDF/XML instance of the 

NamedIndividual class (as per the Hello service's hello.owl ontology), with the property "name" and a 

value of "Guy Incognito".  The URI of this individual is http://sadiframework.org/examples/hello-

input.rdf#1. 

 
Figure 7.  Synchronous Response Message.  This is the full HTTP message sent in response to the 

invocation message from Figure 3.  It is an RDF/XML instance of the Hello service's output class - 

GreetedIndividual.  As per that class definition, the instance carries a "greeting" predicate, with the value 

"Hello, Guy Incognito!".  Note that the URI of the GreetedIndividual is identical to the URI of the 

NamedIndividual input, as per the SADI best-practices. 

 

 

 

 

 

 

 

Figure 8.  Asynchronous Response Message.  This is the full HTTP message sent in response to the invocation 

message from Figure 3, as it would appear if the Hello service were implemented asynchronously.  It is an 

RDF/XML instance of the Hello service's output class - GreetedIndividual, but unlike the response message in 

Figure 4, the output data is not yet attached.  Rather, the input URI is now decorated with the "isDefinedBy" 

predicate from the RDF-Schema standard vocabulary.  The value of that predicate is a URL which can be polled 

by the client until the data is ready.  The response message carries the HTTP Header standard response code of 

202 "Accepted but incomplete". 

POST /examples/hello HTTP/1.1  
Host: sadiframework.org  

<rdf:RDF  

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  

    xmlns:foaf="http://xmlns.com/foaf/0.1/"  

    xmlns:hello="http://sadiframework.org/examples/hello.owl#">  

    <hello:NamedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">  

        <foaf:name>Guy Incognito</foaf:name>  

    </hello:NamedIndividual>  

</rdf:RDF> 

HTTP/1.1 200 OK  

Content-type: application/rdf+xml  

<rdf:RDF  

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  

    xmlns:hello="http://sadiframework.org/examples/hello.owl#">  

    <hello:GreetedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">  

        <hello:greeting>Hello, Guy Incognito!</hello:greeting>  

    </hello:GreetedIndividual>  

</rdf:RDF> 

HTTP/1.1 202 Accepted  

Content-type: application/rdf+xml  

<rdf:RDF  

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  

    xmlns:rdfs="http://http://www.w3.org/2000/01/rdf-schema#"  

    xmlns:hello="http://sadiframework.org/examples/hello.owl#">  

    <hello:GreetedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1"> 

 <rdfs:isDefinedBy rdf:resource="http://sadiframework.org/examples/hello?poll=1"/>     

</hello:GreetedIndividual>  

</rdf:RDF> 
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Figure 9. Asynchronous Polling Response Messages.  At the top of the figure is the response obtained when 

polling for an asynchronous response when the data is not yet ready.  The "redirect" (HTTP 302) header is 

used to indicate that the client should call a URL (in this case, the same URL). The ellipsis indicate repeated 

polls of the same URL.  When the data is ready, the full response is sent with an HTTP 200 header.  Note that 

the response message is now identical to that of a synchronous service (Figure 4). 

 

Complex services 

Multiplexing service calls 

The use of RDF, and lack of message scaffolding makes multi-plexing service invocations trivial, and is an 

important feature that distinguishes SADI from most prior Web service and Semantic Web service 

frameworks.  Any given service invocation RDF document may contain one or more instances of the input 

class, and in this manner, multiple service invocations can be "bundled" into a single POST.  This allows 

the service provider to optimize the way that request is managed, for example, by distributing it over a 

computing "farm".  Because the URI of the input instance(s) is preserved in the output instance(s), no 

additional mark-up, and no new standards, are required to determine which output maps to which input.  

From the service provider's perspective, this means that no effort is required to re-compile the output 

message, since it is simply a concatenation of all outputs from all compute runs.  From a client perspective, 

it means that no SADI-specific software is required to invoke a SADI service, even when multiplexing 

thousands of inputs. 

Asynchronous services 

In keeping with our longstanding recognition of the importance of asynchronous service invocation within 

the BioMoby project, support for asynchronous services was a high priority in the design of SADI.  For 

long-running services, SADI proposes a very lightweight, pure HTTP approach to asynchronous 

invocations.  In an asynchronous service, input URIs are decorated by the predicate 'rdfs:isDefinedBy' with 

a temporary, service-specific URI as its value, and are immediately returned to the client.  In compliance 

with the defined usage of this predicate [17], the interpretation of this statement is that the input URI is 

further defined by resolving the temporary URI provided by the service. This incomplete output data is 

contained in the body of an HTTP 202 ("Accepted but incomplete" [18])  response message (see Figure 8), 

HTTP/1.1 302 Moved Temporarily  

Pragma: sadi-please-wait = 5000  

Location: http://sadiframework.org/examples/hello?poll=1 

... 

... 

 

HTTP/1.1 200 OK  

Content-type: application/rdf+xml  

<rdf:RDF  

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"  

    xmlns:hello="http://sadiframework.org/examples/hello.owl#">  

    <hello:GreetedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">  

        <hello:greeting>Hello, Guy Incognito!</hello:greeting>  

    </hello:GreetedIndividual>  

</rdf:RDF> 
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in accordance with the proper usage of the HTTP 202 header.   The service-specific URIs, when resolved 

by GET, either return the output graphs (if the service operations are complete) or the "redirect" (HTTP 

302) header is used to indicate that the client should re-call a URL (in this case, the same URL; see Figure 

9).  Since this is the standard behaviour of most HTTP client programs, this helps ensure that most existing 

Web-enabled software will deal appropriately with Asynchronous SADI services without the need to 

invent a novel standard.  To assist clients in regulating their repeat requests on an asynchronous service, we 

currently pass a HTTP Retry-After directive in the response message header.  In future implementations, a 

Web services Resource Framework [19] reference may be passed in the HTTP 202/302 headers, providing 

information about the state of the asynchronous service, and to assist clients in determining when an output 

graph will be available.  Supplementary information showing more complex sample message structures is 

provided at [20]. 

Services with control-parameters 

Since SADI services are invoked by a non-parameterized POST, all information required by the service to 

define its behaviour must be contained within the invocation message.  For services that have settable 

parameters (for example, selection of a BLOSUM matrix and/or e-value cutoff in BLAST), such 

information is passed to the SADI service as an independent RDF graph within the same invocation 

message.  The service provider specifies an OWL Class in which the parameters and value-restrictions for 

their interface are defined.  In the myGrid-Moby Ontology, these are differentiated from "data" input 

Classes by virtue of being attached to mygrid:secondaryParameter nodes in the service definition RDF 

document.  When invoking a service, client software simply creates an instance of this secondaryParameter 

Class, and passes it to the service along with the Input data instances.  The service then extracts the URI 

that is rdf:type [TheirParameterClassname] and collects the parameter information from this object to 

configure the service prior to analysing the data.  Again, no project-specific standards or message 

structures are defined by SADI to achieve this goal - parameter data is simply RDF data placed into the 

input message, and typed according to the Class-name provided by the service host.  

 

Utility 

Observing the behaviors of several implementations of SADI client software will help demonstrate both its 

utility, as well as how many common problems with Web service interoperability are effectively resolved 

by this approach.  In the first example, we will demonstrate how SADI can be used to simplify the 

interaction between an untrained end-user and the myriad resources they may need to dynamically access.  

The second example will show how SADI contributes to the Linked Data movement by dynamically 

generating Linked Data triples that can  be queried, and also demonstrates the simplicity with which SADI-

compliant Web services can be pipelined together. 

 

Example 1 - the SADI Plug-in to Taverna 

Taverna is an open-source workflow design and enactment workbench that allows users to "drag-n-drop" 

Web Services from a menu of available resources onto a canvas, and link them together into an analytical 

pipeline.  
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 We have created a SADI plug-in to Taverna (described in detail here [7]) that assists users in 

discovering the service they need and automatically connecting it correctly into the workflow.  When an 

output port of a service is selected in Taverna, the SADI plug-in provides a menu of relationships that can 

be attached to the type of data that will flow out of that port when the workflow is executed.  This list is 

obtained by querying the SADI registry for services that consume that data-type as input, and the 

relationships attached by each service are collected and displayed to the user. To add that service to the 

workflow, the user simply selects their property of interest from the menu.  The service is added, and 

automatically properly connected to the previous service (a process that can be quite difficult in Taverna, 

depending on the complexity of the service interfaces being connected).   For example, if the user has 

selected a port from which gene identifiers will emerge, the SADI menu might include "encodes Protein" 

as a property that can be generated by the next service.  The inclusion of the semantic relationship 

('encodes') between the selected data-type, and the data-type that is going to be generated by the service is 

(as far as we are aware) unique to SADI, and we believe that this will make the selection of a desired 

service more intuitive for our target end-users.  Given that there are various relationships between genes 

and proteins (genes are regulated-by proteins, genes encode proteins,  etc.) clarity around this relationship 

is not trivial with respect to selection of an appropriate service by our target end-users. 

Example #2: The SHARE SPARQL query client 

A slightly more complex example of usage is presented by our Semantic Health And Research 

Environment (SHARE) prototype query system [21]. SHARE connects the SADI middleware to the Pellet 

[22] SPARQL query engine and DL Reasoner.  Predicates presented to Pellet from SPARQL queries are 

"intercepted" and passed to SADI to be used for Web service discovery and automatic invocation. Output 

data from the invoked services is added into Pellet's local triplestore.  In this way, a query-specific 

triplestore is dynamically generated as a query is being processed; effectively, the database required to 

answer the question is automatically generated as a result of the question being posed. 

  This approach has features of many prior attempts at data integration in that (a) it is service 

oriented, (b) it is similar to link-integration in that every node in the graph is a resolvable URL, (c) it offers 

the "data freshness" of view-integration since data is being dynamically discovered (or generated) by the 

source, and (d) it offers the reproducibility of a warehouse, since the graph that results from a SHARE 

query can be permanently stored and explored using a variety of tools. 

Discussion 

Justification for creating a new Semantic Web service standard 

A decade ago, Stein expressed concern that, because a wide array of different approaches to Web service 

provision were emerging "a chaotic world of incompatible bioinformatics data standards will be replaced 

by a chaotic world of incompatible web service standards" [23].  It would be difficult to argue that those 

words were not prophetic!  In an attempt to enhance interoperability between these resources post facto, 

independent projects began using semantics to help map between the data elements and representations 

used by each resource.  These "Semantic Web service" initiatives themselves, however, took various 

approaches in their utilization of semantics.   

 Preceding both Semantic Web technologies and the widespread emergence of Web services in 

bioinformatics, TAMBIS [24] was a mediator system in which wrappers containing resource-specific 

queries were mapped to an overarching ontology of bioinformatics concepts.  Thus the semantics of 
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TAMBIS is separate from the individual resource interfaces, and the semantic layer acts to re-write multi-

concept queries such that individual components of that query are executed by one or more resource-

specific wrappers. 

 

 myGrid [25] used an extensive bioinformatics domain ontology to annotate traditional 

bioinformatics Web services within a formal model called "Feta" [14],  designed primarily to enhance 

service discovery, rather than automate multi-service composition. Feta, thus, adds semantics to traditional 

Web services at the level of its own annotation of a service interface.   

 

 OWL-S [12] seeks to improve Web service interoperability by providing a standard OWL ontology 

for the description of Web services.  OWL-S goes beyond the capabilities of WSDL in the sense that it 

aims to describe the effects of web services on the real world (e.g. adding a charge to a credit card).  OWL- 

S describes the actions of a Web service in a similar manner to how the actions of an agent are described in 

the planning domain of AI.  Each service has a set of pre-conditions and post-conditions which are 

expressed as boolean formulas over a set of state variables.  OWL-S is complex and is under ongoing 

development. 

 

 SAWSDL (Semantic Annotations for WSDL)[13] is an extension to WSDL that attempts to bridge 

the gap between the world of syntactically described Web services and semantically described Web 

services. SAWSDL allows a service provider to "tag" parts of a WSDL service description with semantic 

annotations.  These annotations either specify how to translate an XML schema element to/from an 

ontology instance in another language such as RDF (via the liftingSchemaMapping and 

loweringSchemaMapping attributes), and indicate that an XML element corresponds to a certain class in an 

ontology (via the modelReference attribute). 

 

 WSMO (Web service Modeling Ontology) [26] is a research project that has the same general 

goals as OWL-S.  In contrast to OWL-S, WSMO uses its own modeling language, WSML (Web service 

Modeling Language) for encoding Web service descriptions.  One advantage of WSML over OWL-S is 

that it has built-in syntax for encoding the boolean formulas that are used to describe the pre-conditions and 

post-conditions of the services. In contrast, OWL-S employs a more ad hoc approach where the formulas 

are encoded as XML literals or string literals in an external syntax such as PDDL [27]. 

 

 caBIO (part of caCORE [28]) designed a traditional Web service API describing all “valid” 

operations for a given set of biological objects.  Within the XML sent-to or received-from caBIO services 

are semantic annotations compliant with a (vast) domain vocabulary.  Thus the semantics of caBIO data are 

contained in the values of XML elements, and the "meaning" of those XML elements themselves are 

defined by the caBIO API. 

 

 BioMoby [11] carries its semantics in the data-structures themselves, and unlike caBIO, does not 

constrain what operations can be done on any given biological object.  BioMoby requires service providers 

to utilize a common, end-user-extensible ontology of biological data-types, and to consume and produce 

XML serializations of instances of that ontology.  The BioMoby ontology is both hierarchical, and 

partitive, thus the element name at any given position in the resulting XML serialization, and its child-

element structure, can change without changing the semantics of the data.  This enhances interoperability 

because (a) the semantics of the data are self-describing and embedded in the data, and (b) complex 

messages can be utilized by more simplistic services by simply paying attention to those data-components 

that they understood. As a result, assembly of BioMoby Web services can be fully automated since the 

"meaning" of any given data message can be reliably interpreted by the recipient without the need of 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.6
55

0.
1 

: P
os

te
d 

22
 O

ct
 2

01
1



mediators.  Unfortunately, this flexibility in the XML representation of the data precludes the ability to use 

XML Schema to describe the syntax of the message, and thus traditional Web service tools are of limited 

utility.  Moreover, BioMoby's XML serialization is non-standard and only understood by other BioMoby 

services, hampering interoperability outside of the project. 

 

 SSWAP [29] also carries the semantics of the data in the message itself, however it utilizes 

Semantic Web standards to do so.  SSWAP defines a shared, lightweight OWL model of a service 

interface, where RDF-XML instances of this model are used as both the interface definition and as the 

“container” of the input and output data during service invocation.   Because OWL-RDF cannot (reliably) 

be described in XML Schema, and because SSWAP includes the service interface model as part of its 

required messaging "scaffold", SSWAP is also incompatible with traditional Web services toolkits, and 

requires project-specific tooling, but exhibits significant interoperability and automatability with other 

SSWAP services.   

 Though some of these approaches might still be considered "emergent", even the more mature ones 

are not in widespread use outside of their own communities.  Moreover, each approach attempted to inject 

semantics at a different position within the normal Web Services paradigm, making many of these 

Semantic Web service approaches incompatible with one another. 

 To justify our creation of (yet) another approach to Semantic Web service provision, we must 

discuss both published and subjective observations of Web service functionality, and pinpoint areas that 

continue to be problematic with respect to either service discoverability, or service interoperability.  

Clearly, if we cannot demonstrate the potential for a significant improvement over the status quo, service 

providers will have no motivation to adopt this approach, and the project will fail.  Here, then, are the core 

observations that compel us to attempt a novel strategy. 

 First, we, and others [14, 30], noted that Web services in bioinformatics (and other scientific 

domains) exhibit only a small subset of the full range of complex behaviours that service-oriented 

Architectures allow. With few exceptions, bioinformatics Web services are independent, idempotent, 

stateless, transformative, and atomic.  This stands in stark contrast to Web service solutions to, for 

example, the ticket-ordering use-case that is commonly discussed in this domain.  Almost invariably, 

bioinformatics Web services consume a specific input data type, and in a stateless and atomic operation, 

return related output data type(s) generated by whatever transformation the service executes on that input.  

That most services are transformative in this way suggests that attempting to declare or model the 

underlying business-process may be unnecessary in the bioinformatics domain - to quote Goble again, "any 

integration technology should only be as heavy as it needs to be".  Indeed, this observation was made by 

both the Feta and BioMoby projects [11, 14], though both Feta and BioMoby acknowledged the need for 

some level of simple service type annotation to assist in discovery.   

 

 A second important consequence of the observation that bioinformatics services are transformative 

has not (to our knowledge) been previously highlighted; that is that the transformation of input to output 

implies that there is some relationship between that input and output, and this important metadata is not 

being captured or utilized by any current framework.  We believe that these relationships, while not 

capturing the service's "business process" per se, capture with great accuracy the purpose of the service; 

moreover, through observations made on the students of training courses in Web service workflow 

composition, we (subjectively) concluded that these relationships are likely a more accurate reflection of 

the way our end-users think about these data transformations, versus annotating the algorithmic function as 

is done in BioMoby and Feta.  For example, biologists do not execute a BLAST analysis because they wish 

to run a sequence similarity matrix over their input data; they execute a BLAST analysis because they are 
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interested in finding sequences that are homologous to their input sequence  - they are interested in the 

homology relationship, not the BLAST algorithm.  As such, we believe that capturing these entity-

relationships as service annotations is an important criterion for enhancing discovery of relevant services 

by our target users.  This observation lead to our second core best-practice:  that services add their output to 

the input node via a meaningful property describing the relationship between input and output, and services 

may therefore be indexed and discovered based on that property. 

 

 Our third observation was twofold.  On one hand, we noticed a general sense of disdain, bordering 

on frustration, within much of the bioinformatics community with respect to the SOAP protocol in general, 

and the incompatibilities between various language and platform-specific implementations of SOAP.  With 

the distinct exception of the National Cancer Institute's caBIO framework, bioinformatics resources only 

rarely implement SOAP interfaces that utilize the Object-oriented style that SOAP allows, and even fewer 

take advantage of the rich features of the SOAP envelope such as intermediaries and message paths.  Other 

than caBIO, almost all bioinformatics Web interfaces are straightforward, single-operation 

request/response.  For example, the SOAP interface of TogoWS [31] provides a 

KeggGetEnzymesByPathway function that consumes a KEGG pathway identifier and responds with a list 

of related Enzymes.  For these kinds of services, the overhead of SOAP is (demonstrably) unnecessary,  so 

we feel it would be preferable to avoid SOAP entirely.  On the other hand, there is an increasingly positive 

attitude in our community towards "RESTful" architectures [32].  It is worth taking a moment to dissect 

this goodwill, however, since it is in our opinion slightly misplaced.  Few, if any, bioinformatics interfaces 

that claim to be RESTful are truly following a REST architecture.  To be RESTful, all entities would be 

named resources whose states are manipulated through a limited number of methods.  This is not a trivial 

architecture to achieve in practice, and most importantly is not, in any way, the same as declaring that all 

parameters for all functions should be part of a URL.  Such interfaces (i.e. the vast majority of "RESTful" 

interfaces in bioinformatics) would better be described as CGI GET-based interfaces.  For example, the 

"REST" interface of PhyloWS [33] consumes a specially-formatted query URL including a clade identifier 

and other key/value parameters, and returns a phylogenetic subtree.  There is no identifiable resource 

whose state is being manipulated by that operation, and while it might be argued that every conceivable 

query is its own GET-able resource, such an argument would be a contrived interpretation of REST 

philosophy.  As such, we believe that the bioinformatics community's goodwill is directed at interfaces that 

limit themselves to "pure" HTTP Protocol, rather than REST per se.   As such, we decided to utilize 

straightforward HTTP GET and POST for SADI, relying heavily on standard HTTP response codes for 

special cases, though we do not claim SADI to be "RESTful". 

 

 Fourth, after observing the barriers to up-take of both BioMoby and SSWAP, it became clear that 

project- or protocol-specific message scaffolding should be avoided.  As such, the SADI recommendation 

is to pass data only, with no scaffolding whatsoever. 

 

 Finally, we made a subjective evaluation of the cause of failure in (most) precedent interoperability 

architectures, and concluded that, in our opinion, XML Schema is the problem and should be abandoned.   

To briefly justify this conclusion, we observe the following:  XML Schema has been described as "far and 

away the most complex data model ever proposed" and "seriously flawed" [34].  Bring into this complexity 

the number of different aspects of our target domain that need to be represented (Strömbäck et al. found 85 

different schemas within the sub-domain of systems biology alone[35]), and there is immediately a 

requirement for either schema standardization, or schema mapping to facilitate interoperability.  Schema 

standardization is "prohibitively time-consuming" [36], and though there have been numerous attempts to 

automate schema mapping - that is, the ability for two schema to exchange data, as would be required to 

automate the interaction between arbitrary Web services - none have proven reliable in an open-Web 
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situation [37].  Automated Schema mapping is likely an AI-complete problem since it requires the mapping 

of arbitrarily chosen natural-language labels (XML tags) to one another based on the semantics of either 

the tag or its child-content.  As such, Schema mapping approaches are unlikely to yield an acceptable result 

in the foreseeable future.  This barrier has had significant and destructive consequences beyond the obvious 

thwarting of interoperability.  The inability to automatically map between Schema has resulted, counter-

intuitively, in an increase in the complexity of Web service interfaces.  Since it is extremely difficult to 

pipeline traditional Web services together reliably, there is little point in making their operations highly 

granular; it is more "efficient" to simply execute the entire service operation as a single function-call.  This, 

in turn, increases the complexity of the input and output messages[38] making schema mapping even more 

difficult.  Our final observation is that, there is considerable early-adoption of Semantic Web technologies 

in the life sciences, with several significant organizations already publishing their data in RDF format (e.g. 

UniProt [39]).  If we continue using XML Schema-based services, we may soon find ourselves mapping 

semantically rich data back into semantically impoverished XML in order to analyse it (this is, in fact, the 

purpose of the SAWSDL specification!).  This would defeat the purpose of utilizing Semantic Web 

technologies in the first place.  Clearly, more is gained by natively taking advantage of the enhanced 

interoperability inherent in RDF representations of data, than is gained through trying to support legacy 

Schema-based interfaces.  For all of these reasons, we utilize RDF/OWL as both our interface description 

and messaging layer, and require it for all SADI-compliant interfaces.  Moreover, we suggest that our 

community's continued adherence to traditional Schema-based Web service specifications will, at best, be 

destructive to their attempts to be interoperable.   To quote Lincoln Stein, "to achieve seamless 

interoperability among online databases, data providers must change their ways" [23]. 

 

SADI and the Linked Data movement 

The behaviour of SADI is consistent with, and in fact furthers the goals of the Linked Data[40] community.  

Consider, for example, what happens in a SADI service workflow, such as those automatically generated 

by the SHARE client.  Input data is passed to a service, and comes back with output data attached.  That 

output data may be utilized as input to a subsequent service, and so on.  As the data flows through that 

workflow, a rich Linked Data graph is being constructed where every input is semantically linked to every 

associated output.  This graph of dynamically generated data can be integrated with traditional static 

Linked Data resources, and queried or explored using standard Linked Data toolkits. 

 

SADI and the Semantic Web 

SADI merges the domains of Web services and the Semantic Web in a novel way.  Every service generates 

one or more "edges" on an RDF graph, where the edge that will be generated is defined as a property 

restriction in an OWL ontology.  Therefore, in SADI, OWL property restrictions "represent" potential 

services, and therefore SADI can be used to generate instances of OWL classes through service discovery 

based on these property restrictions.  OWL, effectively, becomes an abstract workflow language.  

Moreover, any OWL document - whether created for this purpose or not - can be used by SADI-enabled 

software to retrieve instance data, so long as SADI services exist that map to the properties used in the 

ontology.  Thus SADI is able to take advantage of any Semantic Web ontology. 

 Finally, while the bioinformatics community continues to utilize large, complex, semantically 

opaque flat-files, we believe that SADI (and the Semantic Web in general) starts to provide greater impetus 

to break-out the semantics of these files and increase the granularity of both data and services in the 
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bioinformatics space.  While SADI does not dictate the nature of the input and output data, it would be 

somewhat absurd for a SADI BLAST service to output a BLAST flat-file linked to its input sequence by a 

(nonsensical) "hasBLASTReport" property.  Instead, the Linked-Data Web that SADI services build make 

it much more useful to output a parsed BLAST report, where each "hit" is linked to the original input 

sequence through some form of "sharesSimilarityTo" relationship.  Thus, by challenging service providers 

to make their services discoverable through a biological relationship, rather than a  algorithmic one, we 

believe SADI will provide the incentive to move beyond semantically opaque text reports and start 

explicitly encoding the semantics contained in those documents, resulting in a much richer data ecosystem. 

 

SADI and other emergent Semantic Web service standards 

As noted above, several of the existing Semantic Web service approaches are relatively new, and may still 

experience widespread adoption.  Among these, the SAWSDL specification seems to be gaining 

considerable traction, though for reasons discussed earlier, we have some concerns about the utility of this 

standard in an RDF-based world, and about the lack of rigour in the standard itself.  Description of SADI 

services using the SAWSDL standard is trivial, but not particularly useful.  SAWSDL enhances traditional 

WSDL documents by indicating a semantic type for the service's input and output XML elements, and 

indicates a "lifting" or "lowering" schema to guide the transformation of RDF data into XML and back 

again.  In SADI, the semantic types are simply the OWL Classes that the service provider declare as their 

input and output.  Moreover, because the service natively consumes RDF there is no need for a lifting or 

lowering schema (or at worst, the lifting and lowering is an identity transformation).  Nevertheless, since 

the SAWSDL specification gives no guidance as to the format of these lifting and lowering schemas, or 

how to interpret them, and since OWL Individuals cannot reliably be described using XML Schema, there 

will  need to be an additional level of, as yet non-standardized community agreement before SAWSDL 

services (SADI or otherwise) could expect to be interoperable. Moreover, the myGrid/Moby service 

ontology contains far more detailed annotation than a SAWSDL document, and these detailed annotations 

are useful for both service discovery as well as service maintenance and testing.  As such, while SADI is 

superficially compatible with the SAWSDL standard, we find the standard itself lacking for our purposes. 

 

Limitations of SADI 

SADI suffers from the same limitations that pose barriers to other Web service and Semantic Web projects 

[41].  As an interoperability system, the utility of SADI is entirely dependent on the number of providers 

who adopt its conventions.  We recognize that there is extensive tooling support for traditional Web 

services and there is a perceived simplicity of XML compared to RDF/OWL.  Moreover, there are 

thousands of legacy bioinformatics Web services that are not interoperable (neither with each other, nor 

with SADI services), and thus there would appear to be little benefit to becoming an early-adopter of 

SADI. To counter this, we have created software libraries that partially automate the process of service 

construction in both Perl and Java.  Similar to the "Dashboard" application for BioMoby[42], a plug-in has 

been created that integrates a SADI service development environment into the Protégé [43] ontology 

editing application, where the user designs the ontologies describing their data, the plug-in creates the 

service scaffold, and the provider adds their business logic, setting the values of "stubs" provided by the 

service scaffold.  This automation is possible because the behaviors of SADI services are predictable, and 

thus the code for SADI services is similarly consistent and predictable.  In addition, we believe that the 

SAWSDL specification, together with XML transformations, will allow us to build semi-automated 
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"wrappers" around traditional Web services that will make them SADI-compliant (at the expense of a loss 

in semantic richness versus creating a native SADI service).  In this way, we hope to bootstrap the SADI 

project by first simplifying the task of service provision, and then by creating a core set of interoperable 

services that these Providers can link into.  At the time of writing, there are more than 400 bioinformatics 

and chemoinformatics services available in the SADI registry[44], and several hundred more will be 

published by our team of collaborators by the end of this year.   

 The reliance of SADI on the Semantic Web also exposes limitations.  In particular, success of the 

SADI architecture (like the success of the Semantic Web itself) will largely depend on widespread re-use 

of publicly-available and well-defined ontological predicates, and the definition of service inputs in terms 

of OWL restrictions on these properties.  Unfortunately, the majority of focus in the Semantic Web efforts 

of the health-care and life science community thus far has been on defining classes, rather than predicates; 

asserting class-hierarchies without formally defining what properties a member of that class is expected to 

have, or what distinguishes members of one class from another. We hope, however, that the power we have 

demonstrated in these prototype implementations provides a sufficiently compelling argument to initiate 

the evolution of a slightly higher level of Semantic Web complexity in the health-care and life-sciences 

space. 

Conclusions 

SADI proposes a set of conventions and best-practices, within the scope of accepted standards for Web 

services and the Semantic Web, that enable the creation of bioinformatics software with novel 

interoperable and integrative behaviors. These were derived by examining the "nature" of Web services in 

the bioinformatics domain, and observing and subjectively evaluating how these services are found and 

used by biologists and informaticians. The resulting approach, we believe, accurately models both the 

services and the end-user requirements for dynamic and automated discovery of relevant services, 

automated pipelining of these services, and integration of the resulting data. 

Availability and Requirements 

SADI is an open-source project and its supporting codebase is hosted at Google Code 

(http://sadi.googlecode.com). The SHARE demonstration is available for public access 

(http://biordf.net/cardioSHARE/).  The SADI Plug-in to Taverna is available at the SADI homepage 

(http://sadiframework.org).  The SADI Plug-in to the Sentient Knowledge Explorer is not publicly 

available at this time, but will be released late in 2011. 

List of Abbreviations Used 

HTTP - HyperText Transport Protocol; OWL & OWL-DL - Web Ontology Language - Description Logic; 

RDF - Resource Description Framework; SADI - Semantic Automated Discovery and Integration; 

SAWSDL - Semantic Annotations of Web service Description Language; SHARE - Semantic Health And 

Research Environment; WSDL - Web service Description Language; XML - eXtensible Markup Language 
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