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Fig. 3 Correlation matrix of 10 virtual receptors A) before processing, B) after processing with Neural­Gas­ba­
sed lateral inhibition, C) correlation­based lateral inhibition, D) random lateral inhibition. F) Boxplots of the resi­
dual correlation for A­D.
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Fig. 5 A) Input­output relation (firing rate) in the simulator. Firing rate averaged over all neurons in a group (glo­
merulus). Colors denote different glomeruli. Each point corresponds to one stimulus presentation. B) Same se­

tup on in hardware neurons, C) after calibration. D)
Classifier performance on simulator and

on hardware (without lateral inhibition).

Ten thousand times faster:
Classifying multidimensional data
on a spiking neuromorphic hardware system.
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Motivation
� Neuromorphic computing is an emerging technology that aims

at bioinspired high­performance computing with spiking neuro­
nal networks.

� The FACETS/Brainscales neuromorphic hardware system runs
networks of spiking neurons with a speedup of 104 [1].

� Our aim was to implement a network of spiking neurons that
can be trained in a supervised fashion, and to run this network
on neuromorphic hardware to classify multidimensional data.

� The structure of the first layers of neuronal processing in the
olfactory system provides a well suited template for a neuronal
architecture processing multidimensional data.

Challenges
Classifier circuit and learning rule
Challenge: Implement a supervised classifier that operates with
spiking neurons.
Solution: A spiking network implemented in PyNN [2], running in
the NEST simulator and on the FACETS/Brainscales hardware.
� A feature­encoding layer converges onto an association layer

that has winner­take­most properties (Fig. 1).
� The network is trained in a supervised fashion, using a percep­

tron­like learning rule operating on firing rates (Fig. 1 caption).
Sampling data with virtual receptors
Challenge: Firing rates of spiking neurons can only represent a
bounded and non­negative range of values. We need a suitable
transformation mapping real values into that value range.
Solution: Virtual Receptors (VR). The response strength of a VR
depends on its distance to the presented data point [3].
� We use a Neural Gas (NG) algorithm [4] to distribute virtual re­

ceptors in data space, like olfactory receptors sample chemical
space (Fig. 2). Receptor response is computed as a function of
the distance between data point and receptor.

� This transformation yields a bounded and non­negative repre­
sentation of any real­valued data set. Dimensionality can be
adjusted to exceed the number of original data dimensions
(dimensional oversampling), enabling a sparser representation.

Decorrelation
Challenge: Virtual receptors provide correlated data, but the
classifier learning rule works best with uncorrelated data.
Solution: Decorrelation through lateral inhibition in a preproces­
sing layer (see decorrelation layer in Fig. 1).
� Three kinds of inhibitory connectivity matrices were tested:

NG­based (inhibitory connections between receptors given by
the NG graph edges), correlation (inhibitory weight depends on
correlation between receptors), and random lateral inhibition.

� Correlation­based lateral inhibition yields best decorrelation,
followed by NG and random connectivity (Fig. 3).

� Benchmarking the impact of decorrelation on classifier perfor­
mance shows an increase in accuracy with increasing lateral
inhibition, but no clear preference for a specific method, proba­
bly a ceiling effect of the spiking classifier (Fig. 4).

Implementation on neuromorphic hardware
Challenge: Hardware neurons vary in their firing rate response
(Fig. 5B). The classifier learns on output rate, so rate variation
has negative impact on the classifier performance.
Solution: Calibrate the sensitivity of neuron groups (glomeruli) to
achieve more homogeneous representation of input rates.
� We developed a calibration method that balances

inhomogenities across model glomeruli (Fig. 5C).
� After calibration, the hardware implementation of the classifier

reaches the same performance as in the simulator (Fig. 5D).
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Fig. 1: Schematic of the neuromorphic classifier. Input
neurons (ORNs) emit poisson spike trains with averag ra­
tes according to the numeric values of the input pattern.
Synaptic weights between the decorrelation and associa­
tion layers are subject to plasticity during classifier trai­
ning (dashed lines). Classifier training algorithm:
1. Present labeled data point, i.e., set firing rates accor­

ding to pattern.
2. Determine winner population in the association layer.
3. Update weights: if association was correct, increase

weights of active synapses; decrease weights if
association was incorrect.

4. Repeat until all training data points have been
presented.

Fig. 2: Sampling Fisher's iris data set
[5] with virtual receptors. A) Virtual
receptors after training the neural
gas (NG) (2D PCA projection of 4D
space). Yellow lines represent edges
in the NG graph. B) Data representa­
tion in virtual receptor space (2D
projection of 10D space). The pro­
nounced structure indicates a large
amount of residual correlation.
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A) B)Fig. 4 A) Data representation after cor­
relation­dependent lateral inhibition (2D
projection of 10D space). Class overlap
may be an artefact from low­dimensio­
nal embedding ­ separability must be
judged by a classifier. B) Effect of de­
correlation on classifier performance
(five­fold crossvalidated, Gorodkin's K­
category correlation coefficient [6]). Er­
ror bars: min/max of three repetitions.

Conclusions
� Virtual receptors provide a non­negative representation of any real­

valued data set, suitable for processing with spiking neurons.
� Correlation­based lateral inhibition efficiently reduced residual

correlation from the virtual receptor representation.
� Decorrelation improved performance of the spiking classifier.
� We successfully implemented the classifier on a neuromorphic

hardware system with high speedup factor, an important step
towards bioinspired high­performance computing.
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