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Motivation

B Neuromorphic computing is an emerging technology that aims
at bioinspired high-performance computing with spiking neuro-
nal networks.

m The FACETS/Brainscales neuromorphic hardware system runs
networks of spiking neurons with a speedup of 104 [1].

m Our aim was to implement a network of spiking neurons that
can be trained in a supervised fashion, and to run this network
on neuromorphic hardware to classify multidimensional data.

m The structure of the first layers of neuronal processing in the
olfactory system provides a well suited template for a neuronal
architecture processing multidimensional data.

Challenges

Classifier circuit and learning rule

Challenge: Implement a supervised classifier that operates with
spiking neurons.

Solution: A spiking network implemented in PyNN [2], running in
the NEST simulator and on the FACETS/Brainscales hardware.

m A feature-encoding layer converges onto an association layer
that has winner-take-most properties (Fig. 1).

B The network is trained in a supervised fashion, using a percep-
tron-like learning rule operating on firing rates (Fig. 1 caption).

Sampling data with virtual receptors

Challenge: Firing rates of spiking neurons can only represent a
bounded and non-negative range of values. We need a suitable
transformation mapping real values into that value range.

Solution: Virtual Receptors (VR). The response strength of a VR
depends on its distance to the presented data point [3].

m \We use a Neural Gas (NG) algorithm [4] to distribute virtual re-
ceptors in data space, like olfactory receptors sample chemical
space (Fig. 2). Receptor response is computed as a function of
the distance between data point and receptor.

m This transformation yields a bounded and non-negative repre-
sentation of any real-valued data set. Dimensionality can be
adjusted to exceed the number of original data dimensions
(dimensional oversampling), enabling a sparser representation.

Decorrelation

Challenge: Virtual receptors provide correlated data, but the
classifier learning rule works best with uncorrelated data.

Solution: Decorrelation through lateral inhibition in a preproces-
sing layer (see decorrelation layer in Fig. 1).

m Three kinds of inhibitory connectivity matrices were tested:
NG-based (inhibitory connections between receptors given by
the NG graph edges), correlation (inhibitory weight depends on
correlation between receptors), and random lateral inhibition.

m Correlation-based lateral inhibition yields best decorrelation,
followed by NG and random connectivity (Fig. 3).

B Benchmarking the impact of decorrelation on classifier perfor-
mance shows an increase in accuracy with increasing lateral
inhibition, but no clear preference for a specific method, proba-
bly a ceiling effect of the spiking classifier (Fig. 4).

Implementation on neuromorphic hardware

Challenge: Hardware neurons vary in their firing rate response
(Fig. 5B). The classifier learns on output rate, so rate variation
has negative impact on the classifier performance.

Solution: Calibrate the sensitivity of neuron groups (glomeruli) to
achieve more homogeneous representation of input rates.

m \We developed a calibration method that balances
inhomogenities across model glomeruli (Fig. 5C).

m After calibration, the hardware implementation of the classifier
reaches the same performance as in the simulator (Fig. 5D).
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Fig. 1: Schematic of the neuromorphic classifier. Input
neurons (ORNs) emit poisson spike trains with averag ra-
tes according to the numeric values of the input pattern.
@ Synaptic weights between the decorrelation and associa-
S tion layers are subject to plasticity during classifier trai-
— ning (dashed lines). Classifier training algorithm:
populations 1. Present labeled data point, i.e., set firing rates accor-
ding to pattern.
@ i 2. Determine winner population in the association layer.
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A . Update weights: if association was correct, increase
6 weights of active synapses; decrease weights if
association was incorrect.
| fcomectons i dice B 4. Repeat until all training data points have been
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Fig. 5 A) Input-output relation (firing rate) in the simulator. Firing rate averaged over all neurons in a group (glo-
merulus). Colors denote different glomeruli. Each point corresponds to one stimulus presentation. B) Same se-
tup on in hardware neurons, C) after calibration. D)

- Classifier performance on simulator and
CO n CI u S I O ns on hardware (without lateral inhibition).
m Virtual receptors provide a non-negative representation of any real-
valued data set, suitable for processing with spiking neurons.

m Correlation-based lateral inhibition efficiently reduced residual
correlation from the virtual receptor representation.

m Decorrelation improved performance of the spiking classifier.

m We successfully implemented the classifier on a neuromorphic
hardware system with high speedup factor, an important step
towards bioinspired high-performance computing.
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