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Abstract  

Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for 

treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently 

been shown to suppress growth of several tumor cell lines, information regarding the effect of 

berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying 

the effects of berberine on regulating the fate of colon tumor cells, specifically the immorto Min 

mouse colonic epithelial (IMCE) cells carrying the Apcmin mutation, and of normal colon epithelial 

cells, namely young adult mouse colon (YAMC) epithelial cells. Berberine decreased colon 

tumor colony formation in agar, and induced cell death and LDH release in a time- and 

concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to 

berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP 

cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE 

cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-

inducing factor (AIF) release from mitochondria and nuclear translocation in a ROS production-

dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF 

expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, 

two targets of ROS production in cells, cathepsin B release from lysosomes and PARP 

activation were induced by berberine. Blockage of either of these pathways decreased 

berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS 

production leads to cathepsin B release and PARP activation-dependent AIF activation, 

resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial 

cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory 

effects of berberine on colon tumor cell growth.  
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Introduction 

Berberine is an isoquinoline alkaloid isolated from several plants, such as Hydrastis 

canadensis (goldenseal), Berberis aquifolium (oregon grape), and Berberis vulgaris (barberry). 

Berberine has been used to treat bacteria-associated diarrhea, intestinal parasitic infections, 

and ocular trachoma infections for several decades through its antimicrobial activities 

(Imanshahidi and Hosseinzadeh 2008). Various beneficial effects of berberine on several 

diseases have also been reported. For example, berberine’s immunoregulatory potential has 

been demonstrated by inhibiting HIV protease inhibitor-induced TNF and IL-6 production in 

macrophages (Zha et al 2010), enhancing progression of type 1 diabetes in mice, and 

decreasing Th17 and Th1 cell differentiation and cytokine production (Cui et al 2009). Other 

effects of berberine on diseases include reducing cholesterol levels in humans and hamsters by 

elevating LDL receptor expression (Kong et al 2004), inhibiting hepatic gluconeogenesis to 

improve glucose metabolism in diabetic rats (Xia et al 2011), and reducing the permeability of 

the blood-brain barrier and attenuating autoimmune encephalomyelitis in mice (Ma et al 2010). 

Recently, increasing evidence supports the inhibitory effect of berberine on growth of 

broad tumor cell types derived from leukocytes, liver, lung, gastrointestinal tract, oral, skin, 

brain, bone, bladder, breast, cervix, and prostate. Several mechanisms have been reported for 

berberine’s antitumor activity.  Berberine has been shown to suppress cancer cell growth and 

proliferation by inducing cell cycle arrest, stimulate cancer cell caspase-dependent apoptosis, 

reduce Bcl-2 and Bcl-xL levels and increase Bax and Bak levels, and inhibit metastasis by 

downregulating matrix metalloproteinases. Signaling pathways involved in anti-cancer effects of 

berberine include p53, MAPK, and NF-κB (Reviewed in (Sun et al 2009, Tang et al 2009)). 

These findings indicate the multiple mechanisms involved in anti-cancer effects of berberine on 

different tumor cell types.  

Apoptosis, occurring in a caspase-dependent manner, is the best-known modality of 

programmed cell death. Two canonical pathways have been shown to regulate caspase-



dependent apoptosis, extrinsic “death-receptor-mediated” and intrinsic “mitochondrial-mediated” 

(Hengartner 2000). The extrinsic pathway includes recruitment of adaptor molecules that 

activate caspase-2, -8 or -10. For the intrinsic pathway, mitochondrial outer membrane 

permeabilization causes cytochrome -c release, which binds caspase-9 to assemble a 

cytoplasmic complex called the apoptosome. These two pathways converge in the activation of 

caspase-3 and/or caspase-6 and -7. Both extrinsic and intrinsic apoptotic pathways are 

associated with the activation of caspase-activated DNase, which generates nuclear 

oligonucleosomal DNA fragmentation (Hengartner 2000, Taylor et al 2008). 

Programmed cell death can also occur through an alternative mitochondrial route, which 

is independent of caspase activation (Tait and Green 2008). In this case, loss of mitochondrial 

function results in release of mitochondrial proteins to induce cell death without activation of 

caspases. Apoptosis-inducing factor (AIF), a mitochondrial oxidoreductase, is one of the best-

studied mediators stimulating caspase-independent cell death (Joza et al 2001, Susin et al 

1999). AIF localizes normally in the intermembrane space of mitochondria. Upon cellular insult, 

AIF is cleaved by activated poly(ADP-ribose) polymerase (PARP)-1, and/or two cysteine 

proteases, calpains and cathepsins to yield truncated AIF (tAIF) (Polster et al 2005). tAIF 

relocates from the mitochondria to the cytosol and the nucleus, where it plays a key role in 

provoking large-scale DNA degradation and chromatin condensation (Susin et al 1999). 

Oxidative damage, such as generation of reactive oxygen species (ROS), has been shown to 

mediate PARP-1 activation and lysosomal permeabilization, triggering cathepsin B release, 

mitochondrial dysfunction, and AIF release, which leads to caspase-independent cell death (Yu 

et al 2002, Zong et al 2004). 

Colon cancer is one of the leading causes of cancer death in the developed world. Since 

the information regarding berberine’s effects on colon cancer development is limited, the 

purpose of this work was to investigate the mechanisms of action of berberine in colon tumor 

cells. Here, we report that berberine-induces ROS-mediated stimulation of AIF activation 



through cathepsin B release and PARP activation, which leads to caspase-independent cell 

death in colon tumor cells. However, normal colon epithelial cells are not as sensitive to 

berberine-induced cell death as colon tumor cells. These findings suggest that berberine may 

provide relative selectivity for colon cancer therapy, with less cytotoxic effects on normal colon 

epithelial cells.  

 

Results 

Berberine induces cell death and LDH release in colon tumor cells 

Berberine has been shown to suppress cell growth in tumor cell lines through various 

mechanisms (Sun et al 2009, Tang et al 2009). However, information regarding the  effect of 

berberine on colon cancer development is limited. Thus, we determined the effects of berberine 

on colon tumor cells. Familial adenomatous polyposis (FAP) can be caused by germline 

mutations in the adenomatous polyposis coli (Apc) tumor suppressor gene. The multiple 

intestinal neoplasia (Min) mouse has a germline mutation in the Apc gene and develops multiple 

polyps in the intestine. Thus, the Apcmin/+ mouse is an animal model of human FAP (Oshima et 

al 1995). We used immorto-Min mouse colon epithelium (IMCE) cells isolated from the colonic 

epithelium of the Apcmin/+ mouse crossed with the Immortomouse as a colon cancer cell model. 

Another colon tumor cell line, HT-29 cells, a human colon carcinoma cell line, was also studied. 

The young adult mouse colon (YAMC) epithelial cell line cells were used to assess berberine’s 

effects on normal colon epithelial cells. 

We first detected the effects of berberine on tumor cell colony formation. Overexpression 

the oncogene, ras, in IMCE (IMCEras ) cells promotes formation of colonies in agar. Co-culture 

of berberine with IMCEras cells markedly decreased the colony counts (Figure 1). These results 

indicate that berberine is capable of inhibiting colon cancer cell growth. 

To further determine the potential role of berberine in regulating the fate of colon cell lines, 

we treated IMCE, HT29, and YAMC epithelial cells with berberine at 50 μM for 1, 3, 6, 18, and 



24 h and then analyzed cell viability. Berberine treatment for 18 h and 24 h resulted in a 

significant reduction of cell number in IMCE cells (Figure 2A). When cells were treated with 

berberine at 12.5, 25, 50, 100 μM for 18 h, berberine treatment at 50 μM and 100 μM resulted in 

a significant induction of the death of IMCE cell lines (Figure 2B). Berberine also induced cell 

death in HT 29 cells (Supplementary Figure 1A). 

The release of intracellular components, such as LDH, is a marker for cell death. We 

therefore assessed whether treatment of cells with berberine resulted in LDH release. Berberine 

stimulated LDH release from IMCE cells in a time- and concentration-dependent manner (Figure 

2C-D). In HT-29 cells, LDH release was also induced by berberine treatment (Supplementary 

Figure 1B). 

Notably, In YAMC cells, berberine did not induce cell death (Figure 2A-B) or LDH release 

(Figure 2C-D) at 50 μM and 100 μM with 18 h or 24 h treatment. No loss of YAMC cells 

detected using the cell viability assay was found when cells were treated with berberine at 

concentrations from150 μM to 300 μM (Supplementary Figure 2A). Berberine at concentrations 

of higher than 150 μM increased LDH release in YAMC cells (Supplementary Figure 2A). The 

effects of 200 μM of berberine treatment on LDH release in YAMC cells was observed at the 

similar levels as those induced by 50 μM of berberine treatment in IMCE cells. These data 

suggested that colon tumor cells are more sensitive to cell death by berberine treatment, 

compared to normal colon epithelial cells. 

 

Berberine-induced cell death is caspase-independent in IMCE cells 

Since caspase-dependent apoptosis is the best-known modality of programmed cell death, we 

determined whether berberine-induced cell death is due to apoptosis in IMCE cells. We 

analyzed caspase activation and PARP cleavage in cells treated with berberine. None of the 

caspases, including caspase-3, caspase-6, caspase-9, and caspase-12 were activated by 



berberine in IMCE and YAMC cells (Figure 3A). In addition, berberine did not stimulate cleavage 

of PARP (Figure 3A) in these two cell lines.  Cells were treated with TNF and cycloheximide as 

a positive control for stimulating apoptosis. TNF and cycloheximide cotreatment activated 

caspases-3, 6, 9 and 12 and stimulated PARP cleavage in both IMCE and YAMC cells (Figure 

3A). Consistent with these data, berberine-stimulated cell death and LDH release in IMCE cells 

were not blocked by the caspase inhibitor, as expected, zVAD-fmk in IMCE cells (Figure 3B-C). 

However, zVAD-fmk inhibited TNF and cycloheximide-induced cell death in both IMCE and 

YAMC cells (Figure 3B-C). These data indicate that berberine induced colon tumor cell death in 

a caspase-independent manner. 

 

Berberine-induced caspase-independent cell death in IMCE cells requires ROS production  

Berberine has been shown to stimulate ROS production in several types of tumor cells to induce 

apoptosis (Hyun et al 2010, Meeran et al 2008). However, other studies reported that 

generation of ROS mediates caspase-independent cell death (Yu et al 2002, Zong et al 2004). 

Here, we determined whether berberine-induced ROS production served as a possible 

upstream mediator of caspase-independent cell death in IMCE cells. ROS production was 

detected using dihydroethidium, a cell-permeable fluorescence dye that reacts with a broad 

spectrum of ROS and is analyzed by flow cytometry. The results showed that berberine 

treatment resulted in an increase in ROS production in a concentration-dependent manner only 

in IMCE cells, but not in YAMC cells (Figure 4A). In addition to ROS production, we measured 

mitochondrial membrane potential by staining cells with JC1 dye. We found that berberine 

induced mitochondrial depolarization in a concentration-dependent manner IMCE cells, but not 

in YAMC cells (Figure 4B). We further found that pretreatment of cells with Tiron, a cell 

permeable ROS scavenger, blocked cell death and release of LDH in IMCE cells (Figure 4C-D), 

suggesting that ROS generation by berberine is required for colon tumor cell death. This 



conclusion is further supported by the fact that no ROS production and cell death (Figure 2) was 

observed in YAMC cells treated with berberine. 

 

Berberine induces AIF release from the mitochondria and nuclear translocation, which is 

required for cell death in IMCE 

As a consequence of ROS production, loss of mitochondrial membrane potential may result in 

caspase-independent cell death.  To determine whether the mitochondrial pathway was 

involved in induction of cell death by berberine, we examined the effect of berberine on AIF 

activation. AIF is a mediator known to be involved in the induction of the caspase-independent 

pathway. AIF is released from mitochondria in response to death stimuli, and subsequently, 

translocated into the nucleus leading to nuclear condensation. We analyzed AIF localization by 

Western blotting analysis of fractioned cellular components. Berberine treatment induced AIF 

release to the cytosol and translocation to the nuclei because AIF accumulated in the cytosolic 

and nuclear fractions, and less AIF was found in the mitochondria (Figure 5A). Moreover, 

immunofluorescence showed a granular pattern (mitochondrial distribution) in control, whereas 

AIF was detected in the nuclei upon berberine treatment in IMCE cells, but not in YAMC cells 

(Figure 5B). 

To further study the role of AIF activation in berberine-induced cell death, we knocked 

down AIF expression in IMCE cells by transfecting AIF targeted siRNA (Figure 5C). We found 

that down-regulation of AIF expression ameliorated cell death and LDH release induced by 

berberine in IMCE cells, compared to non-transfected cells or cells transfected with a non-

targeting siRNA (Figure 5D-E). These results indicate the requirement of AIF release from the 

mitochondrial to cytoplasmic for berberine-induced cell death in tumor cell lines. 

 

Cathepsin B release mediates berberine-stimulated AIF activation and cell death in IMCE cells. 



Since several studies have reported that ROS production induced permeabilization of 

lysosomes, we tested whether berberine-induced ROS production could stimulate cathepsin-B 

release. Immunofluorescence results confirmed that berberine induced cathepsin-B release 

from the lysosome and nuclear translocation in berberine-treated IMCE cells, but not YAMC 

cells (Figure 6A). To investigate the role of ROS in AIF activation, possibly through cathepsin B 

release from lysosomes, we pretreated IMCE and YAMC cells with the ROS scavenger, Tiron, 

or the cathepsin B inhibitor CA-074 Me. Tiron inhibited berberine-induced cathepsin-B and AIF 

release into the cytosol (Figure 6B). CA-074 Me pretreatment showed the same inhibitory effect 

on berberine-induced cathepsin-B and AIF release (Figure 6B). Furthermore, CA-074 Me 

decreased cell death and LDH release induced by berberine in IMCE cells (Figure 6C-D). These 

results indicate that berberine-induced cathepsin B release mediates AIF activation and 

caspase-independent cell death in colon tumor cells. 

 

Berberine activation of PARP regulates AIF activation and cell death in IMCE cells 

Studies have shown that PARP activation is another target for oxidative stress for stimulating 

AIF activation (Li et al 2007). We tested whether PARP activation was involved in the berberine-

induced mitochondrial AIF release in IMCE cells. Berberine activated PARP in IMCE cells in a 

time- and concentration-dependent manner (Figure 7A-B). The PARP activation inhibitor, DPG, 

prevented berberine-induced cell death (Figure 7C) and LDH release (Figure 7D). Moreover, 

DPG inhibited berberine-induced AIF release into the cytosol in IMCE cells (Figure 7E). Thus, 

activation of PARP may serve a mechanism by which berberine induces caspase-independent 

cell death through activation of AIF in colon tumor cells. 

 

Discussion 

Considerable attention has been given to the identification of naturally occurring 

chemopreventive or chemotherapeutic reagents capable of inhibiting or reversing the tumor 



development process, including colon tumorigenesis. The evaluation of ancient herbal products 

that have been widely used for other diseases may provide insight into developing these herbs 

into new therapies for cancer treatment. Berberine, which has been used to treat bacteria-

associated diarrhea, intestinal parasitic infections, and ocular trachoma infections for several 

decades, represents one of these herbs. In the present study, we showed that berberine 

decreased colon tumor colony formation and induced caspase-independent cell death in the 

IMCE colon tumor cell line. We further showed that the mechanism underlying berberine-

induced cell death was through ROS-production-dependent AIF activation. Furthermore, two 

targets of ROS production in cells, namely cathepsin B release from lysosomes and PARP 

activation, regulated AIF activation by berberine. Notably, YAMC cells, a normal colon epithelial 

cell line, were not susceptible to berberine-induced cell death and ROS production. Therefore, 

these results suggest that berberine may prevent and/or treat colon tumors through inducing 

caspase-independent cell death, with potentially little, or no side effects on normal colon cells. 

The effects of berberine on inhibiting growth of a broad number of tumor cell types have 

been reported through various mechanisms, including suppressing proliferation and stimulating 

caspase-dependent apoptosis, through regulating signaling pathways, such as p53, MAPK, and 

NF-κB (Sun et al 2009, Tang et al 2009). The reported evidence suggests that the mechanism 

of berberine’s anti-tumor effects is tumor cell line-specific. In our studies, when IMCE cells were 

treated with berberine, there were no effects on p53, MAPK, or NF-κB pathways (data not 

shown). A novel finding from our studies is the activation of AIF by berberine leading to 

caspase-independent cell death and the link between berberine-induced ROS generation and 

AIF activation in colon tumor cells. These results reveal a new mechanism for berberine’s action 

that may be important for colon tumor prevention and treatment. However, it should be noted 

that this may not be the sole mechanism for berberine’s activity in colon tumor cells.  

The clinical efficacy of chemotherapeutic drugs is largely dependent on their ability to 

trigger tumor cell death, and activation of apoptosis is one of the well-studied mechanisms 



involved in this process. However, increasing evidence suggests that there are forms of 

chemotherapy-induced cell death that are different from apoptosis or necrosis (Leist and 

Jaattela 2001). Thus, strategies targeting AIF-mediated caspase-independent cell death have 

been applied as a therapeutic treatment for cancers. For example, a plant drug from Scutellaria 

barbatae that stimulates AIF translocation from the mitochondria to the nucleus showed anti-

tumor effects in breast cancer patients (Rugo et al 2007). Since cathepsin release from 

lysosomes regulates the AIF-mediated cell death pathway and several members of the 

cathepsin family have been implicated in cancer progression and metastasis (Joyce et al 2004, 

Turk et al 2004), cathepsin is a potential target to modulate caspase-independent cell death for 

cancer treatment. For example, paclitaxel poliglumex, which triggers disruption of the lysosomal 

integrity followed by cathepsin B release and cell death, has shown efficacy for patients with 

advanced non-small cell lung carcinoma in a phase III clinical trial (Albain et al 2006). Based on 

these encouraging results from clinical trials, berberine may be considered for further studies as 

a promising candidate for colon tumor prevention and treatment through modulating the AIF 

pathway leading to caspase-independent cell death in colon tumor cells. 

Although caspase-dependent apoptosis plays a role in embryologic development and 

pathogenesis of several diseases, evidence suggests that death stimuli trigger alternative types 

of cell death in these physiological and pathological processes, such as cell death without the 

involvement of caspase activation. For example, caspase inhibition by zVAD-fmk exacerbated 

TNF toxicity by enhancing oxidative stress and mitochondrial damage, resulting in kidney failure 

and death in mice, which suggested the pathophysiological relevance of caspase-independent, 

ROS-mediated pathways in response to lethal TNF-induced shock (Cauwels et al 2003). 

Although berberine has been shown to induce caspase-dependent apoptosis in tumor cells (Sun 

et al 2009, Tang et al 2009), it is also possible that the same stimulus can trigger cell death 

through caspase-dependent and caspase-independent mechanisms in different cell lines. For 

example, FAS ligand induced cell death in Jurkat cells in the absence of caspase activity, but 



caspase activity was required for FASL-induced cell death in other cells (Holler et al 2000). Our 

results in the current study showed that the capase inhibitor, zVAD-fmk, suppressed cell death 

induced by TNF and cycloheximide, but not berberine, which is consistent with the result that 

TNF and cycloheximide, but not berberine stimulated caspase activation. These findings 

support our conclusion that berberine induces caspase-independent cell death. However, 

several possibilities should be noted, such as inefficiency of zVAD-fmk inhibition and the 

cytotoxicity of this inhibitor, which can itself induce cell death. zVAD-fmk alone did not stimulate 

cell death in ether IMCE or YAMC cells, and while it may have the potential to increase 

berberine’s cytotoxicity, we observed no such effect. In addition, the question of whether 

caspase-independent cell death is the sole method for cell death in berberine-treated tumor 

cells remains to be investigated. It is possible that berberine-induced caspase-independent cell 

death may trigger apoptosis in the later stage of berberine treatment.  

ROS generation is implicated in the pathogenesis of many chronic diseases, including 

cancer, and therefore, the potential side effects of berberine-mediated ROS production should 

not be ignored. One interesting finding from our studies is that normal colon epithelial cells are 

less sensitive to berberine-induced cell death, compared to colon tumor cells. In YAMC cells, 

berberine did not induce ROS production (Figure 4), cell death (Figure 2A-B) or LDH release, 

whereas these treatment conditions induced cytotoxicity by ROS production in tumor cells. 

Berberine exerted similar cytotoxic effects on prostate cancer cells (Meeran et al 2008) and 

inhibited hepatoma cell invasion (Liu et al 2011) through ROS production, but not in normal 

prostate (Meeran et al 2008)  and liver cells (Liu et al 2011). These results indicate that normal 

cells, including colon epithelial cells, are resistant to berberine-induced oxidative stress. We 

have performed further experiments to investigate the mechanisms by which normal colon 

epithelial cells are less sensitive to berberine, and found that that absorption of berberine by 

YAMC is lower than that by IMCE cells (data not shown). Thus, cancer cells are potentially 

specific targets of berberine. 



In conclusion, the present study provides novel insight into the mechanism of berberine-

induced caspase-independent cell death in both human and mouse colon tumor cells. These 

results will serve as the basis for in vivo studies to investigate the effects of berberine on colon 

tumor cancer development, which may make it a promising new relative selective therapeutic 

approach for colorectal cancer. 

 

Materials and methods 

Cell culture  

The young adult mouse colon (YAMC) epithelial cell line is a conditionally immortalized murine 

colon epithelial cell line isolated from the H-2Kb–tsA58 mouse expressing a heat-labile simian 

virus 40 large T antigen with an IFN-γ-inducible promoter (Immotomouse) (Whitehead et al 

1993). The immorto-multiple intestinal neoplasia (Min) mouse colon epithelial (IMCE) cell line 

was generated from the colonic epithelium of Apcmin/+ mouse crossed with the Immortomouse 

(Whitehead and Joseph 1994). 

YAMC and IMCE cells were maintained in RPMI 1640 media supplemented with 5% 

fetal bovine serum (FBS), 5U/ml of murine IFN-γ, 100U/ml penicillin and streptomycin, 5 μg/ml 

insulin, 5 μg/ml transferrin, 5 ng/ml selenous acid on collagen coated plates at 33°C (permissive 

condition) with 5% CO2. Prior to all experiments, cells were serum-starved for 16-18 h in RPMI 

1640 containing 0.5% FBS and 100 U/ml penicillin and streptomycin (no IFN-γ) at 37°C (non-

permissive condition). HT 29 human colon carcinoma cells were grown in DMEM media supplemented with 10% FBS at 37 °C. Cells were serum-starved (0.5%) at 37°C for 16-18 h before experiments.  
 

Transient transfection of siRNA 



 IMCE cells were transiently transfected with either 20 nM non-targeting siRNA or 20 nM mouse 

AIF siRNA (Cell Signaling Technology) at 80% confluence using Lipofectamine 2000 (Invitrogen 

Corporation), according to the manufacturer’s instructions. After 24 h transfection, cells were 

treated with berberine in serum-starved medium for 18 h for cell viability assay and LDH release 

assay. Cellular lysates were collected at the end of the experiment for Western blot analysis to 

determine the AIF expression level.  

 

Colony formation assay 

IMCE cells with overexpression of v-Ha-ras gene (IMCEras) were used to detect colon formation, 

as described previously (D'Abaco et al 1996). Briefly, cells were prepared in 0.35% agar in 

IMCE cell culture medium, and overlaid onto the basal agar’s layer (0.5% agar in IMCE cell 

culture medium). Cells were cultured at 33°C (permissive condition) with 5% CO2 for 14 days for 

growth of colonies. Prior to count colonies, cells were stained using the CellTiter®120 

AQueousOne Solution Cell Proliferation Assay (Promega) according to the manufacturer’s 

instructions. Colonies of >50 μm were counted by an automated colony counter (Biologics, Inc., 

Gainesville, VA). 

 

Cell viability assay 

1,500 cells/well were plated in 96-well plates and cultured overnight to reach 70% confluence 

under permissive conditions. After culture under non-permissive conditions for 18 h, cells were 

treated with berberine in the presence or absence of a cell permeable ROS scavenger, Tiron 

(4,5-dihydroxy-1,3-benzenedisulfonic acid, Santa Cruz Biotechnology), a cell permeable 

cathepsin B inhibitor, CA-074 Me (L-3-trans- (Propylcarbamoyl)oxirane-2-Carbonyl)-L-soleucyl-

L-Proline Methyl Ester, Enzo, Life Sciences), caspase inhibitor, zVAD-fmk (BD PharmingenTM), 

a PARP inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ), (Sigma-

Aldrich), or a cell permeable caspase inhibitor, Z-VAD-FMK (Promega). Cell viability was 



assessed using the CellTiter®120 AQueousOne Solution Cell Proliferation Assay (Promega) 

according to the manufacturer’s instructions. The cell number standard curve was generated to 

determine the cell number in each treated group. 

 

LDH release assay 

Cells were cultured and treated as described in the cell viability assay above. Cell culture 

supernatants were collected and LDH release was measured using the CytoTox 96® Non-

Radioactive Cytotoxicity Assay (Promega) according to the manufacturer’s instructions. Data 

were expressed as percentages of control values. 

 

Detection of mitochondrial membrane potential (Δψ) 

Δψ was measured using the Flow Cytometry Mitochondrial Membrane Potential Detection kit 

(BDTM Mitoscreen) according to the manufacturer’s instructions. Briefly, after treatment, cells 

were resuspended in 0.5 mL of JC-1 solution and incubated at 37°C for 15 min. After rinsing, 

cells were analyzed by flow cytometry. A dot plot of red fluorescence (living cells with intact Δψ) 

versus green fluorescence (cells with lost Δψ) was recorded. Data were expressed as 

percentage of cells with lost Δψ. 

 

Detection of intracellular ROS level 

ROS production was detected using 2',7'-dichlorofluorescein diacetate (DCFH-DA) (Molecular 

Probe), according to the manufacturer’s instructions. After treatment, cells were incubated with 

10 μM of DCFH-DA dye in PBS for 15 min and washed with PBS 3 times. Fluorescence 

intensity of cells was analyzed using flow cytometry. Data were expressed as percentages of 

control values (DCF fluorescence in untreated cells).  

 



PARP activation assay 

PARP activity in cells was detected using the Universal Colorimetric PARP Assay Kit (Universal 

Colorimetric PARP Assay kit (Trevigen, Inc., Gaithersburg, MD) according to the manufacturer’s 

instructions. Data were expressed as percentages of control values. 

 

Preparation of cytosolic, nuclear and mitochondrial fractions 

Cells were scrapped in buffer-A containing 10 mmol/L Tris-HCl (pH 8), 1.5 mmol/L MgCl2, 1 

mmol/L EDTA, 1 mmol/L 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane; 

dichlorodiphenyltrichloroethane (DDT), 1 mmol/L phenylmethylsulfonylfluoride, 5 μg/mL 

pepstatin-A, 1 μg/mL leupeptin, and 2 μg/mL aprotinin. After centrifugation at 300 x g for 10 min, 

the supernatant was saved as the cytosolic fraction. The cell pellet was resuspended in buffer-A 

plus 0.1% Triton X-100, and incubated on ice for 10 min. After centrifugation at 12,000 x g for 10 

min, the supernatant was saved as the mitochondrial fraction. The pellet was resuspended in 

buffer-B containing 20 mmol/L Tris-HCl (pH 8), 420 mmol/L NaCl, 1.5 mmol/L MgCl2, 1 mmol/L 

EDTA, 1 mmol/L DDT, 25% glycerol, 1 mmol/L phenylmethylsulfonyl-fluoride, 5 μg/mL 

pepstatin-A, 1 μg/mL leupeptin, and 2 μg/mL aprotinin, and agitated for 30 min at 4 °C. The 

nuclear fraction was collected after centrifugation at 20,200 x g for 10 min. Protein concentration 

was determined using a BCA protein assay kit (Pierce Thermo, Scientific). GAPDH (cytosolic 

marker), Ki-67 (nuclear marker), and COX IV (mitochondrial marker) were used to determine the 

purity of the fractions. 

 

Western blot analysis 

For preparing total cellular proteins, cell monolayers were rinsed twice with cold PBS and then 

scraped into cell lysis buffer (50 mM Tris-HCl (pH 7.4), 120mM NaCl, 1% NP-40) with protease 

and phosphatase 1 and 2 inhibitor cocktails (Sigma-Aldrich). The scraped suspensions were 



centrifuged (14,000×g for 10 min) at 4°C, and the protein concentration was determined using a 

BCA protein assay kit (Pierce Thermo, Scientific). 

Equal amounts of total and fractionated proteins were mixed with Laemmli sample buffer 

and separated by SDS-polyacrylamide gel electrophoresis for Western blot analysis using 

antibodies against-cleaved PARP (Cell Signaling), cleaved caspase 3 (Cell Signaling), cleaved 

caspase 6 (Cell Signaling), cleaved caspase 9 (Cell Signaling), cleaved caspase12 (Cell 

Signaling), AIF (Cell Signaling), Cathepsin-B (Milipore), Ki-67 (Novocastra), GAPDH (Cell 

Signaling), COXIV (Cell Signaling), and β-actin (Santa Cruz Biotechnology).  

 

Immunostaining 

After treatment, cells were washed with PBS and fixed using 4% paraformaldehyde for 15 min 

at room temperature. Cells were permebilized using 2% Triton X-100 for 5 min in PBS at room 

temperature and blocked in 3% bovine serum albumin in PBS containing 1% Triton X-100 for 1 

h at room temperature. Slides were then incubated with anti-AIF antibody (Santa Cruz 

Biotechnology) or anti-cathepsin B (Ab-1) monoclonal antibody (Calbiochem) over night at 4°C 

and a FITC-labeled goat anti-rabbit IgG (Zymed) antibody at room temperature for 1 h. Slides 

were mounted using Vectashield Mounting Medium containing DAPI and observed using 

fluorescence microscopy. FITC and DAPI images were taken from the same field. 
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Figure legends 

Figure 1. Berberine inhibits colon tumor colony growth in soft agar. IMCEras cells were cultured 

in 0.35% agar on the basal 0.5% agar’s layer in IMCE cell culture medium in the presence or 

absence of the indicated concentrations of berberine at 33°C for 14 days. Prior to counting 

colonies, cells were stained using the CellTiter®120 AQueousOne Solution Cell Proliferation 

Assay. Colonies of >50 μm were counted. The data are shown as fold increase in comparison 

with the colony cultured without berberine (control). Data represent at least 3 independent 

experiments, each performed in triplicate. * p < 0.01 compared to the control group, # p < 0.01 

compared to the 50 μM of the berberine treated group. 

 

Figure 2. Berberine induces cell death and LDH release in the colon cancer cell line, IMCE 

cells. Cells were treated with berberine at 50 μM for indicated times (A and C) or at indicated 

concentrations for 18 h (B and D). Cell viability was assessed using the CellTiter®729 

AQueousOne Solution Cell Proliferation Assay (A-B). % of cell number change was calculated 



as: [(cell number at the end of treatment)-(cell number before treatment)] / (cell number before 

treatment). Cell culture supernatants were collected for detecting LDH release using the 

CytoTox 96® 159 Non-Radioactive Cytotoxicity Assay (C-D). LDH release is expressed as a 

percentage of control in each experiment. Data represent at least 3 independent experiments, 

each performed in triplicate. * p < 0.01 compared to the control group. 

 

Figure 3. Berberine induces cell death through a caspase-independent mechanism in IMCE 

cells. Cells were treated with berberine at 50 μM for the indicated times. Cellular lysates were 

collected for Western blot analysis using cleavage (active) forms of caspases and PARP 

antibodies (A). The actin blot was used as a protein loading control. Cells were treated with 

berberine at 50 μM for 18 h or TNF (100 ng/ml) and cycloheximide (1 μg/ml) for 6 h in the 

presence or absence of a caspase inhibitor, zVAD-fmk (25 μM). Cell number change (B) and 

LDH production (C) were detected as described in Figure 2. * p < 0.01 compared to the control 

group. * p < 0.01 compared to the TNF/cycloheximide treated group. 

 

Figure 4. Berberine-induced ROS production is required for cell death in IMCE. Cells were 

treated with berberine at indicated concentrations for 18 h (A and B). Intracellular ROS levels 

were detected using DHE probe and the amount of fluorescence was measured using flow 

cytometry. The fold change of the amount of fluorescence was calculated by comparing that in 

the treated groups to the control group (A). Cells were treated with the JC-1 probe and then 

analyzed by flow cytometry to measures the fraction of cells with polarized or depolarized 

mitochondrial membrane (B). Cells were treated with berberine at 50 μM for 18 h in the 

presence or absence of 5 μM of Tiron, a ROS scavenger. Cell number change (C) and LDH 

release (D) were detected as described in Figure 2. * p < 0.01 compared to the control group, # 

p < 0.01 compared to the berberine treated group. 



 

Figure 5. Berberine stimulates AIF release from the mitochondria to the cytoplasm and nuclear 

translocation in IMCE, which is required for berberine-induced cell death. Cells were treated 

with berberine at 50 μM for the indicated times. Cytoplasmic, nuclear, and mitochondrial 

fractions were prepared for Western blot analysis using anti-AIF, anti-GAPDH (cytosolic 

marker), anti-COX IV (mitochondrial marker) and anti-Ki-67 (nuclear marker) antibodies (A). 

Immunostaining was performed to localize AIF using an anti-AIF antibody and a FITC-

conjugated secondary antibody (green) and nuclei using DAPI staining (blue). Arrows indicate 

nuclei with AIF translocation (B). IMCE cells transfected with AIF siRNA or non-targeting siRNA 

for 24 h were treated with berberine at 50 μM for 18 h to detect number change (D) and LDH 

release (E) as described in Figure 2. AIF expression levels were detected by Western blot 

analysis using an anti-AIF antibody (C). Actin blot was used as a protein loading control. * p < 

0.01 compared to the control group. 

 

Figure 6. Berberine-stimulated cathepsin B release through ROS production is required for AIF 

activation in IMCE. Cells were treated with berberine at 50 μM for 18 h in the presence or 

absence of the ROS scavenger, Tiron (5 μM) or the cathepsin B inhibitor, CA-074 Me (100 nM). 

Immunostaining was performed to localize AIF using an anti-cathepsin B antibody and a FITC-

conjugated secondary antibody (green) and nuclei using DAPI staining (blue) (A). Cathepsin B 

staining shows granular lysosomal pattern in control cells and berberine treated YAMC cells and 

a diffuse cytosolic pattern with more nuclear distribution after berberine treatment in IMCE cells. 

Cytoplasmic fractions were prepared for Western blot analysis using anti-cathepsin B, anti-AIF, 

anti-GAPDH antibodies (B). Cell number change (C) and LDH release (D) were detected as 

described in Figure 1. * p < 0.01 compared to the control group, # p < 0.01 compared to the 

berberine treated group. 



 

Figure 7. Berberine activates PARP in IMCE, which mediates berberine-mediated AIF 

activation and cell death. Cells were treated with berberine at 50 μM for the indicated times (A) 

or at the indicated concentrations for 18 h (B). PARP activity was measured using the HT 167 

Universal Colorimetric PARP Assay Kit. PARP activation is expressed as a percentage of 

control in each experiment. Cells were treated with berberine at 50 μM for 18 h in the presence 

or absence of (25 μM) of DPG, a PARP activation inhibitor. Cell number change (C) and LDH 

release (D) were detected as described in Figure 2. The cytosolic fractions were prepared for 

Western blot analysis of AIF, as described in Figure 3 (E). * p < 0.01 compared to the control 

group, # p < 0.01 compared to the berberine treated group. 
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