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Formal Systems Architectures

for Biology
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S: synthetic sickness or lethality =
= H: sequence homology
- X: correlated expression

- P: stable physical interaction
== R: transcriptional regulation
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Formal Architectures: where to start?

Motif #1: Dominoes and Clocks

* how can we describe the function of cellular oscillations in cell cycle
(dominoes) and embryogenesis (clocks)?

Motif#2: Futile Cycles

* what is the function and origin of futile cycles, and what is there effect on the
broader biological system?

Motif #3: Complex Feedforward

* what are the dynamics of control without feedback, and how does this drive
observed complexity?

Additional Feedback, Feedforward Mechanisms

* interconnected futile cycles, networks of flows, controllability of evolvability.
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Linear and Recursive Architectures
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Fig. 1. The enzymatic futile cycle reaction mechanism.

#1. Clock model, Embryogenesis:

Murray, A.W. & Kirschner, M.W (1989).
Dominoes and Clocks: The Union of Two Views
of the Cell Cycle. Science, 246(4930), 614-621.

#2. Futile Cycle, enzymatic pathway:

Samoilov, M., Plyasunov, S., & Arkin, A.P.
(2005). Stochastic amplification and signaling in
enzymatic futile cycles through noise-induced
bistability with oscillations. PNAS USA, 102(7),
2310-2315.
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Linear and Recursive Architectures

#1. Cell cycle (domino model)

*  example: path-dependent.
Signaling pathways.

* example: circular. Cell cycle
(mitosis).

#3. Complex Feedforward

* example: competitive
inhibition. Two enzymes
binding to the same product.

* example: Daisyworld.
Evolution/regulation of the
biosphere.

Path-dependent

Competitive Inhibition

E+S<= ES = E+P
Product
Substrate

= p
Enzyme ‘ ‘ N
d 7 0
0
)
nhibitor -

Competitive Inhibition
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Motif #1: Dominoes and Clocks

Cell cycle: set of events responsible for the duplication of the cell.

* geneticists (G, mutations that arrest cell cycle) and embryologists/physiologists
(E/P, arrest/facilitation of cell cycle) have provided two different perspectives.

* G approach has done well at describing linear, path-dependent processes.

* E/P approach has done well at describing oscillating processes.

Study of mutants:

* how individual cell cycle steps are
coordinated so that things occur in the right
order.

* each step is dependent on the previous one.

* explains coordinated cell size regulation
(doubling time and number of steps involved
can be decoupled).

fit
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o cdetd

Inferphage e—— il

Fig. 3. A model for the induction
of mitosis in the fisston yeast. Gene
products are shown as stimulating
(—) or inhibiting (=) the activity
of other gene products. The k2
and fe13 gene products arc shown
acting in concert to induce mitosis,
Based on (72).
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Motif
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1: Dominoes and Clocks

Cyclin is stable in cells that are arrested

in meiosis or mitosis:
* cyclin degradation required to exit cell cycle.

* synthesis of cyclin required for activation of
MPF in mitosis/meiosis.

* cyclin protein accumulates until rate of MPF
activation by cyclin exceeds rate of MPF
inactivation by enzyme, leading to overall MPF
activation.

* MPF is a kinase, phosphorylates proteins
involved in cell morphology and
posttranslational modifications, lead to cyclin
degradation.

* cyclin lost, MPF also deactivated via

inactivase.

* no MPF activity turns off cyclin degradation,
resets cyclin accumulation.



Nature Precedings : doi:10.1038/npre.2011.6369.2 : Posted 20 Sep 2011

Motif
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1: Dominoes and Clocks

Left: switch-like mechanism of the
embryonic cell cycle.

* activity of MFP oscillates between
high and low (switch-like) across
cell cycle phases.

Right: clock-like mechanism of the
somatic cell cycle.

* activity of MPF oscillates with
specific spikes (analog-like) across
cell cycle phases.
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Motif #1: Dominoes and Clocks

Evolutionary Perspective:

* cell cycle as a set of dependent reactions. Therefore, cell cycle should be
evolutionarily conserved, both between oocyte and somatic cells, and across
species.

* compare the evolvability of cell cycle (highly constrained) with the evolvability
of Hox genes and phenotypic modularity (highly constrained).

* cell cycle as set of dominoes. Process highly (historical) contingent on previous
step.

Noise Perspective: Lorentz Attractor
and Logistic Map

* cell cycle as a clock-like process (time- |« "
dependent). Clocks are deterministic, is | 1 ’W i
there room for stochastic processes? B \

04 \’z\
* chaotic systems are oscillatory (attractors |
sensitive to initial condition). SN
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Motif #1: dominoes and clocks

One outstanding problem
remains: path-dependent
phenomena that occur in a

loop (top).

Recursion that enforces
balance between two entities
(seesaw model, bottom).

* does this resemble futility?
Running in place?

* does this resemble
autoregulation? Homeostasis?

Perhaps there are elements of

I
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Motif #2: futile cycles

Futile cycles: two processes running at the same time in opposite directions,
and have no output product other than entropy and heat energy.

Samoilov, Plysunov, and Arkin (2005). PNAS USA, 102(7),
2310-2315.

* also observed in signal transduction, metabolism, MAPK
cascades, GTPase cycles, produces bimodal output.

* alternative explanation for Menten-Michaelis (linear) kinetics
with feedbacks.

* authors propose analytical framework using Langevin SDEs
governed by M-M Kkinetics and driven by noise.

Two effects: 1) stochastic signal amplification and 2)

mechanism for multistability (dynamic switching between Technological futile cycles?
st ates). Top: biomechanical energy
harvester, Bottom: human
batteries
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Motif #2: futile cycles

Top Left: stationary state response curves for
a range of values (p). Ranges from p=0
(deterministic, sigmoidal) to p = 1 (maximum
noise, S-curve).

Bottom Left: signal response histograms (X, y

S 40 45 S0 axes = top left. Evolution of PDF (points and
Fig. 2. The analytical stationary-state response curves, Ry, for the enzy-
matic futile cycle (Fig. 1 with parameters of Fig. 3}, obtained by using Egs. 1, CODtOUFS)Z

3, and 6with r— = 0.2 and various values of p {includes the deterministic curve,
which largely overlaps).

* external noise introduced (graph A) = induced

A _— bistability (bimodal distribution on axis z).

* internal noise only (graph B) = no induced
P . bistability.

= o s g W o SO Real-world example: Control and Regulatory

5= ] Mechanisms Associated with Thermogenesis
s I in Flying Insects and Birds. Bioscience
- dlmﬁ,,:_/f“ - Reports, 25(3/4), 2005.

B T S L R IR e * facultative thermogenesis: ability to generate body

heat on demand -- product of futile cycle reactions in

table behavior is not cbserved

fat pads.
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Motif #

2: futile cycles

Qian and Beard, IEE Proc. Systems Biology, 153(4), 192-200 (2006).
Main idea: understand steady-state concentrations of c,, ¢, (intermediates) w.r.t. net

flux J at fixed enzyme activities.

* how can we increase/reduce
agent of process x) w.r.t. J?

stochiometric sensitivity of c, (regulator/control

c,, J at steady state

Stochiometric sensitivity
coefficients (n)

&, 1
oy = ?lﬁﬁ —?...'r (2%
ki ks ks + Kk_
e — == ¥ 3
©2 k_ J-.'_:E"' k_ k_s 3)
| I ey | ¥
= | = (4)
7 AlnJ| ko
RGN s . (5
=1 M| Tk ke,

High grade chemical energy converted to

rev rev

low grade heat energy (but does it retain

0 kfwd 1 kfwd 2

information content?)
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Motif
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a Biochermical reaction between species (F and |1 |n |5r_\|.al:|.-d system
Il:d.l:'h“h its equilibnum with concentrations e = ky fk—y =
e e Enzryme can change the rate constants, but not the fres

energy di fference AGY. Hows ever, if this reaction is coupled to other
rl:.a.l:tlr_'nns in an open biochemi cal network as shown in Fig. 28, a
futi c cycle is able= to shift the pupula‘llun ratio oy /cp to be greater
{or less) than the equilibrium value &) fk_

b Additional reactions involve species O and E. There is now a futile
cycle involving species O and |

Equilihriurn between 0 and E is cfl/c8 = o5 (efih_sh = kkg,/

{k_ k_3). If the concentrations of 0 and E i are not at their |:r.|m||br|1ir"

then Inijcgk ks 1C7\-. 1k_3)) = Al oy # (0, which is the active energy
source (e.g. nucleotide hxd:ru wEis) “that pumps the futile cycle. In a
steady state this energy is dasstpa‘trd as heat. Same mechanism is
behind the nuclear Owverhsuser effect in magnetic resonence, kinetic
proofreading in biosynthesis [6], and catalytic wheel [9]

D, E are coupled to

D E reaction between CO0, D E
AGy <0 C1

U directional futile cycle U

cl 1c that can be driven to c c
edge of chaos.

2: futile cycles

Interesting findings:

* sensitivity increases as one moves downstream (cO
— C2)

* change in Gibbs free energy (AG; free energy =

concentration) with increased sensitivity means less
backward flux (when backward flux > J).

Observations for AG,:
* at equilibrium, AG,, = 0.

* for AG,, > 0, futile cycle driven in clockwise
direction. Reaction driven away from equilibrium.

* for AG; <0, futile cycle driven in counterclockwise
direction. Reaction driven away from equilibrium.

creates a AGL >0
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Motif #2: futile cycles

Common Form of Motif #2: multisite phosphorylation-dephosphorylation cycle:
Wang and Sontag, J. Mathematical Biology, 57, 29-52 (2008).

* can generate several dynamic behaviors (bistability, ultrasensitivity).

* futile cycles = enzymatic interconversions.

MAPK cascades (see Biophysical Journal, 92, 1-9, 2007) = three tiers of similar

structures with multiple feedbacks.
* each level is a futile cycle.

Steady states in futile cycles:
* futile cycles are sequential, not random.

* futile cycle is processive (kinase facilitates 2+ phosphorylations).

* dual phosphorylation/dephosphorylation in MAPK are distributive (kinase facilitates 1
phosphorylation).

* dual phosphorylation/dephosphorylation in futile cycles are distributive, otherwise they
exhibit a unique steady state (does not = experiment).
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Motif #2: futile cycles

Evolutionary perspective:

Natural selection favors switches (discrete dynamics) over dials (analog dynamics).

* evolution of a novel control system in cell.

* noise “filtering” as a form of regulation.

“Noise” perspective:
Noise-induced bistability is possible
(switch case).

1/x" noise — larger value for y, PDF has longer
tail, less support, and higher kurtosis

* two parameters influence
stochastically-driven enzymatic cycles:

* strength of external driving (magnitude).

* exact distribution of noise (e.g. 1/f varieties-
white, pink, brown, black).

White

Pink

Brown

Black

||I|||| |||||
-2 -1 0 1

.||| I1,.
-1 o 1
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Motif
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Fig. 1. (&) FFL. Transcription factor X regulates transcription factor Y, and
both jointly regulate Z. Sx and Sy are the inducers of X and Y, respectively. The
action of X and Y is integrated at the Z promoter with a cis-regulatory input
function (7, 14), such as AND or OR logic. (b) Simple regulation of Z by X

and Y.

t3: complex feedforward

Mangan and Alon. PNAS USA, 100(21),
11980-11985 (2003).

* feedforward control mechanism found in
E.coli and yeast.

* tested eight (8) FF network
configurations (using Boolean rules).

* sign-sensitivity: (+) is acceleration, (-) is
delay w.r.t. stimulus input at discrete

steps.

* X and Y are transcription factors, S, S,

are binding proteins, cofactors, etc.

Table 1. Structure and function of the coherent FFL types, with AND- and OR- gates at the Z promoter

Coherent type 1 Coherent type 2 Coherent type 3 Coherent type 4
Species Structure Abundance Structure Abundance Structure  Abundance  Structure Abundance
E. coli X 28 X 2 Y 4 X 1
| 1 | L
Y Y Y Y
| | L L
§. cerevisiae z 26 z 5 i 0 z 0
I Logic— AND OR AND OR AND OR AND OR
Steady-state
Z(5%,Sy) SxnSy S 5enS, 5 5 55, S, S5,
Respaonse delay
Sx on step Delay - - Delay - - Delay Delay
Sx off step - Delay Delay - Delay Delay - -
Inverted out No No Yes Yes Yes Yes No Ne

Coherent FFL types and their abundance in transcription databases of £. coli and 5. cerevisiae (6, 11). Z(Sx,Sy): Steady-state Z expression of coherent FFLs for
the four combinations of $x and Sy on and off levels (»,,” represent AND, OR, NOT). Response: Response delay of coherent FFLs to on and off 5, steps in the
presence of Sy. —, not delayed. Inverted out means that Z goes off in response to Sx on step.
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Motif #3: complex feedforward

Table 2. Structure and function of the incoherent FFL types, with AND-gates at the Z promoter

Incoherent type 1 Incoherent type 2 Incoherent type 3 Incoherent type 4
Species Structure Abundance Structure Abundance Structure Abundance Structure Abundance
E. coli X 5 X 0 X 1 X 1
| L l L
Y Y ¥ Y
L L ! |
S. cerevisiae z 21 z 3 z 1 z 0
Z logic — AND AND AND AND
Steady-state
2(5x,5y) Sen Sy §en 3, 0 0
Pulse
Sx on step Weak - - Strong
Sx off step - Weak Strong -
Sy effect Destroy Destroy Enable Enable
Response acceleration
Sx on step Accelerate - - Accelerate
Sx off step - Accelerate Accelerate -

Incoherent FFL types and their abundance in transcription databases (6, 11). Z(Sx,Sy): Steady-state Z expression of incoherent FFL with no basal level of Y (v,
“represent AND, NOT). Pulse: Response to steps of Sx, in the presence of Sy, in FFLs with no basal activity, Sy effect on pulse: Enable, no pulse is created when
Sy is off; Destroy, Z output is a low pulse when Sy is on, but is high and steady when Sy is off (Fig. 3). Response acceleration: Acceleration of response of and
steady-state values of incoherent FFL with basal activity to on and off steps in the presence of Sy. —, not accelerated.

External
Forcing

Figure 2. Interactions in the cut-down model: a black
daisybed above, separate white one below. Both receive
external forcing from the sun, and the only interaction
between them is by ‘leakage’ or heat conductance.

Incoherent FF systems: signs on the direct (e.g. Y-Z) and indirect (e.g. X-Z)

pathways are opposite.

Harvey, Homeostasis and Rein Control. Artificial Life 9.
* “cut-down” model: external source independently drives each state (e.g. rein
control), which keeps proportions of each state in the system stable.
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Motif
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3: complex feedforward

Saunders, Koeslag, Wessels. Integral Rein
Control in Physiology. J. Theoretical Biology,
194, 163-173 (1998).

* rein control: two inputs directly provide an
input — competition/coordination between the
two results in control (e.g. achieving
equilibrium).

1) Competitive binding: two enzymes that
compete for binding sites on a substrate

* produces an equilibrium through inhibition
of one input.

2) Daisyworld: two inputs (black and white
daisies that absorb/reflect sunlight)

* proportion of each population determines
properties of atmosphere (e.g. temperature).
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Additional Feedback, Feedforward
Mechanisms

Del Vecchio and Sontag. Engineering Principles in Biomolecular Systems. European
Journal of Control, vol. 15 (3-4), 2009

What is the relationship between modularity and feedback (in synthetic biology)?

* interconnected systems: behavior of an upstream component is affected by
presence of downstream component (counter to idea of mutually exclusive modules).

* retroactivity example: oscillator as a source that synchronizes several downstream
transcriptional processes, but oscillator dynamics affects by downstream elements

using up its product.
u ¥
. . S
* conventional control theory = inputs, s ~
outputs, and states (internal and mutually e o
EXCIUSiVE). Transcriptional component
.................................. Py
. . iy o O
*  with retroactivity, two additional - -
components: retroactivity to input, B T T
.. The tra_nscriptional_ component takes as input u protein
retroacthIty to Output. concentration Z and gives as output y protein concentration X.




Additional Feedback, Feedforward
Mechanisms
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Discrete  dynamics e e 190 A: FB off (EB < FF)
(emergent, l"ight): mun o] | lil liDDII i DHI DHD : o <
| i
* simple rules + [T T = L
intrinsic randomness = BL —{TST —{TLT 12/6 —={ 10 —1 6
complex patterns. TSTILT Jo I A I Je
* combine rules, can B: decay off (D < FB, FF) C: FF off (FF < FF)
e “control” ery | 1
w very | |3 . | .Is D |
complex self- | - 58— 5 = § 58— 3 o 8
assembly processes? L |3 Jo Jo C ]2 Jo
Allscenarios a,1,, based on Normalized C, values
f Ty - Discrete dynamics
A - _ (regulation, above):
= c BL = baseline (control
. S
gy N value).
(SR
hA 4 BL - TST, BL -
! TLT: 0d - nd.
: TLT - TST:n + 1d.

Discrete dynamics (geometric) in development and regeneration
COURTESY: Winfree (1980). Geometry of Biological Time.
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Additional Feedback, Feedforward

cells A
N> e ‘W
\ Ay
Platelets 2\ .4 o 4
B .-"-"-'5-;'
= . L .

-
Ve

d blood cell

FADAM.

Mechanisms

Traffic flow and regulation in networks:

Flows consist of particles (cars, ants, platelets). Particles
follow pathways of variable width, number at variable
velocities.

Multiple FB and FF mechanisms: velocity of particles
relative to other particles (FB), autonomous velocity (FF),
cycles in network (FB), outbound paths (FF).

Jamming parameter: when threshold is reached (.75),
phase transition occurs (from free-flowing to solid).

Flow control:
* how does FF component get regulated (by FB, initial
inputs, connectivity)?

* what are the collective (aggregate) effects of particle
behavior on flow dynamics?
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Future Directions

How do “top-down” control mechanisms constrain the function of “bottom-up”

emergent structures?

Evolutionary systems are not goal-oriented (only
respond to fitness constraints locally in time).

* one aspect of evolvability = exploratory behavior
(relaxed linkage of parts). Parts = motifs.

Signaling pathways are “emergent” structures -- Bhalla and Iyengar, Science, 381,
283 (1999). Decoupling FB and aggregations within pathways = altered function.

Nucleus

Controllability: ability to move system around entire
configuration space (ergodic) using finite repertoire.

* can controllability act to “push” individuals towards
fitness maxima (fitness landscape, upper left)?

* do diffusive (neutral) processes contribute to observed
natural diversity in pathways?
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Future Directions

FB
I FF 0)
> PLANT > PLANT :}

<~ <~

Feedback control with feedforward, decay

NN
s\

Gather transformation, CUDA programming

The system at left has two plants and
a SISO (single input, single output)
architecture.

* input and feedback serves as convergent
input on first plant — how do we parse this
effect?

* what about MIMO (multiple input,
multiple output) systems?

Parallel architectures are needed
(CUDA example, feedforward).

* way to better model polygenic systems,
pleiotropic effects (one gene, many
products)?

* what about the effects of, interactions
between scale (e.g. multiscalar systems)?
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