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Correlation between fragments is greatest when fragments are collinear (see also [2]), with
the peak being most pronounced where edge-detectors overlap. Our statistics, however, po-
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Presented below are graphs of correlation as a function of distance (along a collinear seg-
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section 4 use data from “Planet Earth’] and sections 5 &6 use data and images from [3]. measure 3-point contour fragment statistics more directly related to shape.
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