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Abstract 

 Thymic epithelial cells (TECs) are required for the development and differentiation of T cells 

and are sufficient for the positive and negative selection of developing T cells.  Although TECs play 

a critical role in T cell biology, simple, efficient and readily scalable methods for the transfection of 

TEC lines and primary TECs have not been described.  We tested the efficiency of Nucleofection for 

the transfection of 4 different mouse thymic epithelial cell lines that had been derived from cortical 

or medullary epithelium.  We also tested primary mouse thymic epithelial cells isolated from fetal 

and postnatal stages.  We found that Nucleofection was highly efficient for the transfection of thymic 

epithelial cells, with transfection efficiencies of 30-70% for the cell lines and 15-35% for primary 

TECs with low amounts of cell death.  Efficient transfection by Nucleofection can be performed with 

established cortical and medullary thymic epithelial cell lines as well as primary TECs isolated from 

E15.5 day fetal thymus or postnatal day 3 or 30 thymus tissue.  The high efficiency of Nucleofection 

for TEC transfection will enable the use of TEC lines in high throughput transfection studies and 

simplifies the transfection of primary TECs for in vitro or in vivo analysis.    
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Background 

 The non-hematopoietic epithelial cells of the thymus form a complex microenvironment that 

supports the normal development and differentiation of T cells.  Developmentally, thymic epithelial 

cells (TECs) are derived exclusively from the pharyngeal endoderm [1].  During thymus 

organogenesis TEC progenitors differentiate into medullary or cortical cell types and these two 

lineages form histologically and functionally distinct compartments within the thymus [2].   

Interactions between the non-hematopoietic TECs and differentiating T-cells are required for normal 

T cell differentiation, maturation and selection [3].  Due to their essential role in T cell development, 

understanding the process of thymic epithelial cell specification, differentiation and maintenance will 

be required to understand T cell biology.  TECs are also of clinical interest due to the progressive 

loss of thymus function during normal human aging.  Slowing or reversing the loss of TECs may 

prolong robust T cell function in aging individuals.  In addition, a greater understanding of thymic 

epithelial cell specification and differentiation during development may pave the way for the 

generation of TEC stem cells that can be transplanted to restore or supplement endogenous thymic 

function in ageing individuals or those with congenital thymus dysgenesis or agenesis [4-6].   

 Given the importance of thymic epithelial cells in basic and clinical immunology several 

approaches have been developed for their analysis in vivo and in cell culture.  Genetic studies in mice 

and humans have identified a number of genes required for TEC formation, differentiation and 

function [7-11].  In addition, cell labeling, tissue grafting, cell culture, and organ culture approaches 

have been developed for studies of embryonic TEC lineage specification, differentiation or TEC-

thymocyte interactions [12-15].  Primary thymic epithelial cell cultures can be readily established 

from fetal or adult thymus and many thymic epithelial cell lines are available.  Unfortunately, it is 

quite difficult to transfect primary TECs or established TEC lines using simple approaches such as 
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lipofection.  This difficulty has been noted previously [16] and many studies of TEC gene promoters 

or TEC transcription factors have been performed in HELA or other non-TEC cell lines [16-21].  

Although methods for TEC transfection via retroviral vectors [22] have been developed, these 

methods are cumbersome since they require construction of viral vectors and the production of high 

titer stocks for each construct.  This makes viral approaches problematic in cases where a large 

number of independent constructs must be tested such as in promoter analysis or in studies of protein 

functional domains.   

 To remove this current limitation to the experimental analysis of TEC biology, we tested 

whether nucleofection can efficiently transfect plasmid constructs into 4 independent TEC lines as 

well as primary TECs isolated from three different developmental stages.  Nucleofection is a 

relatively new highly optimized electroporation method that enables high efficiency electroporation 

of a wide range of cell types including primary cells and postmitotic cells [23].  Nucleofection has 

been shown to efficiently transfect a wide range of cell types including stem cells, progenitors and/or 

fully differentiated cells isolated from the nervous system, the immune system, smooth muscle, 

skeletal muscle, adipose tissue, skin, connective tissue, cartilage, bone marrow stroma, vascular 

endothelia as well as mouse and human embryonic stem cells [23-45].  Many of the cell types that 

can be efficiently transfected by nucleofection are extremely difficult or impossible to transfect using 

other non-viral methods. 

 Given Nucleofection's track record, we tested whether it would be an efficient method for the 

routine transfection of thymic epithelial cells.  We found that nucleofection does result in high 

efficiency transfection of TEC lines as well as primary TECs.  We also found that reproducible high 

efficiency transfection was possible while preserving cell viability.  Our studies indicate that 

nucleofection greatly increases the feasibility of studies that require the transfection of multiple 
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independent constructs into thymic epithelial cells.  This simple and high efficiency transfection 

method will facilitate the analysis of gene regulatory regions of TEC genes as well as the analysis of 

the functional domains of proteins that are necessary for TEC development and function. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 5 

Results and Discussion 

Thymic epithelial cell lines can be transfected at high efficiency via Nucleofection. 

 To test whether Nucleofection could be used to efficiently transfect a range of different 

thymic epithelial cell lines we examined the Nucleofection efficiency of four different TEC lines 

(TE-71, Z210R.1, 100-4, 41.2).  The TE-71 and Z210R.1 TEC lines were derived from normal adult 

Balb/c mice and were typed as medullary epithelium [46].  The 100-4 and 41.2 cell lines were 

derived from C3HXC57B1/6 mice and were derived from cortical epithelium [47, 48]. 

Our initial goal was to test several different Nucleofector programs to define an optimal 

program for each of the four cell lines tested.  To do this we used a reagent kit that had been 

recommended by Amaxa support staff for the optimization of conditions for epithelial cell lines (kit 

V).   For each cell line we measured the transfection efficiency and cell survival with the same set of 

6 different Nucleofector programs.  Using this approach, we identified conditions for the high 

efficiency transfection of all four TEC lines with low cell mortality.  For each Nucleofector program 

we found that the maximum transfection efficiency differed between the cell lines.   However, we 

found that for all cell lines, program T-30 resulted in the most efficient transfection with the lowest 

amount of cell death (Figure 1 A, B).  

 Once we had identified T-30 as an optimal Nucleofection program for the TEC lines we then 

performed additional experiments to determine the reproducibility of TEC line Nucleofection.  We 

measured the transfection efficiency as the percentage of GFP positive cells that had survived for 24 

hours after Nucleofection by flow cytometry (Figure 1C).  We found that our Nucleofection 

conditions resulted in mean transfection efficiencies of 30% to 70% for the four TEC lines. (Figure 

1E).  We also found that the reproducibility of Nucleofection efficiencies varied between the 4 cell 

lines with the range of the efficiency being smaller for the TE-71 and 100-4 cell lines  than for the 
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Z210r.1 and 41-2 cell lines (Figure 1E).  Cell survival in all cases was excellent, with greater than 

85% of the cells surviving for 24 hours after Nucleofection of each cell line (Fig. 1D).  We also 

tested whether the transfection efficiency would vary with cell density.  We found that Nucleofection 

of fewer than 1.5 x 106 cells from each TEC line resulted in greatly reduced cell survival 

immediately after Nucleofection and that cell survival greatly improved as the sample size reached 4 

X 106 cells with no loss of efficiency (data not shown).  Excellent viability and proliferation were 

observed for each of the four cell lines for up to 7 days after the procedure.  

 Primary TEC cultures are also used for studies of thymic development and function [49, 50].   

Primary TEC cultures can be established from fetal as well as adult thymus.  Unfortunately, TECs 

are a tiny minority of the cells in the thymus making it difficult to isolate large numbers of cells for 

primary culture.  Therefore, high efficiency transfection methods that produce minimal cell mortality 

are an absolute necessity for experiments with primary thymic epithelial cells.  We started our tests 

of primary TEC Nucleofection with cells isolated from E15.5 day fetal thymuses.  At this stage there 

is a relatively large number of proliferating TECs while T-cell number is relatively low [51].  In an 

initial experiment to identify optimal Nucleofection conditions for primary fetal TECs, we tested 

several Nucleofector programs.  The programs T-13, T-20 and U-17 resulted in high levels of cell 

death with less than 10% of the cells surviving the procedure.  However, we found that there was a 

trade-off between cell death and transfection efficiency, with programs T-13 and U-17 resulting in 

about 50% of the surviving cells being GFP+.  In contrast, transfection with program S-05 resulted in 

greater than 30% cell survival the with about 30% of the surviving cells being GFP+ (Figure 2, A-C).  

To quantify the absolute efficiency of each program, the total number of GFP expressing cells was 

taken as a ratio of the total number of viable cells in an untransfected control (Figure 2 C). Using this 

analysis it was determined that, of the programs tested, program S-05 was the most efficient program 
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for Nucleofection of E15.5 mouse fetal primary TECs using the Nucleofector solution V.   

 Upon determination that program S-05 gave the highest transfection efficiency with good cell 

viability, we performed additional transfections to determine the reproducibility of this protocol with 

E15.5 day primary TECs.  It was found that consistent levels of viability and GFP expression could 

be achieved with program S-05 with values similar to that found in the optimization experiments 

(data not shown).  Cytokeratin immunostaining confirmed that nearly all of the cells in the cultures 

expressed cytokeratin, indicating that they are TECs (Figure 2A). 

 We also tested the efficiency of Nucleofection for the transfection of primary TECs isolated 

from postnatal thymuses.   We tested the Nucleofection programs T-13 and S-05 on TEC cultures 

prepared from 3 day old (P3) and 30 day old (P30) postnatal Swiss Webster mice (Figure 2).   We 

found that the P3 TECs were efficiently transfected, with about 25% of the viable cells expressing 

GFP (figure 2 D-F).  However, we found that the nucleofection conditions had to be modified for the 

older primary TECs isolated from 30 day old thymuses.  With the earlier stages we had used 

Nucleofection solution V, but for 30 day old postnatal primary cells use of this solution resulted in 

extremely low transfection efficiencies of around 1% of the viable cells (data not shown).  To 

improve the transfection efficiency for  the TECs from 30 day old mice we tested the primary 

epithelial cell Nucleofection  solution with this cell type.  We found that using program T-13 we 

were able to get high efficiency transfection with about 40% of the viable cells expressing GFP but 

with only 20% of the starting cell population remaining viable (figure 2 G-I).  Although 

nucleofection of these later stage primary TECs results in greater cell death, the efficiency is quite 

high.  Again, staining with pan-cytokeratin confirmed that the cells are TECs (figure 2G). 

Our results show that Nucleofection enables the high efficiency transfection of  primary TEC 

as well as cell lines derived from thymic epthelial cells.  This cell type is difficult to transfect by 
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methods typically used for routine transfection such as lipofection.  A previous report described an 

efficient method for retrovirus-mediated transfection of primary TECs [22].  This method results in 

stable transfection of about 30% of the E15.5 TECs used in the study [22].  Retroviral transfection is 

an excellent choice for the generation of stable transfected cell lines but it is cumbersome for routine 

transient transfection studies. Retroviral vector production for TEC transfection requires the 

transfection of the viral packaging cell line, enrichment of the transfected cells and centrifugation to 

concentrate the viral particles [22].  Since most studies that use transient transfection utilize many 

expression and/or reporter constructs, retroviral transfection of TECs would be laborious and 

expensive. 

 In contrast, the high efficiency achieved by Nucleofection of TECs makes it feasible to 

perform any type of analysis that requires repeated transfections of many plasmid constructs.    In 

comparison with lipofection we find that nucleofection results in greater cell viability and much 

greater transfection efficiency.  For example, in our lab lipofectamine-mediated transfection of TECs 

results in a transfection efficiency of  3-5% using the same TEC lines that we used in this study (data 

not shown).  Our finding that Nucleofection can transfect thymic epithelial cells with high efficiency 

and relatively low cell mortality adds another method to the rapidly developing molecular genetic 

toolkit for studies of thymic epithelial cells.  Existing genetic tools for the manipulation of TEC 

biology include retroviral transfection methods as well as mouse strains that express GFP, Cre 

recombinase and cyclin D1 in all or some TEC populations and the identification of loci that can be 

used to drive gene expression in all or a defined subset of the TECs in vivo [22, 52-57].  By applying 

Nucleofection to the study of TEC biology we have enabled additional avenues for the molecular 

analysis of the development and function of this crucial cell type in cell culture. 
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Conclusions 

 Thymic epithelial cells can be readily transfected at high efficiency by Nucleofection.  

Efficient transfection can be performed with established cortical and medullary thymic epithelial cell 

lines as well as primary TECs isolated from E15.5 day fetal thymus or postnatal day 3 or 30 thymus 

tissue.  Transfection efficiencies as high as 70% of the surviving cell population can be achieved 

reproducibly.  Nucleofection will enable high throughput transfection-based studies of TEC gene 

regulation, cell biology and differentiation.   
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Methods 

Culture of TEC lines and the preparation and culture of primary TECs.  

 The  four TEC lines used in this work (100-4, Z210R.1, TE-71, 41.2) were obtained from Dr. 

Andrew Farr, Dept. of Immunology, University of Washington School of Medicine.  All TEC lines 

were cultured on T-75 tissue culture flasks (Nunc) in RPMI 1640 (Invitrogen)  medium with 10% 

fetal bovine serum (Invitrogen), 2 mM L-Glutamine (Invitrogen), 50 units/ml Penicillin and 50 

µg/ml Streptomycin (Invitrogen).  Each cell line was passaged into 2 T-75 flasks at 4 X106 cells per 

flask and incubated at 37oC in 5 % CO2 for 48 hours prior to Nucleofection.  After 48 hours of 

incubation, cells were 80-90% confluent and each flask contained 8 X 106 to 1.4 X 107 cells. Cells 

were trypsinized with 0.25% trypsin/EDTA (Invitrogen) and resuspended in aliquots of 2 X 106 cells 

per 2 ml of media for nucleofection.  

 To generate fetal primary TEC cultures, thymi were removed from E15.5 C57Bl/6 embryos 

and placed directly in ice-cold TEC-10 media containing RPMI 1640 (Invitrogen)  medium with 

10% fetal bovine serum (Invitrogen), 2 mM L-Glutamine (Invitrogen), 50 units/ml Penicillin and 50 

ug/ml Streptomycin (Invitrogen).  Immediately after removal thymi were incubated for 15 min at 

room temperature in 2 mg/ml papain (Worthington Biochemical, Lakewood NJ) in RPMI-1640.  The 

Papain reaction was stopped by adding 1 volume of TEC-10 media and the tissue was then broken up 

by trituration.  Cells were then plated on a 10 cm tissue culture plate (Nunc) in 10 ml of TEC-10. The 

cells were allowed to grow for 3 days in original media. After three days the media was changed to 

eliminate thymocytes. Cells were maintained in culture for fewer than 7 days and were not passaged 

prior to Nucleofection. 

 For primary culture of postnatal TECs, thymuses were removed from 3 day old or 30 day old 

Swiss Webster mice.  After removal, thymuses were placed in TEC-10 medium and allowed to settle 
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 11 

in a 15 ml tube for 5-10 mins.  The thymuses were rinsed in three successive changes of TEC-10 

medium to remove non-thymic cell types clinging to the surface.  Cells were isolated by digesting 

the thymus tissue with 0.2 mg/ml collagenase D in RPMI-1610 containing 2% fetal bovine serum, 

20mM HEPES  at 25oC for 20 mins.  The tissues was then incubated in a medium containing RPMI-

1610, 2% fetal bovine serum, 20mM HEPES, 0.2 mg/ml collagenase, 0.2 mg/ml dispase and 

25µg/ml DNase I for 40 mins at 37oC.  Five volumes of TEC-10 medium was added to stop the 

enzymes and the tissue clumps were broken up by trituration.  The resulting cell suspension (from 8-

11 thymuses) was plated onto a 10 cm tissue culture plate.   

Nucleofection of TEC lines and primary thymic epithelial cells. 

 Nucleofection of the thymic epithelial cell lines and primary TECs was performed using the 

Amaxa Nucleofector II device.  Based on technical advice from Amaxa Inc. support staff we used 

the cell line Nucleofection kit V to optimize conditions for the 4 TEC lines.  Seven samples each 

containing 2 X 106 cells were prepared for each cell line and each sample was Nucleofected using 

one of 6 different programs (A-20, T-20, T-30, X-01, X-05, D-23) with the untransfected sample 

serving as a control.  Nucleofections were performed according to Amaxa's recommendations with 

5µg of pmaxGFP.  The pmaxGFP plasmid contains a CMV promoter driving a Pontellina (copepod) 

green fluorescent protein coding sequence [58] and an SV40 poly A site (Amaxa News #3).  After 

each sample was transfected it was immediately transferred to 1 ml of culture media that had been 

warmed to 37o C and placed in an incubator (37oC, 5% CO2) until all samples were ready for plating.  

For each sample, half of the cells were plated and the medium was changed after 3-5 h to remove 

dead cells. The plates were incubated for 24 h and then fixed in 1% paraformaldehyde in 1X PBS 

and stored at 8o C for flow cytometry analysis. The other half of each sample was stained with 

propidium iodide (Sigma) immediately after Nucleofection for flow cytometry analysis of cell 
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 12 

mortality due to the procedure. 

 Primary thymic epithelial cells were maintained in TEC-10 media in 10 cm tissue culture 

dishes (Nunc). For optimization experiments the primary TECs were divided into 5 samples of  

2 X 106 cells each. The samples were suspended in 100µl of solution V (Amaxa Inc.) containing 1µg 

of pmaxGFP plasmid and subjected to one of four Nucleofector programs as recommended for 

primary epithelial cells (S-05, T-13, T-20, X-05).  One sample was not transfected and served as a 

negative control. Each sample was seeded into one well of a 6 well tissue culture plate (Nunc) and 

allowed to grow for 24 hours before observing GFP expression.  For cell counts, the transfected cells 

were plated on microscope slides in 250 µl droplets and allowed to attach for 24 hours.   

Cell counting and flow cytometry.  

 The efficiency of pmaxGFP transfection of the cell lines was measured using a FACScalibur 

cytometer (Becton Dickenson) and the data were analyzed using FloJo software.  Cell death resulting 

from each transfection was measured by counting the number of cells that were stained by propidium 

iodide in each sample immediately after Nucleofection.  Propidium iodide stock solution (1 mg/ml 

Sigma) was diluted in 1X PBS to 1µg/ml. Medium was removed from each sample by centrifugation. 

The cell samples were resuspended in 500µl of propidium iodide staining solution (1µg/ml 

propidium iodide in PBS) and allowed to incubate at room temperature for 30 minutes.  The cells 

were pelleted, resuspended in cold PBS and analyzed by flow cytometry within 30 mins. 

 The transfection efficiency of the primary cells was measured by counting cells in multiple 

microscope fields of transfected samples and untransfected control samples.  After 24 hours of 

culture, half of the samples were fixed with acetone and cytokeratins were detected using a pan-

cytokeratin polyclonal primary antibody (Dako) and a secondary antibody conjugated to texas red 

(Jackson ImmunoResearch).  The remaining samples were not fixed with acetone so that GFP 
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 13 

expression could be observed for counting.  All samples were stained with DAPI using DAPI 

containing aqueous mounting media (Invitrogen) so that nuclei could be visualized for cell counts.  

To measure GFP expression 10 micrographs were taken of each sample and the cells were counted.  

To measure viability, mean total cell numbers in transfected samples and in untransfected controls 

were determined. 

 

Authors' Contributions 

R.T.O. and Q.W. performed the experiments.  R.T.O. and B.G.C. wrote the manuscript.  B.G.C. 

conceived and designed the study. 

 

Acknowledgements 

We thank Ms. Liz Horton at Amaxa Inc for technical advice and Dr. Nancy Manley for reading the 

manuscript.  We also thank Dr. Shinyun Xiao for assistance with flow cytometry. This work was 

supported by startup funds (to B.G.C.) from the University of Georgia. 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 14 

Literature Cited 

1. Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC: 

Functional evidence for a single endodermal origin for the thymic epithelium. Nat 

Immunol 2004, 5:546-553. 

2. Gray DH, Ueno T, Chidgey AP, Malin M, Goldberg GL, Takahama Y, Boyd RL: 

Controlling the thymic microenvironment. Curr Opin Immunol 2005, 17:137-143. 

3. Takahama Y: Journey through the thymus: stromal guides for T-cell development and 

selection. Nat Rev Immunol 2006, 6:127-135. 

4. Aw D, Silva AB, Palmer DB: Immunosenescence: emerging challenges for an ageing 

population. Immunology 2007, 120:435-446. 

5. Blackburn CC, Manley NR, Palmer DB, Boyd RL, Anderson G, Ritter MA: One for all and 

all for one: thymic epithelial stem cells and regeneration. Trends Immunol 2002, 23:391-

395. 

6. Gill J, Malin M, Sutherland J, Gray D, Hollander G, Boyd R: Thymic generation and 

regeneration. Immunol Rev 2003, 195:28-50. 

7. Anderson G, Jenkinson WE, Jones T, Parnell SM, Kinsella FA, White AJ, Pongrac'z JE, 

Rossi SW, Jenkinson EJ: Establishment and functioning of intrathymic 

microenvironments. Immunol Rev 2006, 209:10-27. 

8. Blackburn CC, Manley NR: Developing a new paradigm for thymus organogenesis. Nat 

Rev Immunol 2004, 4:278-289. 

9. Boehm T, Bleul CC, Schorpp M: Genetic dissection of thymus development in mouse and 

zebrafish. Immunol Rev 2003, 195:15-27. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 15 

10. Manley NR, Blackburn CC: A developmental look at thymus organogenesis: where do the 

non-hematopoietic cells in the thymus come from? Curr Opin Immunol 2003, 15:225-232. 

11. Hollander G, Gill J, Zuklys S, Iwanami N, Liu C, Takahama Y: Cellular and molecular 

events during early thymus development. Immunol Rev 2006, 209:28-46. 

12. Anderson KL, Moore NC, McLoughlin DE, Jenkinson EJ, Owen JJ: Studies on thymic 

epithelial cells in vitro. Dev Comp Immunol 1998, 22:367-377. 

13. Boehm T, Bleul CC: Thymus-homing precursors and the thymic microenvironment. 

Trends Immunol 2006, 27:477-484. 

14. de Pooter R, Zuniga-Pflucker JC: T-cell potential and development in vitro: the OP9-DL1 

approach. Curr Opin Immunol 2007, 19:163-168. 

15. Gordon J, Wilson VA, Moore-Scott BA, Manley NR, Blackburn CC: In vivo and in vitro 

assays of thymic organogenesis. Methods Mol Med 2005, 105:303-310. 

16. Schorpp M, Hofmann M, Dear TN, Boehm T: Characterization of mouse and human nude 

genes. Immunogenetics 1997, 46:509-515. 

17. Akiyoshi H, Hatakeyama S, Pitkanen J, Mouri Y, Doucas V, Kudoh J, Tsurugaya K, Uchida 

D, Matsushima A, Oshikawa K, et al: Subcellular expression of autoimmune regulator is 

organized in a spatiotemporal manner. J Biol Chem 2004, 279:33984-33991. 

18. Miyazawa H, Takeuchi T, Yamamoto H: Structure and promoter region of the surface 

membrane protein HS9 gene expressed on the thymic epithelial cells. Biochim Biophys 

Acta 1999, 1444:407-411. 

19. Murumagi A, Silvennoinen O, Peterson P: Ets transcription factors regulate AIRE gene 

promoter. Biochem Biophys Res Commun 2006, 348:768-774. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 16 

20. Pitkanen J, Doucas V, Sternsdorf T, Nakajima T, Aratani S, Jensen K, Will H, Vahamurto P, 

Ollila J, Vihinen M, et al: The autoimmune regulator protein has transcriptional 

transactivating properties and interacts with the common coactivator CREB-binding 

protein. J Biol Chem 2000, 275:16802-16809. 

21. Pitkanen J, Vahamurto P, Krohn K, Peterson P: Subcellular localization of the autoimmune 

regulator protein. characterization of nuclear targeting and transcriptional activation 

domain. J Biol Chem 2001, 276:19597-19602. 

22. Travers H, Anderson G, Gentle D, Jenkinson E, Girdlestone J: Protocols for high efficiency, 

stage-specific retroviral transduction of murine fetal thymocytes and thymic epithelial 

cells. J Immunol Methods 2001, 253:209-222. 

23. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Korner I, Gan L, Chen S, 

Castro-Obregon S, et al: New non-viral method for gene transfer into primary cells. 

Methods 2004, 33:151-163. 

24. Lai W, Chang CH, Farber DL: Gene transfection and expression in resting and activated 

murine CD4 T cell subsets. J Immunol Methods 2003, 282:93-102. 

25. Martinet W, Schrijvers DM, Kockx MM: Nucleofection as an efficient nonviral 

transfection method for human monocytic cells. Biotechnol Lett 2003, 25:1025-1029. 

26. Trompeter HI, Weinhold S, Thiel C, Wernet P, Uhrberg M: Rapid and highly efficient gene 

transfer into natural killer cells by nucleofection. J Immunol Methods 2003, 274:245-256. 

27. Lakshmipathy U, Pelacho B, Sudo K, Linehan JL, Coucouvanis E, Kaufman DS, Verfaillie 

CM: Efficient transfection of embryonic and adult stem cells. Stem Cells 2004, 22:531-

543. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 17 

28. Lorenz P, Harnack U, Morgenstern R: Efficient gene transfer into murine embryonic stem 

cells by nucleofection. Biotechnol Lett 2004, 26:1589-1592. 

29. Distler JH, Jungel A, Kurowska-Stolarska M, Michel BA, Gay RE, Gay S, Distler O: 

Nucleofection: a new, highly efficient transfection method for primary human 

keratinocytes*. Exp Dermatol 2005, 14:315-320. 

30. Leclere PG, Panjwani A, Docherty R, Berry M, Pizzey J, Tonge DA: Effective gene delivery 

to adult neurons by a modified form of electroporation. J Neurosci Methods 2005, 

142:137-143. 

31. Nakashima S, Matsuyama Y, Nitta A, Sakai Y, Ishiguro N: Highly efficient transfection of 

human marrow stromal cells by nucleofection. Transplant Proc 2005, 37:2290-2292. 

32. Radons J, Gross C, Stangl S, Multhoff G: Nucleofection of non-B cells with mini-Epstein-

Barr virus DNA. J Immunol Methods 2005, 303:135-141. 

33. Siemen H, Nix M, Endl E, Koch P, Itskovitz-Eldor J, Brustle O: Nucleofection of human 

embryonic stem cells. Stem Cells Dev 2005, 14:378-383. 

34. Aluigi M, Fogli M, Curti A, Isidori A, Gruppioni E, Chiodoni C, Colombo MP, Versura P, 

D'Errico-Grigioni A, Ferri E, et al: Nucleofection is an efficient nonviral transfection 

technique for human bone marrow-derived mesenchymal stem cells. Stem Cells 2006, 

24:454-461. 

35. Cesnulevicius K, Timmer M, Wesemann M, Thomas T, Barkhausen T, Grothe C: 

Nucleofection is the most efficient nonviral transfection method for neuronal stem cells 

derived from ventral mesencephali with no changes in cell composition or dopaminergic 

fate. Stem Cells 2006, 24:2776-2791. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 18 

36. Goffinet C, Keppler OT: Efficient nonviral gene delivery into primary lymphocytes from 

rats and mice. Faseb J 2006, 20:500-502. 

37. Hagemann C, Meyer C, Stojic J, Eicker S, Gerngras S, Kuhnel S, Roosen K, Vince GH: High 

efficiency transfection of glioma cell lines and primary cells for overexpression and 

RNAi experiments. J Neurosci Methods 2006, 156:194-202. 

38. Jiao Z, Zhang ZG, Hornyak TJ, Hozeska A, Zhang RL, Wang Y, Wang L, Roberts C, 

Strickland FM, Chopp M: Dopachrome tautomerase (Dct) regulates neural progenitor 

cell proliferation. Dev Biol 2006, 296:396-408. 

39. Johnson JL, Ellis BA, Munafo DB, Brzezinska AA, Catz SD: Gene transfer and expression 

in human neutrophils. The phox homology domain of p47phox translocates to the 

plasma membrane but not to the membrane of mature phagosomes. BMC Immunol 2006, 

7:28. 

40. Li L, Iwamoto Y, Berezovskaya A, Boussiotis VA: A pathway regulated by cell cycle 

inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell 

tolerance. Nat Immunol 2006, 7:1157-1165. 

41. Quenneville SP, Chapdelaine P, Rousseau J, Tremblay JP: Dystrophin expression in host 

muscle following transplantation of muscle precursor cells modified with the phiC31 

integrase. Gene Ther 2006, 14:514-522. 

42. Reddy MA, Li SL, Sahar S, Kim YS, Xu ZG, Lanting L, Natarajan R: Key role of Src 

kinase in S100B-induced activation of the receptor for advanced glycation end products 

in vascular smooth muscle cells. J Biol Chem 2006, 281:13685-13693. 

43. Tahvanainen J, Pykalainen M, Kallonen T, Lahteenmaki H, Rasool O, Lahesmaa R: 

Enrichment of nucleofected primary human CD4+ T cells: a novel and efficient method 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 19 

for studying gene function and role in human primary T helper cell differentiation. J 

Immunol Methods 2006, 310:30-39. 

44. von Levetzow G, Spanholtz J, Beckmann J, Fischer J, Kogler G, Wernet P, Punzel M, Giebel 

B: Nucleofection, an efficient nonviral method to transfer genes into human 

hematopoietic stem and progenitor cells. Stem Cells Dev 2006, 15:278-285. 

45. Zaragosi LE, Billon N, Ailhaud G, Dani C: Nucleofection is a valuable transfection 

method for transient and stable transgene expression in adipose tissue-derived stem 

cells. Stem Cells 2006, 25:790-797. 

46. Farr A, Nelson A, Hosier S, Kim A: A novel cytokine-responsive cell surface glycoprotein 

defines a subset of medullary thymic epithelium in situ. J Immunol 1993, 150:1160-1171. 

47. Wang R, Nelson A, Kimachi K, Grey HM, Farr AG: The role of peptides in thymic positive 

selection of class II major histocompatibility complex-restricted T cells. Proc Natl Acad 

Sci U S A 1998, 95:3804-3809. 

48. Nelson AJ, Clegg CH, Farr AG: In vitro positive selection and anergy induction of class 

II-restricted TCR transgenic thymocytes by a cortical thymic epithelial cell line. Int 

Immunol 1998, 10:1335-1346. 

49. Kutlesa S, Wessels JT, Speiser A, Steiert I, Muller CA, Klein G: E-cadherin-mediated 

interactions of thymic epithelial cells with CD103+ thymocytes lead to enhanced 

thymocyte cell proliferation. J Cell Sci 2002, 115:4505-4515. 

50. Ropke C: Thymic epithelial cell culture. Microsc Res Tech 1997, 38:276-286. 

51. Gray DH, Seach N, Ueno T, Milton MK, Liston A, Lew AM, Goodnow CC, Boyd RL: 

Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. 

Blood 2006, 108:3777-3785. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 20 

52. Gordon J, Xiao S, Hughes B, 3rd, Su DM, Navarre SP, Condie BG, Manley NR: Specific 

expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene 

targeting at the Foxn1 locus. BMC Dev Biol 2007, 7:69. 

53. Klug DB, Crouch E, Carter C, Coghlan L, Conti CJ, Richie ER: Transgenic expression of 

cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development. J 

Immunol 2000, 164:1881-1888. 

54. Terszowski G, Muller SM, Bleul CC, Blum C, Schirmbeck R, Reimann J, Pasquier LD, 

Amagai T, Boehm T, Rodewald HR: Evidence for a functional second thymus in mice. 

Science 2006, 312:284-287. 

55. Bleul CC, Boehm T: BMP signaling is required for normal thymus development. J 

Immunol 2005, 175:5213-5221. 

56. Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K: Regulation 

of CD8+ T cell development by thymus-specific proteasomes. Science 2007, 316:1349-

1353. 

57. Zamisch M, Moore-Scott B, Su DM, Lucas PJ, Manley N, Richie ER: Ontogeny and 

regulation of IL-7-expressing thymic epithelial cells. J Immunol 2005, 174:60-67. 

58. Shagin DA, Barsova EV, Yanushevich YG, Fradkov AF, Lukyanov KA, Labas YA, 

Semenova TN, Ugalde JA, Meyers A, Nunez JM, et al: GFP-like proteins as ubiquitous 

metazoan superfamily: evolution of functional features and structural complexity. Mol 

Biol Evol 2004, 21:841-850. 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.6

28
3.

1 
: P

os
te

d 
23

 A
ug

 2
01

1



 21 

Figure Legends 

Figure 1.  Efficient transfection of four different thymic epithelial cell lines by Nucleofction. 

(A, B) GFP expression (B) 24 hours after Nucleofection (program T-30) of the pmaxGFP plasmid 

into the thymic epithelial cell line 41-2 which was derived from cortical thymic epithelium;  

(A)  brightfield phase-contrast image of the same field shown in B. 

(C) Results of flow cytometry performed 24 hours after Nucleofection.  The data shown are 

representative results for a single experiment with the 41-2 TEC line and Nucleofection program  

T-30.  The top row of plots show propidium iodide staining profiles for the untransfected (left panel) 

and transfected (right panel) cells.   The bottom row shows the GFP staining profiles for 

untransfected (left panel) and pmaxGFP transfected (right panel) 41-2 cells.  (D, E)  Overall cell 

death as measured by propidium iodide staining (D) and the percentage of the  cells expressing GFP  

the four TEC lines tested (E).  Bars indicate the range of the average values obtained by flow 

cytometry.   

Figure 2.  Efficient transfection of primary thymic epithelial cells by nucleofection. 

Thymic epithelial cell cultures were isolated from E15.5 day embryos, 3 day postnatal pups, and 30 

day old mice.  

(A, D, G)  Detection of cytokeratin by a pan-cytokeratin antibody reveals that most of the cells in the 

primary cultures are TECs.  Primary TECs from E15.5 (A), postnatal day 3 (D) and postnatal day 30 

(G) animals are shown.   

(B, E, H)  Expression of the pmaxGFP plasmid in transfected primary TECs from E15.5 (B), 

postnatal day 3 (E) and postnatal day 30 (H) animals are shown. 

(C, F, I)  Results from representative Nucleofections of primary TECs.  Each bar on the bar graph 

shows the proportion of cells that survived Nucleofection as compared to untransfected control 
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cultures.  Each bar is divided into the proportion of cells expressing GFP (red segment of each bars) 

as well as the proportion that did not express GFP (blue segment of each bar.  In the case of primary 

TECs derived from E15.5 fetal thymi the transfection results are shown for Nucleofection programs 

S-005, T-013, T-030 and U-027 (C).   
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