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Abstract 

 

Here we consider the possibility that a fundamental function of sensory cortex is the 

generation of an internal simulation of sensory environment in real-time. A logical elaboration 

of this idea leads to a dynamical neural architecture that oscillates between two fundamental 

network states, one driven by external input, and the other by recurrent synaptic drive in the 

absence of sensory input. Synaptic strength is modified by a proposed synaptic state 

matching (SSM) process that ensures equivalence of spike statistics between the two 

network states. Remarkably, SSM, operating locally at individual synapses, generates 

accurate and stable network-level predictive internal representations, enabling pattern 

completion and unsupervised feature detection from noisy sensory input. SSM is a 

biologically plausible substrate for learning and memory because it brings together sequence 

learning, feature detection, synaptic homeostasis, and network oscillations under a single 

parsimonious computational framework. Beyond its utility as a potential model of cortical 

computation, artificial networks based on this principle have remarkable capacity for 

internalizing dynamical systems, making them useful in a variety of application domains 

including time-series prediction and machine intelligence. 
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Introduction 

The search for function of cortical circuits has been a central focus of neuroscience since the 

pioneering works of Mountcastle (1), Hubel, and Wiesel (2). A guiding hypothesis behind 

much of this work is the existence of a canonical microcircuit whose basic computation is 

critical to sensory processing throughout the cortex. Detailed micro-architectural maps (3) 

show great promise in advancing our understanding of these circuits. However these efforts 

will greatly benefit from constraints on the nature of the computational task itself. At the 

highest level, cognitive systems generate internal representations of the outside world that 

facilitate adaptive behaviors. To what extent can this high-level truism inform us about neural 

architecture and computation operating at much lower levels? Here I show that a logical 

extension of this principle, down to the scale of individual synapses, naturally leads to a 

dynamical neural architecture that generates predictive internal representations, enabling 

feature detection from noisy sensory input. 

 

To bridge the gap between the abstract notion of internal representations and their physical 

neural substrate, let us consider dynamic internal representations which, in their perfect form, 

are able to internally generate the spatiotemporal dynamics of sensory input-in essence, an 

internal simulation of the sensory environment. Here, sensory input is considered from the 

perspective of cortex (e.g. activity of Lateral Geniculate Nucleus (LGN) input neurons into 

V1). Such inputs typically preserve relevant topographic information in two dimensional space 

(e.g. retinotopy).   
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How do populations of neurons form a faithful simulation of spatiotemporal dynamics of 

sensory input? The most obvious substrate is Hebbian synaptic plasticity (4) and its modern 

variant, spike-timing dependent plasticity (STDP) (5, 6), where a pre-synaptic action-potential 

(spike) that immediately precedes a post-synaptic spike strengthens the synapse, while one 

with the opposite temporal order weakens it. In principle, this form of synaptic strength 

modification would lead to a causal chain of activity reflecting the input pattern. However, 

learning in model neural networks based on this form of plasticity has clear stability issues 

since the inherent positive feedback will increase synaptic strength without bounds. Various 

heuristics have been proposed to address the stability problem by imposing additional 

constraints on the scale and rate of synaptic potentiation, often utilizing non synapse-local 

information (5, 7). The biological plausibility of specific solutions may be in doubt. However, it 

is clear from experimental evidence that synaptic plasticity strength is somehow 

homeostatically modulated, presumably in order to maintain neural networks within stable 

operational bounds (8). 

 

Results 

Arguing from first principles, I will motivate a parsimonious neural architecture design capable 

of simulating dynamical systems through an inherently stable synaptic modification process 

operating on strictly local information. Our discrete implementation is composed of a 

population of neurons with potential all-to-all synaptic connectivity mediated by axons with 

conduction delay. For the sake of simplicity and symmetry, neurons can form both positive 

(activating) and negative (inhibitory) synapses onto each other. The neurons are generic 

integrate-and-fire variety whose composite synaptic input determines spiking based on a 
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thresholded sigmoidal response. Sensory input is applied to every neuron in the form of a 

sequence of spike trains. Synaptic weights are initially set to zero. The goal is to arrive at a 

distribution of synaptic weights that enables the network to generate sensory input patterns 

autonomously. Some form of Hebbian synaptic plasticity could serve as the driving force 

here. However, we have to ensure that: 1) modifications will lead to robust convergence of 

synaptic weights to a distribution (a priori unknown) that generates accurate predictive 

internal representations and  2) potentiation will remain within bounds (a priori unknown) that 

ensures long-term network stability. 

 

Synaptic state matching 

Let us focus down on an individual synapse which has access only to local information on pre 

and post-synaptic spiking events and their temporal correlation-structure over time. From the 

perspective of this synapse, perfect internal representation of sensory input is achieved when 

these observable spike statistics are identical between two proposed states:  1) network 

activity is generated by sensory input (open), and  2) network activity is generated by 

recurrent synaptic connections in the absence of sensory input (closed). I propose that the 

imposition of this synaptic state-matching (SSM) constraint at individual synapses can give 

rise to accurate and stable internally generated dynamics at the level of the entire network. 

 

To ensure smooth convergence and long-term stability, synaptic state matching occurs in 

real-time (Fig. 1A), with the entire network switching back-and-forth between activity imposed 

by sensory input (open state) and that generated by the internal simulation of the most likely 

sensory input (closed state). At each synapse, a presynaptic spike followed closely by a 
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postsynaptic spike will lead to specific biochemical changes with the potential of 

strengthening the synapse. Let us refer to the strength of this effect as 'potentiation strength'. 

Let us further assume that each synapse has the capacity to store a running average 

estimate of its potentiation strength in each of these two distinct states. During the early 

phase of learning, the closed state is quiescent because weak synapses are unable to 

generate activity, and potentiation strength computed during this phase is low. During the 

open state, the strong drive of sensory input generates spiking activity with high potentiation 

strength among synapses with tightly coupled pre-post spiking. Upon the occurrence of a 

candidate potentiation event, the synapse makes a decision:  the stored mean potentiation 

strength is compared between the two states; if it is higher in the open state, the synapse is 

strengthened proportional to the instantaneous value of potentiation strength; otherwise, if the 

mean potentiation strength is higher in the closed state, then the synapse has clearly 

overshot and therefore will correct itself by undergoing a depression penalty with a scale 

proportional to its current mean potentiation strength during the closed state. This simple 

local algorithm ensures that potentiation occurs until pre-post spiking statistics are matched 

between open and closed states. From the perspective of an individual synapse, this is the 

best local indication that recurrent synaptic activity is recapitulating the spatiotemporal 

dynamics of sensory input. 

 

Potentiation strength is computed by a temporally asymmetric Hebbian process that is 

modulated by the rates of pre- and post-synaptic activity (Fig. 1B, Fig.S1 and Methods). We 

call this plasticity rule spike-timing dependent covariance plasticity (STCP) because it is a 

temporally asymmetric, event-driven, version of covariance learning (9). In this way, the 
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relative strength of potentiation is proportional to the statistical support for the causal chain of 

activity from pre-synaptic to post-synaptic neuron. As we show below, this simple local 

algorithm ensures smooth convergence to synaptic weight distributions that generate 

accurate and stable dynamic internal representations of sensory input. 

 

Predictive internal representations 

Simulation of a small SSM network demonstrates how predictive internal representations are 

formed (Fig. 2). Details of implementation are available in Methods.  For the sake of 

demonstration, the input spike trains form a triangular wave pattern with a period of 26 time-

steps. Also see Fig S2 for an example of sensory input in the form of repeating circles. The 

thirty neurons of the network in Fig. 2 are driven by sensory input during the open state 

(Gaussian with mean 15 and s.d. 5 time-steps), and free to generate autonomous activity 

during the closed state (mean 15 and s.d. 5 time-steps). Over repeated presentations of the 

stimulus, plasticity drives synaptic weights to a distribution that leads to generation of internal 

dynamics (Fig. 2A). As can be seen, the internally generated pattern is a perfect simulation 

of the missing input, in essence a short-term prediction of the sensory environment (Fig. 2B). 

In this simulation, every neuron has the potential capacity to interact with every other neuron 

through connections with time-delay (latencies). The range of latencies (1-5 time-steps) 

reflects both axonal conduction and synaptic transmission delays that can vary substantially 

due to axonal diameter/myelination and synapto-dendritic time-constants. 
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Robustness to parameter choice, sensory noise, and synaptic perturbations 

The learning performance is remarkably robust to large variations in almost every parameter, 

including state-switching frequency, neuron firing threshold, range of latencies, and global 

potentiation scale (Table S1). Strikingly, potentiation scale can vary over many orders of 

magnitude and still give rise to highly accurate and stable dynamics. The key to this 

remarkable robustness is the synaptic state matching constraint that, although operating 

locally at individual synapses, ends up imposing absolute constraints on the fidelity of 

network-level internal representation (Fig. S3). One reflection of stability is the near balance 

of positive and negative synaptic drive into each neuron across three orders of magnitude in 

potentiation scale (Fig. 2C). Experimental evidence suggests that this matching of inhibitory 

and excitatory drive is a common operating characteristic of neural networks in vivo (10, 11). 

 

Robustness to input noise and structural perturbations are desirable features of biological 

neural networks. SSM networks show remarkable noise-resilience, forming accurate and 

stable internal representations in environments with signal-to-noise ratios (SNR) of ~ 1 (Fig. 

3A). As can be seen, this allows SSM networks to perform perfect noise-filtering for stored 

patterns. Structural perturbations in the form of random synaptic ablation are also well 

tolerated. In a SSM network trained with the triangular-wave input, thirty percent of synapses 

can be removed without substantial degradation in performance (Fig. 3B). 

 

Feature detection and spatiotemporal maps 

During the closed state, the network internally generates the most likely input activity pattern, 

conditioned on the imposed sensory input during the preceding open state. As such, neural 
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activity during the closed state is a short-term prediction of sensory environment. However, 

the network will not predict the trajectory of sensory environment for all stimuli. Indeed, only 

recurrent patterns with high statistical regularity have the potential of being internalized within 

the network's synaptic matrix. As such, SSM networks can carry out feature-detection 

because any activity during the closed state must correspond to pattern completion in 

response to a recognizable feature presented during the preceding open state. In this way, 

SSM networks filter sensory environment for recurrent features on the timescale of state-

switching. An illustrative example of this can be seen for spatiotemporal patterns that 

represent edges (lines) moving in different directions within a simulated visual field (Fig. 4A, 

Fig. S4). In this example, the input neurons are arranged in a 20 by 20 plane preserving 

'retinotopy'. The single 400 neuron SSM network efficiently learns these four patterns and 

performs robust pattern completion in the presence of noise (Fig 4A).  

 

One can think of this small SSM as corresponding to a single cortical column in area V1. The 

ability of this column to identify a feature relies on a long-enough temporal sequence of 

spikes observed during the open state in order to recall the appropriate stored pattern. 

Naturally, this means that closed-state activity is biased towards the end of the temporal 

sequence of spikes that constitute a feature. When there is a topographic projection of 

sensory input into cortex, this temporal asymmetry in the recall of internal representation 

translates to a spatial bias in the response of neurons to detectable features. This 

phenomenon is clearly seen in our simple conception of a V1 cortical column (Fig. 4A). 

Mapping the response specificity of this patch of 'cortex' to bars moving in different directions, 

produces receptive field maps with clear spatial preference, reminiscent of those observed 
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 10 

experimentally (12) (Fig. 4B). It should be emphasize that feature learning and detection 

happen by an entirely unsupervised process with intrinsic long-term accuracy and stability. 

 

Multi-layer networks 

The single-layer networks, presented so far, are directly driven by (clamped to) the external 

input. In this setting, synaptic state matching leads to a generative model that captures first 

and second order correlations in the spatiotemporal dynamics of sensory input. In the realm 

of machine learning, additional internal hidden layers, with neurons whose activities are not 

directly clamped to external input, are free to capture higher-order statistical regularities in the 

distribution of static input patterns (13). The representational power of SSM networks can be 

similarly expanded by addition of hidden layers. For example, large hidden layers can capture 

complexity in a long sequence of spike trains (Fig S5). In turn, small hidden layers can carry 

out dimensionality reduction by forming compressed predictive internal representations of 

high-dimensional sensory input (Fig. S6). 

 

Discussion 

I propose that a fundamental function of sensory cortex is the generation of an internal 

simulation of sensory environment in real time. Here, we see that a parsimonious neural 

architecture can achieve this through synaptic state matching driven by a spike-timing 

dependent covariance plasticity rule. Synaptic state switching has superficial similarities to a 

phase-switching algorithm used to train Boltzmann machines (13). As a stochastic extension 

of Hopfield's associative networks (14), Boltzmann machines have shown great success in 

modeling the probability distribution of static input patterns. During learning, the stochastic 
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units are clamped to temporally uncorrelated input patterns during one phase (learning), and 

allowed to run freely in the second phase (unlearning). The goal of each phase is to 

accurately sample pair-wise correlation distributions which, because of the necessity for 

reaching thermal equilibrium, can take extremely long timescales to accomplish (13). As 

such, these training phases have little correspondence to real-time state switching and 

matching in the sense described here. 

 

Real time state matching is crucial for stability and accuracy (Fig. S3), but it also provides a 

convenient substrate for rapid and noise-resilient feature detection. In this way, the SSM 

network efficiently filters high-dimensional sensory input and generates lower-dimensional 

feature perceptions that, can in turn, serve as input for another SSM network higher in the 

hierarchy. Low-level SSM networks, with high-frequency state-switching, perceive features at 

small spatiotemporal scales; lower-frequency state-switching at higher levels of the hierarchy 

can support feature perception at larger spatiotemporal scales. In turn, top level SSM 

networks can project down and bias feature detection at lower levels of the hierarchy. This 

view exposes a system-intrinsic definition of an 'object' as an embedded pattern of sensory 

input that gives rise to internally generated activity (i.e. recognition). This is a behaviorally 

salient perspective since any internally generated activity is limited to spatiotemporal patterns 

with high statistical regularity which, in turn, are the most likely to convey information about 

future reward. 

 

Do experimental observations support the existence of state-switching? An obvious substrate 

is network oscillations that span a wide dynamic range in frequency and are ubiquitous in 
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brains (15) including those of insects (16). The required gating of sensory input could be 

regulated locally by these oscillations, or more centrally, perhaps through thalamic gating 

(17). Cortical oscillations are thought to underlie coordination and synchrony at large 

spatiotemporal scales. Synaptic state matching would extend the role of oscillations down to 

the smallest neurobiological scales, at individual synapses and single potentiation events. If 

the phase of the oscillation defines the open-closed state boundary, SSM would predict that 

candidate potentiation events are interpreted in a highly phase dependent manner, with 

opposite effects on synaptic strength. Indeed, this is exactly what was observed in an 

experimental imposition of activity during an LTP/LTD protocol (18). Bursts of spikes 

delivered during the peak of the theta oscillation induced LTP, and those delivered during the 

trough induced LTD (18).  

 

It has been elegantly argued that prediction is an operating principle throughout the brain 

(19). Indeed, recent work has shown that even microbial regulatory networks are capable of 

predictive behavior (20). Here we see that an atomic prediction principle, locally operating at 

individual synapses, generates stable and accurate network-level dynamical models that 

extract recurrent features of sensory environments. SSM is an attractive biological 

mechanism because, in addition to its simplicity, it is remarkably tolerant to noise, structural 

perturbations, and choice of parameters. Beyond their relevance to cortical information 

processing, networks based on SSM can serve as general purpose devices in a variety of 

application domains including sequence learning, sequence generation, feature/object 

detection, time-series prediction, noise-filtering, and signal decomposition. From the 
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 13 

experimental perspective, the search for molecular and cellular correlates of synaptic state 

matching represents an important area for future research. 
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Methods 

 

SSM network implementation 

SSM networks were simulated in discrete-time using Matlab (Mathworks). Each neuron 

receives strongly activating synapses from a single input axon. Therefore, during the open 

state, the activity of each neuron is clamped to the input state and follows it precisely (Fig. 

1A). During the closed state, input is gated off and neuronal activity is determined by 

recurrent synaptic drive. In the simplest implementation, every neuron can synapse onto 

every other neuron through connections with a range of time-delays (e.g. 3-5 time-steps). In 

biological neural networks, inhibitory synapses are formed by specialized inter-neurons. In 

our simulations, neurons can directly form both activating and inhibitory synapses. These 

simpler symmetric networks are essentially equivalent to ones where each excitatory neuron 

imposes a dominant drive on an inhibitory neuron with broad connections in the network. 

 

Neuron model 

For each neuron, contributions from all synapses are added linearly proportional to their 

weights and a sigmoidal function with a threshold determines spiking: 
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Here, Vi  is the membrane voltage of neuron i .  wij is the synaptic weight (strength) of 

connection from neuron j to neuron i. Xj is the spiking state of neuron j. N is the total number 

of neurons and parameter S determines the sharpness of the hyperbolic tangent sigmoid 

function. If the membrane voltage reaches threshold, the neuron fires. 

 

Synaptic plasticity 

Synaptic potentiation occurs during the open state according to a spike-timing dependent 

covariance plasticity rule (Fig. S1). Each synapse maintains a local accounting of pre- and 

post-synaptic spike rates, and of the time-averages of potentiation strength computed under 

both open and closed states. The 'aim' of each synapse is to efficiently drive the strength of 

the synapse to a value that leads to a close matching of the mean potentiation strength 

during open and closed states. This is each synapse's best attempt at producing an internal 

representation given that it only has access to local information. Parameters spike-rate 

memory and potentiation memory determine the time-scale of the running average for spike-

rate and potentiation strength respectively. 

 

If the scale of the step-wise change in synaptic strength (α) is large, the synapse may 

overshoot its optimal weight. This may be reflected in a mean potentiation strength that is 

higher in the closed state as compared to the open state. In such a scenario, the synapse will 

undergo a weight depression penalty proportional to the mean potentiation strength during 

the closed state. This local homeostatic mechanism ensures long-term synaptic state 

matching which, in turn, guarantees long-term accuracy and stability (Fig. S3). 
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Figure legends 

 

Fig. 1.  Synaptic state matching architecture and spike-timing dependent covariance 

plasticity. (A) Dynamical architecture of synaptic state switching and state matching. 

Neurons continually oscillate between two global network states: activity imposed by sensory 

input (open) and activity generated by recurrent synaptic drive, in the absence of sensory 

input (closed). (B) synaptic plasticity rule (potentiation strength) in discrete time. X and Y are 

binary events corresponding to pre-synaptic and post-synaptic spikes, respectively and <X> 

and <Y> are their continuous valued running averages. For an activating synapse (+), a pre-

synaptic spike, followed immediately by a post-synaptic spike gives rise to a potential weight 

increase (∆w>0). In the case of an inhibitory synapse (-), a pre-synaptic spike preceding a 

quiescent post-synaptic neuron gives rise to a potential weight increase (∆w<0). Potentiation 

can only occur following a pre-synaptic spike. Candidate potentiation events lead to synaptic 

strength modulation such that the mean potentiation strength is matched between the open 

and closed states. As mean potentiation strength is a compact measure of the locally 

observed spike statistics, Synaptic state matching assures that recurrent synaptic drive is 

recapitulating the spatiotemporal dynamics of sensory input. 

 

Fig. 2.  A thirty neuron SSM network trained on input spikes in the form a triangular 

wave. (A) Synaptic weight matrices for different latency conduction delays (1-5 time steps). 

Positive values (red) correspond to activating connections and negative values (blue) to 

inhibitory ones.  (B)  full pattern of activity in the sensory environment (full pattern), input 

activity during the open state (open), internal activity during the closed state (closed), and the 
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combined (complete). Internal activity is a perfect match to the missing input. SSM parameter 

choices were as follows: potentiation strength (α): 4x10-5, spike-rate memory (ms): 100, 

potentiation memory (mp): 100, state switching period: (Gaussian, τµ=15,τσ=5), neuron firing 

threshold (Vt): 0.5, sigmoid sharpness (S): 10, latency range (L): 5. (C) Input synaptic drive 

into a single neuron for activating input (red), and inhibitory input (blue). Spikes are 

represented in green. The two simulations are identical except for a thousand-fold higher 

potentiation scale (α). Each neuron has 290 synaptic inputs (29 neurons x 5 latencies x 2 

polarities).  

 

Fig. 3. Robustness to sensory noise and synaptic perturbations. (A) Patten of sensory 

environment with noise (full pattern), input activity during the open state (open), internal 

activity during the closed state (closed), and the combined (complete). (B) Match (accuracy) 

of internally generated activity to the missing input during the same interval versus fraction of 

random synapses removed. Accuracy is a conservative measure of how well internally 

generated pattern matches the missing input during the same time interval. It is defined as 

one minus the fraction of discordant spikes between the missing input spike trains and the 

internally generated spike trains. The value here is the average for all thirty neurons. 

Accuracy can be negative in cases where internally generated activity is noisy and/or 

unstable.  

 

Fig. 4.  Feature detection and spatiotemporal maps in the context of moving bars. A 

400 neuron network arranged in a 20x20 sheet with 'retinotopic' input from the visual field is 

trained on bars moving left, right, up and down. (A) Pattern completion in response to bars 
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moving right (top) and left (bottom). The clean input is presented with equal power random 

noise during the open state. The network performs perfect pattern completion during the 

second closed state (dashed boxes) following the presentation of a long-enough sequence of 

moving bars during the preceding open state. Open/closed durations are sampled from a 

Gaussian with a mean of 7 and sd of 2 time steps. For the sake of space, bars moving up 

and down are omitted and only every other time-point is shown. (B) Spatial receptive field 

map of internally generated activity in response to bars moving in four different directions. 

Color-code reflects each neuron's most preferred direction. Brighter colors reflect stronger 

preference. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Supplementary Table 
 
Parameter Operational Range 
mean state switching period (τµ) 7 - 240* 

neuron firing threshold (Vt) 0.1 - 0.7 
sigmoid sharpness (S) 1 - 100* 

latency (L) > 3 
potentiation scale (α) 5x10-5  - 10* 

spike-rate memory (ms) 5-5000* 

potentiation memory (mp) 5-5000* 

 
Table S1.  Parameter insensitivity. Operational ranges that maintain accuracy above 0.80 
on the single triangular wave input pattern (Fig. 2). Asterisks denote conservative bounds 
because values beyond were not tested. 
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Supplementary Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S1. Spike-timing dependent covariance plasticity (STCP). Following every 
presynaptic event (X=1), potentiation strength is computed by a temporally asymmetric event-
driven Hebbian process that takes into account the average activities of presynaptic (<X>) 
and postsynaptic (<Y>) neurons. In this cartoon example, three potential scenarios are 
depicted:  (1) a presynaptic spike, immediately followed by a post-synaptic spike, gives rise to 
a positive potentiation strength (∆w>0) with the potential of strengthening an activating 
synapse. (2) a presynaptic spike immediately followed by a quiescent postsynaptic neuron, 
gives rise to a negative potentiation strength (∆w<0) with the potential of strengthening an 
inhibitory synapse. (3) In the absence of a presynaptic event, potentiation strength is zero 
(∆w=0). 
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Fig. S2.  A 30 neuron SSM network trained on input spikes in the form of repeating 
circles. (A) Input presented to the network during the open state (open). The network 
generates internal activity during the closed state (closed). This SSM network was trained 
with the potential of long latency synaptic connections (1-20). (B) Synaptic weight matrices 
for conduction-delay (latencies) of 1-20 time steps. SSM network parameter choices were as 
follows: potentiation strength (α): 5x10-5, spike-rate memory (ms): 50, potentiation memory 
(mp): 50, state switching period: (Gaussian, τµ=15,τσ=5), neuron firing threshold (Vt): 0.5, 
sigmoid sharpness (S): 10, latency range (L): 20. 
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Fig. S3.  The role of SSM and STCP in the accuracy-trajectory of learning. Synaptic state 
matching (+SSM) is crucial for accuracy and long term stability. Spike-timing dependent 
covariance plasticity (+STCP) substantially improves convergence rate and accuracy as 
compared to a plasticity rule that is not modulated by spike-rate history (-STCP). The 40 
neuron SSM is trained on two alternating random spike patterns (features), each 40 time-
steps long, with an intervening 20 time step quiescent period. The accuracy does not reach 
maximum (1.0) because the network is unable to generate the earliest part of each random 
pattern due to the absence of any input during the quiescent period preceding the closed 
state. 
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Fig. S4.  An SSM network for moving bars across a model visual field. Top left: sensory 
input into a two-dimensional field (20x20) generates activities in 400 neurons arranged as 
shown. Right: synaptic weight matrices (for latencies 1-15). Each of these is a 400 by 400 
matrix of synaptic weights (bottom left for latency=1). Positive values correspond to activating 
synapses, and negative values to inhibitory synapses. SSM parameter choices were as 
follows: potentiation strength (α): 5x10-5, spike-rate memory (ms): 50, potentiation memory 
(mp): 50, state switching period: (Gaussian, τµ=7,τσ=2), neuron firing threshold (Vt): 0.5, 
sigmoid sharpness (S): 10, latency range (L): 15. Each neuron has 11970 synaptic inputs 
(399 neurons x 15 latencies x 2 polarities). 
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Fig. S5. Hidden layer learns a generative model of a long sequence of spike trains. (A) 
The three neurons in layer 1 (L1) are clamped to input spike trains (in this example, a random 
pattern with spike frequency of 0.2). During the open state, these neurons project (through 
synapses with random weights) to a much larger hidden layer (L2) which in this example 
contains thirty neurons. Synaptic state matching in the intra-layer 2 synaptic connections  
(L2-L2) gives rise to an accurate predictive model within this hidden layer. Synaptic state 
matching of synapse projections from layer 2 to layer 1 (L2-L1) generates an accurate 
predictive model of the missing input at layer 1. Layer 1 neurons do not have any internal 
recurrent connections. (B) top: missing input into layer 1 during the closed state; middle: 
predicted pattern of missing input created by the projection of hidden layer axons to layer 1 
during the closed state. The pattern is a perfect match to the missing input; bottom: the 
coincident activity of the 30 neurons in the hidden layer during the closed state. SSM 
parameter choices for both L2-L2 and L2-L1 connections were as follows: potentiation 
strength (α): 5x10-4, spike-rate memory (ms): 200, potentiation memory (mp): 50, state 
switching period: (Gaussian, τµ=30,τσ=10), neuron firing threshold (Vt): 0.5, sigmoid 
sharpness (S): 10, latency range (L): 20. 
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Fig. S6. Hidden layer learns a low-dimensional representation of spike trains in the 
form of a repeating triangular wave. (A) The thirty neurons in layer 1 (L1) are clamped to 
input strains in the form a repeating triangular wave. During the open state, these neurons 
project (through synapses with random weights) to a much smaller hidden layer (L2) which in 
this example contains six neurons. Synaptic state matching in the intra-layer 2 synaptic 
connections (L2-L2) gives rise to an accurate predictive model within this hidden layer. 
Synaptic state matching of synapse projections from layer 2 to layer 1 (L2-L1) generates an 
accurate predictive model of the missing input at layer 1. Layer 1 neurons do not have any 
internal recurrent connections. (B) top: missing input into layer 1 during the closed state; 
middle: predicted pattern of missing input created by the projection of hidden layer axons to 
layer 1 during the closed state. The pattern is a perfect match to the missing input; bottom: 
the coincident activity of the six neurons in the hidden layer during the closed state. SSM 
parameter choices for both L2-L2 and L2-L1 connections were as follows: potentiation 
strength (α): 5x10-4, spike-rate memory (ms): 200, potentiation memory (mp): 50, state 
switching period: (Gaussian, τµ=30,τσ=10), neuron firing threshold (Vt): 0.5, sigmoid 
sharpness (S): 10, latency range (L): 20. 
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