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Abstract  

Neuronal differentiation is under the tight control of biochemical and physical information 

arising from micro-environment. Here, through a panel of poly-L-lysine micropatterns, we 

wished to assay how external geometrical constraints of neurons may modulate axonal 

polarization. Constraints applied to either the cell body or to the neurite directions 

revealed the existence of a differential mechanical tension between the nascent axon and 

other neurites. Also, we show that centrosome location is not predictive of axonal 

polarization but responds to the force exerted by the nascent axon. Using curved 

trajectories for neurite growth inhibited axonal differentiation and prevented formation of 

multiple axons normally induced by cytochalasin or taxol treatments. Finally we provide 

evidence that microtubules act as curvature sensors during neuronal differentiation. Thus, 

biomechanics coupled to physical constraints might be the first level of regulation during 

neuronal development, primary to biochemical and guidance regulations.   
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Introduction 

In vivo, the behavior of cells and tissues is determined by a combination of biochemical 

and physical signals. Cells exert forces and sense the environment to modulate their 

fundamental functions such as migration and differentiation. The impact of the 



mechanical and geometrical features of the surrounding matrix on the structure and 

functions of cells has been increasingly documented1-3. In neurons, cytomechanics acts at 

several steps of the developmental program. The balance between proliferation and 

differentiation of neuronal stem cells is modulated by differential forces4, new-born 

neurons are subjected to passive and active mechanical stress that regulates neurite 

outgrowth and morphogenesis 5, and growth cones pull and stretch neurites6. The topology 

of the environment is crucial during neurodevelopment, as either glial cells or pre-existing 

axons are physical supports along which neurons migrate or extend axons toward their 

distant targets7-10. During neuronal differentiation, the nascent axons have to sense and to 

adapt to the complex topologies arising from the crowded environment of developing 

brain8. How physical constraints of the micro-environment affect axonal polarization 

remained poorly described11, 12. It is known, however, that submitting equivalent neurites 

to external forces allowed the specification of the stretched neurite into an axon, even in 

already polarized neurons13. At the biological level, both neuronal differentiation and the 

establishment of forces involve cytoskeletal components; axonal specification correlates 

with cytoskeletal rearrangements, including local dynamic instability of actin and 

stabilization of microtubules14. Also, the crucial contribution of the centrosome as a 

microtubule-organizing center during axonal specification remains debated. Centrosome 

location has been reported as a predictor of axonal fate15, 16, but this assertion was later 

questioned by both in vitro and in vivo observations17, 18.  

Here we wished to assay how external geometrical constraints applied to the cell body 

and/or to the neurites will be sensed and integrated by neurons, how they may contribute 

to the regulation of the tension developed by neurites during growth, and how they may 

modulate axonal polarization.  

We thus manipulated neuronal shape through non-specific poly-L-lysine-covered 

micropatterns. By applying geometrical constraints on the cell body we provide evidence 

that centrosome location is not predictive of axonal polarization; rather, it is determined 

by axonal location.  Then, by varying the orientation of the directions of neurite growth, 

we show that the neurite that displays the highest tension becomes the axon, suggesting 

that axonal specification may result from the achievement of the highest mechanical 

tension. More, we demonstrate that axonal specification of neurites grown on curved lines 

is inhibited. This inhibitory effect toward axon formation was strong enough to counteract 

the multiple-axon-promoting action of taxol or cytochalasin. Finally, using cytoskeleton-



related drugs, we found that microtubules are the major players in tension-mediated 

neuronal polarization.  

 

Results 

To assay the effects of physical constraints on neuronal polarization we provided 

micropatterned substrates to hippocampal neurons in culture, thereby constraining cell 

bodies and/or neurites. Through photolithography techniques, poly-L-lysine adhesive 

patterns were engineered on hydrophobic glass coverslips on top of which embryonic 

hippocampal mouse neurons were plated.  

First we designed a control motif, DC, formed with a 20µm-diameter disk for the 

cell body and three straight lines (L1-L3 directions) built according to a three-fold 

rotational symmetry (angles=120°, Fig. 1a). After neuron plating we assayed neuronal 

differentiation at several days of differentiation in vitro (DIV). Neurons grown on these 

micropatterns behaved like randomly cultured neurons19; they generated several 

equivalent neurites (stage 2) and, about 36 hours later, a single neurite underwent rapid 

elongation and became the axon (stage 3). Accordingly, the early axonal marker tau was 

found only in the axonal shaft of 3 DIV (Supplementary Fig. 1) and the dendritic marker 

MAP2 was mainly found in the dendritic compartment of 7 DIV neurons (Supplementary 

Fig. 7).  

The percentage of neurons polarized in each direction (L1-L3) was determined and we 

found random polarization along L1-L3 (35.8%, 33.2%, and 31.1% along directions L1, 

L2, and L3, respectively, Fig.1b) as expected from the three-fold symmetry of the DC 

motif. 

Starting from the control DC pattern new patterns were engineered to analyze relations 

between axonal specification and neuronal internal tension. Geometrical constraints were 

applied that affected the form and the surface available for cell spreading and the direction 

and the trajectories available for neuritic outgrowth.  

 

 

Centrosome location and axonal differentiation in the presence of cell body physical 

constraints 

First, to study the potential role of centrosome location in axonal polarization, we defined 

a pattern applying geometrical constraints on the cell body. Indeed, an L-shaped 



(boomerang) pattern to constrain Hela cells has been shown to result in stereotyped cell 

shape with a centrosome location at the corner of the motif 20. Two patterns were designed 

(Fig. 1a), one with a thick boomerang-like shape (BmS, Supplementary Fig. 2) and 

another built from a 20µm-diameter disk (DS). Due to its L-shape, the BmS pattern 

exhibited an asymmetric direction for neurite outgrowth with an angle of 90° between L2 

and L3 and of 135° between the other directions (Fig. 1A and Supplementary Fig. 2). This 

asymmetry for the direction of neurite outgrowth was reproduced in the DS pattern (thus 

providing a control of cell body constraints for BmS, Supplementary Fig. 2).  

Centrosome distribution was analyzed from γ-tubulin immunolabeling in stage 2 

undifferentiated neurons (1 DIV). The L-shaped pattern BmS was able to induce 

centrosome distribution along its symmetry axis (Fig. 1c-d), strikingly reproducing what 

was observed for HeLa cells20 and extending to a radically different cellular type the 

benefits of micropatterns in terms of stereotyped organelle localization. Note that neurons 

grown over BmS patterns did not display any new actin structures as compared to non-

patterned cells; i.e stress fibers were not observed (Supplementary Fig. 3). Instead, 

microtubule bundles tended to bend along the upper side of the boomerang shape (Fig. 

1c). In contrast to BmS, on DS patterns, undifferentiated neurons (stage 2) exhibited a 

largely central centrosome location (Fig. 1D).  

On both patterns, DS and BmS, axonal polarization preferentially occurred along L1 

(44.9% and 47.2%, respectively) as compared to random (Fig. 1b) (*,  p < 0.05) with no 

significant difference between BmS and DS. Comparing the observations of early 

centrosome location on DS and BmS patterns (central vs elongated along L1 direction) 

with the percentage of polarization along L1 clearly indicated that centrosome alignment 

along the direction of a given neurite did not induce its axonal fate. Thus, the ability of 

micropatterns to enforce centrosome location along the L1 axis on BmS at stage 2 did not 

significantly enhance the success rate of polarization along L1 at stage 3.  

We then investigated centrosome distribution at stage 3, after axonal polarization. 

Centrosome distribution quantified on the BmS pattern revealed that, although 64.7% of 

the centrosomes were still located along the symmetry axis L1 of the pattern, (Z0 area,  

Supplementary Fig. 4) as compared to 87.5% at stage 2 (***, p<0.001), the others spread 

toward L2 (14.1%) and L3 (20.1%) directions. In the same micropatterns, axonal 

polarization occurred in each direction with the following ratio: 47.2% for L1, 27.8% for 

L2, and 23.3% for L3 (Fig. 1B) directions. Thus at stage 3, on BmS patterns, the 



percentage of centrosome positions seemed to be associated with polarization success 

along each direction. These results indicated a probable redistribution of the centrosome 

toward the actual axon, following axonal specification. To directly address this possibility 

we analyzed the centrosome location and the position of the axon from the same 

individual neuron and found, as displayed in Figure 1e, a direct correlation between 

centrosome and axonal positioning with a systematic alignment of the centrosome along 

the axonal direction.  

Altogether, these results showed that the initial centrosome localization is not the key 

factor leading to the observed preferential axonal polarization along L1; rather, it is 

determined by axonal location. To explain the axonal preference along L1 in BmS and DS 

patterns, we focused on the rotational symmetry breaking in the neuritic directions in 

these motifs as compared to the DC control pattern. Hence, we used a geometrical 

approach of the mechanical tensions developed in each patterns by considering that 

neurites were in mechanical equilibrium6. The vectorial analysis of these tensions yielded 

different values for their modulus along direction L1 (TL1, Fig. 1f), i.e. TL1 was higher by 

a factor of √2 on DS and BmS than on DC control pattern. This analysis suggested that the 

neurite that displayed the highest tension probably became the axon and that intrinsic 

asymmetry of tensions may be involved during axonal differentiation. In brief, an intrinsic 

differential of tension was possibly associated with axonal polarization and could trigger a 

redistribution of the centrosome population toward the basis of the axon.  

 

Effect of neuritic constraints on axonal differentiation  

Geometrical constraints were applied to neurite trajectories by imposing curved lines for 

neuritic outgrowth. By doing so we wished to mimic in vivo neuronal path-finding in a 

crowded environment to determine how the corresponding physical constraints might 

affect neuronal tensions and ultimately axonal polarization.  

Curved lines for neuritic outgrowth prevented axonal polarization 

We designed a succession of micropatterns offering a 20µm-diameter disk (D) dedicated 

to soma adhesion and 2µm-thick lines for neurite outgrowth with four directions (L1-L4) 

made of one straight (L1) and three curved lines (L2-L4) of increasing curvature. Curved 

paths were built from full or truncated half circles of variable radius in order to set the half 

wavelength of the curvatures to the value of 20µm (Supplementary Fig 5 for a summary 



of these pattern parameters). Additionally, we designed a control pattern named DW0 and 

characterized by four straight directions L1-L4 (Fig. 2a).  

Analysis of axonal specification from 3 DIV neurons grown over this class of 

micropatterns showed new neuritic outgrowth figures where neurites seemed to be 

partially (Fig. 2b, upper panel) or totally torn off their curved adhesive track (Fig. 2b, 

lower panel), which we termed ``unhookings''. Video-microscopy analysis of neuronal 

differentiation showed that neurites dynamically, and sometimes reversibly, unhooked 

from the curved adhesive track in a time scale of minutes (Fig. 2c, see also Supplementary 

Video). The actual unhookings observed at 3 DIV recapitulated irreversible tearing events 

that occurred during the first three days in culture. These observations led us to consider 

the probable forces developed within neurites growing onto curved lines (Fig. 2d). 

Whenever a neurite undergoes internal tension T, unhooking forces Fγ depending on the 

specific angle characteristic of each micropattern will tend to tear it off (Fγ = 2Tsinγ, Fig. 

2d). Hence, actual unhookings corresponded to neurites whose adhesive forces towards 

the micropattern were overcome by the unhooking forces when increasing tension 

developed within neurites. In agreement with the mechanical modelization of Figure 2d, 

quantification of unhooking events in the different patterns showed that increasing the 

curvature increased the unhooking events as well, reaching 22.7% of neurons with at least 

one unhooked neurite on the DW4 micropatterns (Fig. 2e). A possible relationship 

between unhooking forces and axonal polarization resulted from observations of 

unhooked neurites. Out of 132 neurons grown over DW4 micropatterns, 30 displayed 

unhookings (22.7%) unevenly distributed between axonal and non-axonal neurites. Of 67 

neurons that polarized along L1, 8 unhookings were observed on the (3x67) neurites 

growing on L2-L4, thus indicating a low 4.0 % probability of unhooking for non-axonal 

neurites. In contrast, of 65 neurons with axonal polarization along L2-L4, 18 unhooked 

axons were counted, indicating a significantly higher 27.7% frequency of unhooked axons 

( p < 0.001). Since these results were obtained for DW4 micropatterns with fixed physical 

parameters (γ= 90°, κ = 0.1µm-1), the different probabilities of unhooking suggest that 

maximal internal tensions differ for axonal versus non-axonal neurites. 

Correspondingly, quantification of axonal polarization along each direction showed that 

axonal polarization along L1 increased with the curvature of the L2-L4 lines (Fig. 2f), 

reaching 52.3% (p < 0.001 as compared to random, i.e. 25% in these four-branch patterns) 



on the DW4 pattern, whereas the other axons differentiated uniformly onto L2-L4 

(Supplementary Fig. 6). We stress here that curvature influenced the process of axonal 

differentiation but not the process of axonal growth. Once formed, the axon developed 

freely over hundreds of microns along either straight or curved paths (Supplementary Fig. 

7).  

Taken together, these results indicated that curved lines of increasing curvature led to 

increasing unhooking forces, responsible for more actual unhookings and resulting in 

better axonal polarization along L1, as if curved lines inhibited axonal polarization.  

Last, we established a map of centrosome distribution before and after axonal polarization 

in the DW4 pattern, and observed again that this organelle was not predictive of axonal 

fate (Supplementary Fig. 8). A mainly central location at stage 2 turned into a 

reinforcement of centrosome positioning along the preferential axonal direction L1 at 

stage 3. Moreover, a strict correlation between centrosome localization and axonal 

direction was again observed.  

 

Curved lines conflicted multiple-axon-promoting effect of cytoskeleton drugs 

We further investigated the inhibitory role of curved lines toward axonal polarization by 

performing experiments using pharmacological compounds known to promote the 

formation of multiple axons (MA) in hippocampal neurons grown on flat unconstrained 

substrates21, 22. Neurons grown on DW0 control pattern were treated either with 

cytochalasin (CD, 0.5 µM), taxol (3 nM), or vehicle. At 2 DIV, the proportion of MA 

neurons was similar to that reported in the literature, i.e. 78.6% and 73.3% MA neurons in 

the presence of cytochalasin D and taxol, respectively, while virtually none (1.7%) were 

observed in sham conditions (Fig. 3A).  

We then assayed the ability of neurons to develop MA when grown on DW4 patterns 

whose curved lines inhibited axonal specification the most. In sham conditions, only few 

MA neurons were detected (1.8%); in the presence of cytochalasin D or taxol, MA 

neurons were still observed but in significantly smaller proportions than for DW0 (32.0% 

versus 78.6%, p < 0.001 and 25.7% versus 73.3%, p < 0.001 for cytochalasin D and taxol 

respectively) (Fig. 3 A). These results indicated that curved lines displayed a strong axon-

inhibiting effect that opposed the multi-axon-promoting action of the drugs. 

 

Microtubules support curvature-mediated inhibition of axonal polarization 



The inhibition of axon specification on curved lines most probably involved cytoskeletal 

relays in neurons. To investigate the involvement of cytoskeleton elements in the 

inhibitory role of curvature toward axonal polarization, we analyzed axonal preference 

along L1 from experiments performed in the presence of cytoskeletal-targeted drugs: 

cytochalasin (actin destabilizer), taxol (microtubule stabilizer), or nocodazole 

(microtubule destabilizer).  

Neurons grown on DW4 patterns were treated with each drug and axonal polarization was 

measured in neurons displaying a unique axon (Fig. 3b). After nocodazole treatment, as 

compared to sham conditions, axonal polarization toward L1 was significantly reduced 

(37.7% versus 50.5%, p < 0.05), indicating that microtubule integrity was crucial for the 

inhibitory effect of curved lines toward axonal polarization. Cytochalasin and taxol 

induced the formation of multiple axons and this effect needed to be taken into account: 

after the differentiation of a first axon, neurons will try to develop a second axon and will 

unequally succeed to do so whether they have developed the first axon on the straight line 

L1 or along any of the curved lines L2-L4. Thus, the probability of remaining a neuron 

with a unique axon will differ according to the position of the first axon. We developed a 

simple probabilistic model of successful axon specification along straight or curved lines 

to predict expected values of polarization along L1 in the presence of the multiple-axon-

promoting drugs (Supplementary Text). We then compared the predicted values of axonal 

polarization along L1 with the measured values. In the presence of cytochalasin D, the 

predicted value of polarized neurons in direction L1 was 59.0% and in agreement the 

measured value was 55.8%. In contrast, in the presence of taxol the predicted value of 

polarized neurons in direction L1 was 58.4% and the measured value of 47.7% was 

significantly lower (p < 0.05).  

Altogether these results demonstrated that cytoskeletal elements were differently involved 

in the inhibitory ability of curved lines to induce axonal polarization. Actin integrity 

seemed dispensable for the inhibition of axonal polarization by curved lines. In contrast, 

more neurites grown along curved lines became axons in the presence of taxol or 

nocodazole i.e. curved lines' capacity to inhibit axonal polarization was decreased in the 

presence of MT-targeting drugs.  

 

 

Discussion 



Neuronal polarization is sensitive to external physical constraints 

Neuronal differentiation in vivo and axonal specification are both under the control of a 

large number of parameters including adhesion23, 24 to the extra-cellular matrix, complex 

responses to guidance molecules8, and physical constraints11, 12. In this study, we 

especially analyzed the role of specific physical parameters on axonal specification. We 

developed a simplified protocol in which neurons were plated on top of geometrically 

constrained micropatterns in a defined cell culture medium. By doing so, we provide 

evidence that neuronal polarization was indeed sensitive to external constraints such as 

curved trajectories for neuritic outgrowth. Our results indicate that axon polarization was 

favored along straight lines; such a scenario might be used in vivo by newborn neurons 

extending their nascent axon along a pre-existing straight direction belonging to a 

neighbor neuron. Indeed, hippocampal granular neurons extend and fasciculate their axons 

in the same direction as dentate gyrus neurons, which extend axons to form the mossy 

fiber bundle25.  

 

Geometrical constraints revealed internal neuritic tension 

The involvement of forces during neuronal differentiation was first described for the 

growth cone of chick sensory neurons and PC12 cells that pulled onto neurites6, 26. 

Mimicking such forces by mechanically pulling a neurite with a micropipette even caused 

its active growth26, with constant parameters dependent on intact actin and microtubular 

networks27, 28. Similar experiments with rodent hippocampal neurons unambiguously 

demonstrated that pulling a neurite could change it into an axon13. Finally, identification 

of low velocity transport independent from the growth cone29 and observations of axonal 

stretching from fixed reference points in chick sensory neurons30 confirmed that internal 

neuritic tensions may act in living neurons. Our work extends these observations by 

revealing endogenous neuritic tension in mouse hippocampal neurons grown on 

micropatterns. In our system, neurons grown over curved lines displayed figures of 

unhooking formed by neurites progressively detaching from the curved lines they were 

growing on. This observation led us to consider that individual neurites were submitted to 

a fine balance of forces, Fadhesion and Funhook, the latter depending on the curvature of its 

substrate. Recent modeling of chick sensory neurons estimated the friction coefficient 

relative to adhesion to be about 9600 N.s.m-2 31. Such adhesion along a full curved line of 

the DW4 motif (area = 62.8µm2 for γ= 90°, see  Fig. S4) would correspond to a force 



Fadhesion = 1-10 nN to detach in 1-10 min (Fig. 3  D and supplementary video 1). 

Interestingly, this value of 1-10 nN is of the same order of magnitude as estimations of 

resting tension in neurites of PC12 cells (1 nN) or Drosophila neurons (4 nN) and of 

tension needed to differentiate neurites of rat hippocampal neurons into axons (0.4-1 

nN)30, 32, 33.  

 

A differential in internal neuritic tensions may be involved in axonal polarization 

The angular orientation applied to straight neuritic directions seemed to be involved in 

axonal polarization preference, suggesting asymmetric internal tensions during axonal 

differentiation and leading us to propose that the neurite that expressed the highest tension 

probably became the axon. Then, the simple mechanical model displayed in Fig. 2D 

suggested that neuritic tension may be causal in the unhooking phenomenon revealed in 

neurons grown over the DW class of micropatterns. When unhooking occurred, we very 

often observed a pause in growth cone advance and even neurite retraction (Fig. 2C, black 

arrowhead). Such events could result from a collapse of the initially stretched neurite by 

the disruption of its adhesive contacts with the PLL curved stripe31. Therefore, unhooking, 

by actively reducing neuritic tension, could participate in the inhibition of axonal 

polarization on curved lines by introducing a differential of tension between neurites. That 

axons were dominant within the unhooked neurite population seems, however, not in 

favor of this hypothesis. But, causal or not, the unhooking phenomena reinforced our 

finding that axons tend to develop a greater tension than other neurites. 

 

Centrosome positioning is not predictive of axonal polarization but responds to 

neuritic tension 

Our results showed that geometrical constraints imposed by patterns to the soma were 

responsible for centrosome localization at stage 2, a mainly central location if we provided 

a circular area for soma adhesion (DS pattern) and a localization along the pattern 

symmetry axis if a boomerang shape was available for the cell body (BmS pattern). 

Besides, a closer look into the precise centrosome repartition in the DW4 pattern showed 

that they preferentially distributed in the lower left quadrant at stage 2 (Supplementary Fig 

8). Interestingly, the vectorial sum of the neuritic tensions developed in this pattern 

(determined as in Fig. 1F, but with the assumption of equal modulus arising from the 

present undifferentiated state), yielded a resultant directed down and leftward (Fig S8). 



The major influence of the adhesion area provided to soma on the centrosome distribution 

at stage 2 can be thus modulated by neurite allocation around the soma, in other terms by 

neuritic forces.  

The localization of centrosome at stage 2 did not seem to be predictive of axonal 

polarization, as BmS and DS pattern resulted in the same polarization ability, and as a 

significant axonal rate of polarization along L1 was further observed in DW4 despite the 

mainly central centrosome localization imposed by this pattern at stage 2. The centrosome 

has been reported to be highly motile during axonal differentiation34, 35 and accordingly 

we found that centrosome distribution changed between stage 2 and stage 3, being clearly 

aligned along the chosen axonal direction at stage 3. The sensitivity of centrosome 

positioning to neuritic forces could be further expressed in the course of axonal 

polarization. At the end of stage 2, one neurite will take precedence over the others and 

develop a relatively higher force, thus reorienting the centrosome. This centrosome 

displacement may in turn stabilize the axonal nature of this highly mechanically active 

and tensed neurite.  

 

Curvature-mediated inhibition of axonal polarization relies on MT cytoskeleton 

No change of axonal preference toward the straight direction L1 was observed in the 

presence of cytochalasin D, indicating that the molecular support of curvature-mediated 

inhibition of axonal polarization was not strongly affected when the actin network was 

perturbed. In contrast, treatment with taxol or nocodazole induced less L1 preference than 

expected from the observations made in the presence of the vehicle. Both drugs are known 

to affect the microtubule network but their effect strongly depends on the concentrations 

used in experiments. Low doses of taxol (below 10 nM) affect microtubule dynamics 

(growing and shortening events at the ends of microtubules) without inducing massive 

microtubule stabilization and without increasing the microtubule mass14, 36, 37 and similarly 

low doses of nocodazole affect the dynamics of microtubule without depolymerization38. 

In our study we used such low doses of both taxol and nocodazole to affect microtubule 

dynamics and observed decreased axonal preference toward L1. Given the unhooking 

figures observed and the vectorial analysis of forces (Fig. 1), it seems that expression of 

forces mainly occurred in the axonal shaft. We can speculate that microtubule dynamics in 

the axonal shaft are linked with neuritic tension: the perturbation of microtubule dynamics 

will affect the mean size of individual MTs within the axonal shaft, allowing them for 



more or less bending along curved lines. Interestingly, a recent study using rat dorsal root 

ganglion neurons grown over propylene tubular surfaces demonstrated that curvature per 

se could be used to control the direction of spontaneous neuritic growth39. Neuritic 

outgrowth was inhibited by the curvature of the tubes when it reached values > 0.05µm-1, 

much similar to the curvature of DW4 curved lines (0.1µm-1 when γ= 90°). Using these 

values, the authors estimated neuritic bending stiffness and indicated that it was 

compatible with that of bundled MTs39. These data, in addition to our results showing that 

microtubule integrity and dynamics were necessary for axonal polarization, support the 

hypothesis that MT may be curvature sensors during neuronal differentiation. 

 

Conclusion 

Altogether our results strongly indicate that mechanical tensions at work within neurites 

can be modulated by the topology of the environment and that neurites will only 

differentiate into axons under conditions allowing for the highest tension. Mechanical 

forces are probably causal in axonal polarization and in related events like centrosome 

positioning along the direction of the axon. There is much work left to understand the 

molecular cascades connecting the forces to the biological phenomena they are involved 

in.  

 

Materials and Methods 

Micro-pattern fabrication Poly-L-lysine patterns were transferred on glass substrates 

silanized with 3GPS40 using UV classical photolithography steps, including Shipley 

S1805 photoresist spinning (4000 rpm, 0.5µm thickness, 115°C annealing step for 1 min), 

insulation through a mask, development (Microposit concentrate 1:1, Shipley), PLL 

deposition (1mg/ml one night), and lift-off using an ultra-sound ethanol bath. 

Neuron culture and labeling Mouse hippocampal neurons were prepared as previously 

described41 and plated at a concentration of 10,000-20,000 cells/cm2. For centrosome 

staining, neurons were fixed and permeabilized for 30 min in 3.7% formaldehyde/0.5% 

glutaraldehyde/0.1% triton X100. For Ankyrin G immunostaining 6-7 days in vitro (DIV), 

neurons were fixed for 6 min in methanol (-20°C). Primary antibodies (mouse mAbs 

against Ankyrin G (Santa Cruz); Tau (clone tau-1, Millipore); MAP2 (clone AP-20, 



Sigma); rat mAb against tubulin (cloneYL1/2), and rabbit γ tubulin (M. Bornens, Institut 

Curie, Paris, France). Secondary antibodies were Alexa488 or Cy3 coupled (Molecular 

Probes, USA). Isolated neurons were analyzed with an inverted microscope Axioskop 50 

(Carl Zeiss, Inc.) controlled by Metaview software (MDS Analytical Technologies) using 

a 40 x and 63 x oil-immersion objective. Images were digitized using a Coolsnap ES 

camera (Roper Scientific).  

Centriole analysis Image sortings were performed using Labview vision software 

(National Instrument) and a semi-automatic interface that positioned the datum lines 

associated with each pattern. The two centrioles were visible in more than 85% of cases 

and were then pointed separately. When indistinguishable, the unique fluorescent point 

counted for two centrioles. Density maps of centriole positions were made by a custom-

made Matlab program using an algorithm for smoothing of two-dimensional histograms42. 

The centriole distribution according to ROIs was assessed using programs in the free 

Octave language, administered by the GNU General Public License. 

Statistics All percentage comparisons were performed using χ2 tests as implemented in 

Prism 4.0 (GraphPad Software, La Jolla, USA). 
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Legend figures 

Figure 1: Effect of soma constraints on centrosome position and axonal polarization 

(a) Design of patterns DC, DS, and BmS; L1-L3 directions are indicated.  

(b) Results of axonal polarization, i.e percentages of 3 DIV neurons with their axon along 

L1-L3 directions (n= 267, 176, and 194 for the DS, BmS, and DC patterns, respectively). 

Blue dotted lines: random distribution. *, p<0.05; ***,  p<0.001.  



(c) Microtubule labeling (green), highlighting the different organizations of microtubules 

in DC, DS, and BmS patterns. Nuclei (blue) and centrioles (red) stained with antibodies 

against γ tubulin. Red arrows point to the centrioles.  

(d) Superimposition of centriole scatter plots and density maps on the corresponding 

pattern (n=154, 168, and 160 for the DC, DS, and BmS patterns, respectively). Neurite 

growth directions are indicated. 

(e) Correlation of centriole positioning (red dots) and axonal localization in the BmS 

pattern. (n= 31, 12, and 20 for the L1, L2, and L3 directions, respectively). 

(f) Neuronal outgrowths represented by polygons of forces in the DC (top) and BmS/DS 

(bottom) pattern. Each vectorial representation is displayed again on the left, showing the 

magnitude of the tensions (multiple of T, the tension exerted along the L2-L3 directions) 

exerted along L1 under the hypothesis of an equilibrium mechanical state at the cell level.  

 

 

Figure 2: Influence of neurite curvature on axonal polarization  

(a) DW4-set of patterns of increasing curvature along directions L2-L4; Scale bars, 20µm.  

(b) Partial and complete unhookings observed on fixed cells (microtubules: green, F-actin: 

red). White arrows point to partial unhooking, characterized by a displaced neuritic shaft 

still attached to the substrate by a large lamellipodium. The yellow arrow indicates 

complete unhooking characterized by a high density of MTs crossing the pattern arch and 

remaining entities strictly following the curved adhesive line. Scale bar, 10µm.   

(c) Time-lapse experiment (indicated in minutes, with t0’ taken 30 hours after plating) of a 

neurite developing on a DW4 pattern showing partial unhooking (white arrow). The black 

arrowhead points to the neurite tip and the green dashed lines in the upper panels mark the 

position of the adhesive pattern. Scale bars, 20µm. Refer to supplemental Movie 1 for the 

original time-lapse sequence.  

(d) Physical modeling of a curved neurite (in red) as an elastic wire under tension Τ. 

Curvature is reflected by the angle γ (see text), and Fγ = 2 T sin γ (black arrow) is the 

force experienced by the elastic wire. 

(e) Number of unhookings plotted from neurons grown over DW0 (0 %), DW4-1 (6 %), 

DW4-1 (8 %), DW4-3 (13.7 %), and DW4 (26.5 %) patterns. ( n = 117, 129, 128, 132, 

and 132, respectively). 



(f) Preferential axonal specification along the straight direction L1 were plotted from 3 

DIV neurons plated over DW0 (24.4%), DW4-1 (32.6%), DW4-1 (34.7%), DW4-3 

(45.5%), and DW4 (52.3%) patterns. ( n = 131, 285, 225, 330, and 216, respectively). 

***, significantly different from random,   p<0.001.  

 

Figure 3 Combined actions of drugs and micropatterns on axonal polarization 

(a) Percentages of multiple axon (MA) neurons grown over DW0 or DW4 micropatterns, 

in sham conditions or in the presence of cytochalasin D (0.5 µM) or taxol (3 nM);  (sham 

n=117; CD, n=112; Tx, n=150 for DW0 and sham n=109; CD, n=153; Tx, n=319 for 

DW4). ***, significantly different from both DW0, p < 0.001. 

(b) Axonal preference along L1 for neurons grown on DW4 micropatterns, in the presence 

of DMSO, nocodazole (Nz); cytochalasin (CD) or taxol (Tx)   (n = 107, 146, 104, and 237 

neurons with a unique axon, respectively). Blue dotted lines represent the predicted 

preference along L1 in the presence of CD or Tx as determined with the probabilistic 

model (Supplementary Text). *, significantly different from the expected distribution,   p 

< 0.05. 
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