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Abstract

Expression quantitative trait loci (eQTL) studies are an integral tool to investigate the genetic component
of gene expression variation. A major challenge in the analysis of such studies are hidden confounding
factors, such as unobserved covariates or unknown environmental influences. These factors can induce a
pronounced artifactual correlation structure in the expression profiles, which may create spurious false
associations or mask real genetic association signals. Here, we report PANAMA (Probabilistic ANAlysis of
genoMic dAta), a novel probabilistic model to account for confounding factors within an eQTL analysis. In
contrast to previous methods, PANAMA learns hidden factors jointly with the effect of prominent genetic
regulators. As aresult, PANAMA can more accurately distinguish between true genetic association signals
and confounding variation. We applied our model and compared it to existing methods on a variety of
datasets and biological systems. PANAMA consistently performs better than alternative methods, and
finds in particular substantially more trans regulators. Importantly, PANAMA not only identified a
greater number of associations, but also yields hits that are biologically more plausible and can be better
reproduced between independent studies.

Introduction

Genome-wide analysis of the regulatory potential of polymorphic loci on gene expression has been carried
out in a range of different study designs and biological systems. For example in human, association
mapping has uncovered an abundance of cis associations that are responsible for the variation of a third
of all human genes [1,2]. In segregating yeast strains, linkage studies have provided evidence for extensive
trans regulation, with a few regulatory hotspots controlling the expression profiles of tens or hundreds of
genes [3,4].

Despite the success of expresion quantitative trait loci (eQTL) studies, it also has become clear that
their statistical analysis comes along with statistical challenges [5]. External confounding factors, such
as environmental influences or technical variation, can substantially alter the outcome of an eQTL study.
Unobserved confounders can both obscure true association signals and create new spurious associations
that are false [6,7].

Suitable data preprocessing, or careful design of randomized studies are helpful measures to avoid
confounders in the first place [8], however they rarely rule out confounding influences entirely. It is also
relatively straight-forward to account for those factors that are known and measured. For example, it
is standard procedure to include covariates such as age and gender in the analysis [9,10]. Similarly, the
effect of populational relatedness between samples, a confounding effect that is observed or can be reliably
estimated form the genotypes [11,12], is widely included in the model. However, other factors, including
subtle environmental or technical influences, often remain unknown to the experimenter, but still need to



Nature Precedings : hdl:10101/npre.2011.5995.1 : Posted 2 Jun 2011

be accounted for. The impact of such typically hidden effects has been investigated in multiple studies;
for example [13,14] showed that virtually any aspect of sample handling can complicate the analysis.

Several techniques have been developed to account for unknown confounding variation within the
eQTL analysis [2,6,7,15]. A common assumption these methods build upon is that confounders are
prone to exhibit broad influences, affecting large fractions of all measured gene expression levels. This
characteristics has been exploited to learn hidden confounders using PCA-like models. For example [6]
and [2] employed factor analysis models, a variant of PCA, to recover the hidden confounders. Once
learnt, these factors can then be included in the analysis analogously to known covariates. Another
branch of methods avoids recovering the hidden factors explicitly, instead correcting for the correlation
structure induced by them in the samples [7,15]. Here, the inter-sample correlation is estimated from the
expression profiles first, to then account for its effect in an association scan using mixed linear models.
Both types of methods have been applied in a number of studies. Advantages versus naive analysis include
better calibrated test statistics [15], and improved reproducibility of hits between independent studies [7].
Perhaps most strikingly, statistical methods to correct for hidden confounders have also been shown to
substantially boost the power to detect eQTLs, increasing the number of significant cis associations by
up to 3-fold [2,16].

While improved sensitivity to detect cis-acting eQTLs is an important and necessary step, we ex-
pect that even more valuable insights can be gained from those loci that regulate multiple target genes
in trans. The interest in these regulatory hotspots has been tremendous in recent years, however it has
also been shown that their reproducibility between studies is limited (see for example the discussion
n [17]). Accurate correction for confounding factors is key to improve the reliability of these regulatory
associations, however statistical overlap between confounding factors and true association signals from
downstream effects can hamper the identification and fitting of confounders. For example, methodology
that merely accounts for broad variance components, such as PCA, is doomed to fail. If the effect size of
trans regulatory hotspots is large enough, they induce a correlation structure that is very similar to the
one caused by confounding factors. As a result, true trans regulators tend to be mistaken for confounders
and are erroneously explained away.

Here, we report an integrated probabilistic model PANAMA (Probabilistic ANAlysis of genoMic
dAta) to adress these important shortcoming of established approaches. PANAMA learns a dictionary of
confounding factors from the observed expression profiles. The key novelty of our approach is to jointly
learn these factors while accounting for the effect of loci with a pronounced trans regulatory effect,
thereby avoiding overlaps between true genetic association signals and the covariance structure induced
by the learnt confounders. The statistical model underlying our algorithm is simple and computationally
tractable for large eQTL datasets. PANAMA is based on the framework of mixed linear models, and
combines the advantages of factor-based methods, such as PCA, SVA [6] or PEER [2] with methods that
estimate the implicit covariance structure induced by confounding variation [12,15]. The model is fully
automated and can be easily adapted to include additional observed confounding sources of variation,
such as population structure or known covariates.

We applied PANAMA to a range of eQTL datasets, including synthetic data and studies from yeast,
mouse and human. Across datasets, PANAMA performed better than previous methods, identifying
more statistically significant eQTLs and in particular additional trans regulators. We provide multiple
sources of evidence that the associations recovered by PANAMA are indeed likely to be real. Most
strikingly on yeast, the findings by PANAMA can be better reproduced between independent studies and
are more consistent with prior knowledge about the underlying regulatory network. Finally, we also give
insights into the limitations of current methods to account for confounders that help to understand the
relationship between confounding variation, cis regulation and trans effects.



Nature Precedings : hdl:10101/npre.2011.5995.1 : Posted 2 Jun 2011

(@)
gene .
expression SNPs confounders noise
(b) (c)
AL I
C > 13
O = iy T =
D= =
cz :
0k
SNP orthogonal %,' <
to the confounders O x|
ez
-T T .L_) s|:
£ sl
o 5|
c [
SNP non orthogonal B l II‘ n - v - ‘VA—-VI 'VII .V|II--IX )-<— )(I XI-IT . Xin .):(IV' XV X:Vl
to the confounders Genomic position (SNP)

Figure 1. (a) Effects of causal factors on gene expression variation that are accounted for by
PANAMA. (b) PANAMA applied to the yeast eQTL dataset. Jointly learned trans regulators
identified by PANAMA are highlighted in red. (c) Illustration of the difference between conventional
approaches that assume orthogonality of confounding factors and genetic signals (lower figure) and
PANAMA, allowing to disentangle causal signals from confounders despite overlaps.

Results

Learning of confounding factors in the presence of trans regulators

The statistical model underlying PANAMA assumes additive contributions from true genetic effects and
hidden confounding factors. Briefly, this linear model expresses the gene expression of gene g in measured
in N individuals as the sum of weighted contributions from a set of K SNPs S = {s1,...,sx} as well as
@ confounders X = {x1,...,%x¢} and a noise term €g (See Figure 1a).

K Q
Yg = E Uk,gSk + E :wg,qxq + €g.
k=1 q=1

Neither the regression weights wg 4 nor the profiles of the confounding factors x, are known a prior:
and hence need to be learnt from the expression data. The parameters of PANAMA are learnt in the
framework of mixed linear models [12]. In this hierarchical model, the regression weights of the hidden
factors are marginalized out, yielding a covariance structure in a Gaussian model that captures the
covariance structure induced by the confounders. Intuitively, the objective during learning in PANAMA
is to find a configuration of the hidden factors such that the empirical correlation structure between
samples shared across genes is explained by the state of the hidden factors. In the presence of extensive
trans regulation this approach leads to over-correction, running the risk of explaining away true genetic
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association signals. To circumvent this effect, PANAMA also accounts for a subset of all SNPs in the
mixed model framework, resulting in a full covariance structure that satisfies an appropriate balance
between explaining confounding variation and preserving true genetic signals (See Figure 1b,c). The
contribution of these signal SNPs and the state of the hidden factors are estimated in a joint fashion.
Furthermore, an appropriate number of hidden factors that are needed is determined automatically during
learning. As a result, PANAMA is statistically robust and inference of hidden factors is feasible without
setting of any tuning parameters. If existing, additional observed covariates can also be included within
the model; see Methods and the text S1 for full details.

Simulation study

The evaluation of methods to call eQTLs is challenging, as reliable ground truth information is not avail-
able. Following previous work [2,18,19], we hence used synthetic data to assess and compare PANAMA
with alternative approaches to correct for confounding factors. To minimize any assumptions we need to
impose on the simulation procedure, we created an artificial dataset that shares key characteristics with
a real eQTL dataset from yeast [4]. In the simulation procedure, we first fitted PANAMA to the original
yeast eQTL data described below (Application to segregating yeast strains), estimating the number of
cis and trans associations, an empirical distribution of association strengths and the characteristics of
confounding variation. Based on these estimates, we then simulated in silico associations from a standard
linear model. To ensure that the simulated dataset was not biased towards our method, we also consid-
ered a simulation setting based on alternative method to estimate the statistics of empirical associations
on the yeast dataset (see below).

Given the synthetic eQTL dataset, we then employed alternative methods to recover the simulated
associations. We compared PANAMA to standard linear regression (LINEAR), ignoring the presence of
confounders entirely, as well as SVA [6], ICE [7] and PEER |[2], established and widely used approaches
to correct for hidden confounders. For reference, we also compared to an idealized model with the
simulated simulated confounders perfectly removed (IDEAL). First, Figure 2a and 2b show the number
of significant c¢is and trans associations as a function of the false discovery rate (FDR) cutoff, for each
considered method. To avoid inflated association counts due to linkage disequilibrium, we considered at
most a single cis association per gene and at most one trans association per chromosome for each gene.
PANAMA found more cis associations than any other approach and retrieved the greatest number of
trans associations among the methods that correct for hidden confounders. Notably, the linear model
appeared to find even more trans associations. However although statistically significant, the majority
of these calls from the linear model were not consistent with the simulated associations, but instead
spurious artifacts due to the confounding variation. The extent of false associations called by the linear
model is also reflected in Figure 2c¢, which shows the receiver operating characteristics for each method.
All approaches that correct for confounders performed strikingly better than the linear model. Among
these, PANAMA was most powerful approach, achieving greater sensitivity than any other approach for
a large range of false positive rates (FPR), approaching the performance of an ideal model.

Next, we studied the statistics of obtained p-values, checking for departure from a uniform distribution
that either indicates inflation (genomic control A > 1) or deflation (genomic control A < 1) of the
respective methods (Figure 2d). All methods except for ICE showed an inflated p-value distribution.
Notably, this also applied to the ideal model where the confounders had been perfectly removed. This
observation shows that in settings with sufficiently strong trans regulation, inflated statistics are not
necessarily due to poor calibration because of confounders, but instead may be caused by an excess of
true biological effects themselves. We also checked that calls by the various methods were not overly
optimistic and artificially inflated. Indeed, false discovery rates estimates from all methods but the linear
model were approximately in line with the empirical rate of errors when taking the ground truth into
account, with PANAMA being the best calibrated approach.

We then repeated the same analysis on a broader range of simulated datasets, varying particular
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Figure 2. Accuracy of alternative methods in recovering simulated cis or trans associations. (a,b)
number of recovered cis and trans associations as a function of the false discovery rate cutoff. At most
one association per chromosome and gene was counted. (c) Receiver Operating Characteristics (ROC)
for recovering true simulated associations, showing the true positive rate (TPR) as a function of the
permitted false positive rate (FPR), evaluated on the simulated ground truth. (d) inflation factors,
defined as AX = X\ — 1, indicate either inflated p-value distributions (AX > 0) or deflation (AX < 0) of
the p-value statistics of different methods. (e) Area under the ROC curve for alternative methods as a
function of the extent of trans regulation. (f) Area under the ROC curve for alternative methods for
varying extent of confounding variation.

aspects of the simulation procedure. Figure 2e shows the accuracy of different methods in recovering true
simulated associations when varying the extent of trans regulation, reducing the number of simulated
trans effects to a certain fraction. These results show, that existing methods only work well in the regime
of little trans regulation, while PANAMA achieves accurate estimates for a wider range of settings,
outperforming alternative approaches. Similarly, Figure 2f shows results for strong trans regulation, now
varying the extent of confounding variation from weak to strong confounding influences. Again, PANAMA
was the most robust approach, recovering true simulated associations with great accuracy irrespectively
of the strength of confounders, whereas the performance of other methods degraded quickly towards more
difficult settings.

Finally, we considered the impact of the type of model used to fit the association characteristics to
the real yeast dataset. As ICE tent to be the most conservative approach among the considered methods,
the extent of trans regulation on the simulated data was severely reduced. As a result the differences
between methods was considerably smaller, however confirming the superior sensitivity and specificity of
PANAMA as observed in the primary simulation setting.
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Application to segregating yeast strains

Having established the accuracy of PANAMA in recovering hidden confounders, we applied PANAMA
and the alternative methods to the primary eQTL dataset from segregating yeast strains. A total of 108
strains have been expression profiled in two environmental conditions, glucose and ethanol [4]. First, we
focused on the glucose condition, which has also previously been examined in [3], providing an independent
study for the purpose of comparison.

Figure 3a and 3b show the number of cis and trans associations for different methods as a function of
the FDR cutoff. Again, we considered at most one association per chromosome to avoid confounding the
size of associations with their number. In line with previously reported results [2,7] and the simulated
setting (Simulation Study), the standard linear model identified fewer cis associations than methods
that correct for confounding variation. The trends from the simulated dataset also carried over for
trans associations, where the linear model called many more associations than methods that account for
confounders, yielding an excess of regulatory hotspots. It has previously been suggested, that many of
these are likely to be false; see for example the discussion in [7]. Among the methods that correct for
confounding variation, PANAMA identified the greatest number of associations. Among the alternative
methods, ICE appeared to be more sensitive in recovering cis associations while PEER and SVA retrieved
a greater number of trans associations. Also note that models that account for confounding factors
yielded slightly inflated p-value distributions (Figure 3c), supporting that also on real data a certain
degree of inflation may be caused by extensive trans regulation. This summary of genome-wide eQTLs
confirms that ICE is most conservative in detecting hotspots, whereas all other methods do find multiple
trans bands. For comparison we also included a version of PANAMA that also corrects for the trans
regulators that are accounted for while learning PANAMA,.nsyields near-identical results to ICE, which
explains the differences and similarities between the two approaches, where PANAMA can be regarded
as generalization of ICE. By accounting for pronounced regulators PANAMA circumvents the over-
conservative correction of the ICE model.

Reproducibility of eQTLs between studies To objectively shed light on the correctness of the
associations called, we considered the consistency of calls between two independent studies. The glucose
environment from [4] has previously been studied in [3], sharing a common set of segregants. We checked
the consistency in calling genes with a cis association for increasing FDR cutoffs (Figure 3d). Alter-
natively, focusing on the consistency of regulatory hotspots, Figure 3e shows the ranking consistency
of polymorphisms ordered by their regulatory potential on multiple genes. Reassuringly, for both cis
effects and trans regulatory hotspots, PANAMA yielded results with far greater consistency than any
other currently available method. In particular the consistency of trans hotspots suggest that PANAMA
achieved an appropriate balance between explaining away spurious signals as confounding variation and
identifying hotspots that are likely to hav a true genetic basis.

Consistency of trans regulatory hotspots with respect to known regulatory mechanisms in
yeast As a second means of validating trans eQTLs, we investigated to what extent polymorphisms
that regulate multiple genes in trans can be interpreted as indirect effects that are mediated by known
transcriptional regulators. For this analysis we considered an established regulatory network of transcrip-
tion factors extracted from Yeastract [20]. Although we do not expect trans associations to be exclusively
mediated by direct transcriptional regulation, the degree of associations that are consistent with this reg-
ulatory structure is nevertheless an informative indicator for the validity of eQTLs calls from different
models. For each transcription factor, we considered polymorphisms in the vicinity of the coding region
of the TF (£ 1.5Mb around the coding region), and tested the fraction of associations with genes that are
known targets of the TF versus other associations with genes that are no direct targets. Table S1 shows
the F-score (harmonic mean between precision and recall) for each of 129 transcription factors which had
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Figure 3. Evaluation of alternative methods on the eQTL dataset from segregating yeast strains
(glucose condition). (a,b): number of cis and trans associations found by alternative methods as a
function of the FDR cutoff. (c¢) Inflation factors of alternative methods, defined as AX =X — 1. (d)
Consistency of calling cis associations between two independent glucose yeast eQTL datasets. (e)
Consistency of calling eQTL hotspots between two independent glucose yeast datasets, where SNPs are
ordered by extent of trans regulation as determined by < —log(pv) >.

at least one SNP in the local cis window. For half of the 129 TFs, PANAMA yielded a higher F-score
than any of the other methods considered. Interestingly, the standard linear models performed second
best under this metric, achieving the greatest F-score in 36% of all cases, followed by PEER (28%), SVA
(15%) and ICE (6%). Among the methods that correct for confounders, PANAMA consistently yielded
the highest F-score.

Detecting eQTLs that are shared across environments Finally, we considered the full expression
dataset from [4], combining expression measurement in an ethanol and glucose background. Because each
yeast strain was profiled twice, the set of samples was not independent, but instead had a replicate pop-
ulation structure. Similarly as done in [15], we added this inherent genetic relatedness to the PANAMA
covariance structure (Material and Methods). Because PANAMA accounted for the replicate structure
of the dataset, the increase of the number of associations compared to the analysis of the single-condition
analysis was modest. Other methods, not accounting for the replicate structure of the genotypes, yielded
severely inflated test statistics, identifying a trans effect for almost every gene. To check this hypothe-
sis we also applied PANAMA without the correction for artificial genetic relatedness, yielding similarly
inflated results (data not shown).
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Application to further eQTL studies

We successfully applied PANAMA to additional ongoing and retrospective studies. For example, on a
dataset from inbred mouse crosses [21], PANAMA identified a greater number of associations than other
methods. In contrast to the yeast dataset, the distribution of p-values on this dataset was almost uniform,
suggesting that the extent of true trans regulation was lower. We also investigated parts of a dataset
of the genetics of human cortical gene expression [22]. On chromosome 17, methods that account for
confounders identified more genes in associations than a linear model, with SVA and PANAMA retrieving
the greatest number. Results on other 4 other chromosomes were similar (data not shown). Finally,
preliminary results to an RNA-Seq eQTL study on Arabidopsis indicate that expression heterogeneity
as accounted for by PANAMA is also presented on expression estimates from short read technologies.
This results shows that statistical challenges due to confounding variation are not specific to a particular
platform for measuring gene expression.

Discussion

We have reported the development of PANAMA, an advanced statistical model to correct for confounding
influences while preserving genuine genetic association signals. We have shown that this approach is of
substantial practical use in a range of real settings and studies. The correction approach of PANAMA,
for the first time, is able to not only find more cis eQTLs, but also greatly improves the statistical power
to uncover true trans regulators. PANAMA finds a greater number of associations, and calls eQTLs that
are more likely to be real, as validated by a realistic simulation study and an analysis of eQTL consistency
between independent studies. Most notably, PANAMA identified several strong trans hotspots on yeast,
out of which at least 40% could be reproduced on an independent dataset.

There are several previous approaches to correct for confounding influences in eQTL studies. These
methods can be broadly grouped into factor-based models like PCA, SVA and PEER [2], and approaches
that employ a mixed linear model [7,15], estimating a covariance structure that captures the confounding
variation. An important reason why PANAMA performs well is the intermediate approach taken here,
that is, learning a covariance structure within a linear mixed model (LMM), but at the same time
retaining the low-rank constraint which yields an explicit representation of factors. Moreover, PANAMA
systematically exploits the flexibility provided by the representation in terms of covariance structures,
jointly accounting for genetic regulators while estimating the confounding factors. Our approach is stable
and robust, avoiding the need to first subtract off the genetic contribution greedily, as for example
suggested and implemented in [2,6]. Although this is not the focus of this work, we have shown how
our approach can be combined with additional measures to correct for observed sources of confounding
variation, such as known covariates or populational relatedness. The utility of such measures has been
illustrated in the joint analysis on data from two environmental conditions. A more specialized approach
that is aimed at the combined correction for expression confounders and population structure has recently
been proposed by [15]. This LMM-EH approach is methodologically related to what is done here, as
the contribution from multiple sources of variation are combined within a single covariance structure.
Importantly, the main contribution in PANAMA is an integrated model that does not include additional
confounders but true genetic regulators. Unique to PANAMA, these regulators are jointly identified and
accounted for during learning of the confounding factors. Our analysis shows, that this approach yields
a significant improvement in the sensitivity of recovering trans associations and plausible regulatory
hotspots.

In conclusion, PANAMA is an important step towards exhaustively addressing common types of
confounding variation in eQTL studies. The number of datasets that benefit from careful dissection of
true genetic signals and confounders, as done here, is expected to rise quickly. Growing sample sizes and
expression profiling in more than one environment allow for the estimation of more subtle confounding



Nature Precedings : hdl:10101/npre.2011.5995.1 : Posted 2 Jun 2011

influences and at the same time provide the statistical power to detect many more trans effects than
possible as of today. An open source implementation of PANAMA will be made publicly available.

Materials and Methods

PANAMA is based on a linear additive linear model, accounting for effects from K observed SNPs

S = (s1,...,8K) and contributions from a dictionary of ) hidden factors X = (x1,...,x¢g). The resulting
generative model for G' gene expression levels Y = (y1,...,¥¢) can then be cast as

Y =SV +XW +e¢, (1)
We assume that expression levels and SNPs are observed in each of n = 1,..., N individuals and €

denotes Gaussian distributed observation noise, €, , ~ N(0,02). The matrices V and W represent the
weights for the SNP effects and hidden factor effects respectively. To improve the parameters estimation,
we introduce a hierarchy on the weights of genetic influences and hidden factors in Equation (1). We
marginalize out the effect of the latent factors, X and a subset of the SNPs with a strong regulatory role
(see below), resulting in a mixed linear model. We choose independent Gaussian priors for the factors
weights w, and the weights of respective SNPs vy,
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and integrate them out. The corresponding marginal likelihood, conditioned on the state of the con-
founding factors X is now factorized across genes

G
p(Y|X,@)=HN<Yg

g=1

K Q
0, Z Brsksy + Z aqqug + a?I) . (2)

k=1 q=1

For brevity we have defined © = {{8x}, {ay}, o%}, the set of all hyperparameters of the model.

Known covariates If available, additional covariates can directly be included in the background co-
variance structure from Equation (4)

G
p<Y|X7@)—HN<yg

g=1

K Q
0, Z Brskst + Z aqqu;r + Ko + a?I) ) (3)
k=1 g=1

where K denotes the covariance induced by these additional covariates. Examples for possible choices of
this covariance include the covariance induced by a fixed covariate vectors, i.e. Kg = cc™ or a kindship
matrix that accounts for the genetic relatedness (see for example [12], [15]).

Model fitting The most probable state of the latent variables X and the hyperparameters ® can be
identified via straight-forward maximum likelihood

{0, X} = argmax p(y | X, ©), (4)
6.x
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employing a gradient-based optimizer. In practical applications of PANAMA, this model fitting (Equa-
tion (4)) is not carried out with the set of all genome-wide SNPs included in Equation (1), because the
number of weight parameters ) for each SNP would be prohibitive. Only those genetic regulators with
strong effects on multiple genes do play a role during the estimation of hidden factors and thus need to be
accounted for. Our inference scheme determines the set of relevant regulators in an iterative procedure.
The number of hidden factors to be learnt, ) is not set a prior and instead @ is set to a sufficiently large
value. During the optimization, the individual variance parameters for each factors, 043, automatically
determine an appropriate number of effective factors, switching off unused ones.

Significance testing Once the confounding-correcting covariance structure is determined from the
maximum likelihood solution of (4), significance testing can be carried out in the framework of mixed
linear models. Such testing can be implemented efficiently, for example using a computational trick
recently proposed by [12]. The association between a SNP k and gene g to be tested is treated as fixed
effect, yielding the following likelihood ratio

N (y, | 051, %K + 0°1)

LOD =1 . 5
ok =18 J7 0 10, 02K + o2) (5)

Here, the covariance matrix K denotes the covariance structure explaining confounding variation, which
is shared across all genes. In PANAMA, this covariance structure excludes the effect of trans regulators:

Q
_ T
K= E QgXgXy -
q=1

In PANAMA .05, also correcting for the trans factors, the covariance equals to

K Q

T T

Ktrans = E Bksksk + E :OéquXq .
k=1 q=1

For computational efficiency we fix the covariance structure K that is learnt from the full expression
dataset. The relative weighting of the covariance (o) and the noise term (02) is then adjusted on the
null model of every single genes similar as done in EMMAX [12]. For larger datasets we propose to
perform independent maximum likelihood tests carried out on the residual datasets of the random effect

model of the learnt covariance; see Supporting Material .

Yeast datasets. We used the yeast expression dataset from [4] (GEO accession number GSE9376),
which consists of 5493 probes measured in 109 segregants derived from a cross between BY and RM. The
authors provided the genotypes, which consisted in 2956 genotyped loci. An association was defined as cis
if the location of the SNP and the location of the opening reading frame (ORF) of the gene were within
100kb, trans otherwise. In order to validate the associations found, we also used data from [3] (GEO
accession number GSE1990), which consisted in 7084 probes and 2956 genotyped loci in 112 segregants.
For the purpose of comparison, we defined cis associations in the same way as we did for the previous
dataset.

Mouse dataset. We used the data described in [21], consisting of 23,698 expression measurements and
137 genotyped loci for 111 F5 mouse lines.

Human dataset. We used the dataset from [22] (GEO accession number GSE8919), which consists of
14,078 transcripts and 366,140 SNPs genotyped on 193 human samples.



Nature Precedings : hdl:10101/npre.2011.5995.1 : Posted 2 Jun 2011

11

Yeastract. We used data from Yeastract [20], which contains information about the regulatory network
between 185 transcription factors and 6298 genes. Out of these 189 transcription factors, we selected the
129 TF's that had a polymorphism in the vicinity (1.5Mb) of the coding region.
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