Non-linear Regression Approaches in ABC

Michael G.B. Blum

Lab. TIMC-IMAG, Université Joseph Fourier, CNRS, Grenoble, France

ABCiL, May 5 2011

d)

R package

Correction adjustment

Feaumont et al. Genetics 2002

Adapted from Csilléry et al. TREE 2010

you prefer the math

• A model of local regression

$$\theta_i | \mathbf{s}_i = m(\mathbf{s}_i) + \epsilon_i$$

Local linear approximation

$$m(\mathbf{s}_i) = \alpha + \mathbf{s}_i^t \boldsymbol{\beta}$$

Adjustment

$$\theta_i^* = \hat{m}(\mathbf{s}_{obs}) + \tilde{\epsilon}_i,$$

where $\tilde{\epsilon}_i$ are the empirical residuals.

R package

Hain theorem

Asymptotic bias of the estimates of the posterior $\hat{g}_j(\theta|\mathbf{s}_{obs})$, j = 0 (rejection),1 (linear adj.), 2 (quadratic adj.)

 $C_j \varepsilon^2$

Asymptotic variance of $\hat{g}_j(\theta | \mathbf{s}_{obs})$

 $\frac{C'}{np(\mathbf{s}_{obs})\varepsilon^d}$

where d is the dimension of the summary statistics and n is the number of simulations.

R package

Bemark 1 : The curse of dimensionality

Minimals MSE =
$$O(n^{-4/(d+5)})$$
.

The rate at which the minimal MSEs converges to 0 decreases importantly (at least theoretically) as the dimension d of \mathbf{s}_{obs} increases.

Possible solution

 Projecting the summary statistics on a lower dimensional subspace

Bemark 2 : Comparison between the estimators with and without adjustment

When the model

$$\theta_i = m(\mathbf{s}_i) + \epsilon_i$$

is homoscedastic in the vicinity of \mathbf{s}_{obs} , then bias (quadratic adj.) \leq bias (linear adj.) \leq bias (without adj.)

Solutions

- Makes the model more homoscedastic : transformations of sum stats and parameters (not pursued here, see Blum JASA 2010)
- Provides a more flexible regression model : non-linear and heteroscedastic regression

• •

Precedings : doi:10.1038/npre.2011.5954.1

d)

Mon-linear and heteroscedastic regression adjustment

R package

Son-linear and heteroscedastic regression adjustment

Innovation 1 : an heteroscedastic model of local regression

$$\theta_i | \mathbf{s}_i = m(\mathbf{s}_i) + \sigma(\mathbf{s}_i) \epsilon_i$$

- Innovation 2 : non linear function for m and σ
- Neural nets for m and σ for projecting on a lower dimensional subspace
- Heteroscedastic adjustment

$$heta_i^* = \hat{m}(\mathbf{s}_{obs}) + rac{\hat{\sigma}(\mathbf{s}_{obs})}{\hat{\sigma}(\mathbf{s}_i)} \widetilde{\epsilon}_i,$$

R package

- Fit M (typically M = 10) neural networks and consider the
- Consider *M* regression model for fitting the conditional

$$\log((\theta_i - \hat{m}(\mathbf{s}_i))^2) = \log \sigma^2(\mathbf{s}_i) + \xi_i.$$

Example 1 : Coalescent model in population genetics

Segregating sites	Number of individuals			-	- 3
123456		A	-4		
A 000100	1	IRC			_
B 011000	2	2		L.	
C 101000	6			T 2	
D 101011	1				

Model without recombination

• Inter-coalescence times $T_i \rightsquigarrow \operatorname{Exp}(i(i-1)/2), i = 2, ..., n$

A B

• Superimpose mutation using a Poisson process of rate $\theta/2$

Example 1 : summary statistics $n = 10^{6}, n_{accepted} = 10^{4}.$ • C_1 Number of seg sites • C_2 Unif. variable • C_3 Mean number of differences of • C_4 mean r^2 • C_5 Number of distinct haplotypes • C_6 Frequency of the most common • C_7 Number of singleton

$$n = 10^6$$
, $n_{accepted} = 10^4$.

- C₃ Mean number of differences over all pairs of haplotypes

- C₆ Frequency of the most common haplotype

$$\begin{aligned} \text{RSSE} &= \sqrt{\frac{1}{n_{accepted}} \sum_{\text{Accepted points}} \|\theta_i - \theta\|_2^2} \\ \text{MRSSE} &= \text{Average}(\text{RSSE}) \end{aligned}$$

Relative MRSSE w.r.t. ABC with C_1 (number of seg. sites)

<u></u>														
Example 1 : Estimation of θ														
RSSE = $\sqrt{\frac{1}{n_{accepted}} \sum_{\text{Accepted points}} \ \theta_i - \theta\ _2^2}$ MRSSE = Average(RSSE)														
Relative MRSSE w.r.t. ABC with C_1 (number of seg. sites)														
re.20			Single sum stats								Selection of sum Projectic stat			on
du/			C1	C2	C3	C4	C5	C6	C7	All 6	AS	2-stage	PLS	NN
38/		No adj.	0	92	21	86	28	35	39	6	6	-3	5	
0.10		Homo. Linear adj	-	-	-	-	-	-	-	2	1	-4	2	
loi:1		Hetero linear adj.	-	-	-	-	-	-	-	2	1	-5	0	1
Precedings : d	РІ А 2-	_S (Partial Lea S (Approximati stage (Entropy	ast squa e Suffic y-basec	ares, We iency, J I metho	egmanr loyce ar d, Nune	n et al., nd Marji es and E	Genetic oram, S Balding,	s 2009 AGMB SAGM) 2008) B 201	0)				

d)

Relative MRSSE w.r.t. ABC with C_1 (number of seg. sites)

13													
Sample 1 : Estimation of θ and ρ													
Relative MRSSE w.r.t. ABC with C_1 (number of seg. sites)													
595		Single sum stats							Selection of sum Pro stat			ection	
<u> </u>		C1	C2	C3	C4	C5	C6	C7	All 6	AS	2-stage	PLS	NN
50	No adj.	0	18	5	15	2	4	5	-7		-10	-5	
e.	Homo. linear adj	-	-	-	-	-	-	-	-9		-14	-7	
Jdr	Hetero. linear adj.	-	-	-	-	-	-	-	-15		-19	-8	-17
e Precedings : doi:10.1038/1	 Hetero. linear adj 15 19 - 8 - 17 Curse of dimensionality is not a severe issue here : 'All 6' performs good Homo. adjustment improves the results and hetero. adj. even further Projection with neural networks performs almost as good as the extremely time-consuming, but efficient, '2-stage' method 										6' od		

- Curse of dimensionality is not a severe issue here : 'All 6'
- Homo. adjustment improves the results and hetero. adj.
- Projection with neural networks performs almost as good as the extremely time-consuming, but efficient, '2-stage'

• •

d)

Example 2 : Compartmental model in epidemiology

d)

d٦.

R package

Stample 2 : Width of credibility intervals Adjustments shrink the posterior $\int_{0}^{0} \int_{0}^{0} \int_{0}^$

 The curse of dimensionality might be a less severe problem than suggested by theoretical arguments

Scott (1992), in the context of multivariate density estimation, argued that conclusions arising from the same

kind of theoretical arguments were in fact much more pessimistic than the empirical evidence.

- Adjustments based on non linear heteroscedastic regression models shrink the posterior distribution
- Heteroscedastic regression models can be used with linear regression models (Nunes and Balding, SAGMB 2010)

R package

d)

You can use the R *abc* package http://cran.r-project.o index.html Implements various functions for selection as well as cross-valid You can use the R *abc* package to make your own opinion. http://cran.r-project.org/web/packages/abc/

Implements various functions for parameter estimation, model selection as well as cross-validation tools.

Barameter inference with the R package

Effective population size in a coalescent model

d)

CORPORE TO CORPORATION TO CORPORAT

Confusion matrix: How many times the predicted models

	bott	const	exp	
bott	408	89	3	
const	. 90	310	100	
exp	25	117	358	

d)

Katy Csilléry, Grenoble

Olivier François, Grenoble

Viet-Chi Tran, Lille