Non-linear Regression Approaches in ABC

Michael G.B. Blum
Lab. TIMC-IMAG, Université Joseph Fourier, CNRS, Grenoble, France
ABCiL, May 52011

\%

(1) Why using (possibly non-linear) regression adjustment in ABC : theoretical arguments
(2) Methods for non-linear regression adjustment
(3) Examples

©orrection adjustment ©
 Eeaumont et al. Genetics 2002

Adapted from Csilléry et al. TREE 2010

- A model of local regression

$$
\theta_{i} \mid \mathbf{s}_{i}=m\left(\mathbf{s}_{i}\right)+\epsilon_{i}
$$

- Local linear approximation

$$
m\left(\mathbf{s}_{i}\right)=\alpha+\mathbf{s}_{i}^{t} \boldsymbol{\beta}
$$

- Adjustment

$$
\theta_{i}^{*}=\hat{m}\left(\mathbf{s}_{o b s}\right)+\tilde{\epsilon}_{i},
$$

where $\tilde{\epsilon}_{i}$ are the empirical residuals.

I \quad lain theorem Fgum, JASA 2010

Asymptotic bias of the estimates of the posterior $\hat{g}_{j}\left(\theta \mid \mathbf{s}_{o b s}\right)$, $j=0$ (rejection), 1 (linear adj.), 2 (quadratic adj.)

$$
C_{j} \varepsilon^{2}
$$

Asymptotic variance of $\hat{g}_{j}\left(\theta \mid \mathbf{s}_{o b s}\right)$

$$
\frac{C^{\prime}}{n p\left(\mathbf{s}_{o b s}\right) \varepsilon^{d}}
$$

where d is the dimension of the summary statistics and n is the number of simulations.

$\stackrel{m}{\Gamma}$ Femark 1 : The curse of dimensionality
 $$
\text { Minimals MSE }=O\left(n^{-4 /(d+5)}\right)
$$
 The rate at which the minimal MSEs converges to 0 decreases importantly (at least theoretically) as the dimension d of $\boldsymbol{s}_{\text {obs }}$ increases.

Possible solution

- Projecting the summary statistics on a lower dimensional subspace

Femark 2 : Comparison between the estimators with aind without adjustment

When the model

$$
\theta_{i}=m\left(\mathbf{s}_{i}\right)+\epsilon_{i}
$$

is homoscedastic in the vicinity of $\mathbf{s}_{o b s}$, then bias (quadratic adj.) \leq bias (linear adj.) \leq bias (without adj.)

Solutions

- Makes the model more homoscedastic : transformations of sum stats and parameters (not pursued here, see Blum JASA 2010)
- Provides a more flexible regression model : non-linear and heteroscedastic regression

\$ion-linear and heteroscedastic regression adjustment ©
 Efium and François, Stat. Comput. 2010

\cong rion-linear and heteroscedastic regression adjustment Egium and François, Stat. Comput. 2010

- Innovation 1 : an heteroscedastic model of local regression

$$
\theta_{i} \mid \mathbf{s}_{i}=m\left(\mathbf{s}_{i}\right)+\sigma\left(\mathbf{s}_{i}\right) \epsilon_{i}
$$

- Innovation 2 : non linear function for m and σ
- Neural nets for m and σ for projecting on a lower dimensional subspace
- Heteroscedastic adjustment

$$
\theta_{i}^{*}=\hat{m}\left(\mathbf{s}_{o b s}\right)+\frac{\hat{\sigma}\left(\mathbf{s}_{o b s}\right)}{\hat{\sigma}\left(\mathbf{s}_{i}\right)} \tilde{\epsilon}_{i}
$$

œ
 Feitting neural networks

- Fit M (typically $M=10$) neural networks and consider the median to obtain \hat{m}.
- Consider M regression model for fitting the conditional variance $\sigma(\cdot)$

$$
\log \left(\left(\theta_{i}-\hat{m}\left(\mathbf{s}_{i}\right)\right)^{2}\right)=\log \sigma^{2}\left(\mathbf{s}_{i}\right)+\xi_{i}
$$

Example 1 : Coalescent model in population genetics

 \$unes and Balding, SAGMB 2010

Model without recombination

- Inter-coalescence times $T_{i} \rightsquigarrow \operatorname{Exp}(i(i-1) / 2), i=2, \ldots, n$
- Superimpose mutation using a Poisson process of rate $\theta / 2$

```
13
Example 1 : summary statistics
    n=106},\mp@subsup{n}{\mathrm{ accepted }}{}=1\mp@subsup{0}{}{4}
    - C C Number of seg sites
    - C2 Unif. variable
    - C}\mp@subsup{C}{3}{}\mathrm{ Mean number of differences over all pairs of haplotypes
    - C}\mp@subsup{C}{4}{}\mathrm{ mean r}\mp@subsup{r}{}{2
    - C5 Number of distinct haplotypes
    - C6 Frequency of the most common haplotype
    - C}\mp@subsup{C}{7}{}\mathrm{ Number of singleton
```


란
 Example 1 : Estimation of θ

RSSE $=\sqrt{\frac{1}{n_{\text {accepted }}} \sum_{\text {Accepted points }}\left\|\theta_{i}-\theta\right\|_{2}^{2}}$ MRSSE $=$ Average $($ RSSE $)$

Relative MRSSE w.r.t. ABC with C_{1} (number of seg. sites)

	Single sum stats								Selection of sum stat		Projection	
	C1	C2	C3	C4	C5	C6	C7	All 6	AS	2-stage	PLS	NN
No adj.	0	92	21	86	28	35	39	6	6	-3	5	
Homo. Linear adj	-	-	-	-	-	-	-	2	1	-4	2	
Hetero linear adj.	-	-	-	-	-	-	-	2	1	-5	0	1

PLS (Partial Least squares, Wegmann et al., Genetics 2009)
AS (Approximate Sufficiency, Joyce and Marjoram, SAGMB 2008)
2-stage (Entropy-based method, Nunes and Balding, SAGMB 2010)

\section*{\cdots

 Relative MRSSE w.r.t. ABC with C_{1} (number of seg. sites)
 | | Single sum stats | | | | | | Selection of sum
 stat | | Projection | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | C1 | C2 | C3 | C4 | C5 | C6 | C7 | All 6 | AS | 2-stage | PLS | NN |
| No adj. | 0 | 18 | 5 | 15 | 2 | 4 | 5 | -7 | | -10 | -5 | |
| Homo. linear adj | - | - | - | - | - | - | - | -9 | | -14 | -7 | |
| Hetero. linear adj. | - | - | - | - | - | - | - | -15 | | -19 | -8 | -17 |}

- Curse of dimensionality is not a severe issue here : 'All 6' performs good
- Homo. adjustment improves the results and hetero. adj. even further
- Projection with neural networks performs almost as good as the extremely time-consuming, but efficient, ' 2 -stage' method

Example 2 : Compartmental model in epidemiology

 Eatum and Tran Biostatistics 2010

$\stackrel{m}{\Gamma}$
 Example 2 : Mean square error of point estimates
 Adjustments reduce RMSE (Rescaled Mean Squared Error)

 21 one-dimensional sum stats
 \rightarrow Reject
 - Homo. adj.
 \square Neural nets

- The curse of dimensionality might be a less severe problem than suggested by theoretical arguments Scott (1992), in the context of multivariate density estimation, argued that conclusions arising from the same kind of theoretical arguments were in fact much more pessimistic than the empirical evidence.
- Adjustments based on non linear heteroscedastic regression models shrink the posterior distribution
- Heteroscedastic regression models can be used with linear regression models (Nunes and Balding, SAGMB 2010)

$\stackrel{m}{-}$

[8. you are not convinced....

You can use the R abc package to make your own opinion. http://cran.r-project.org/web/packages/abc/ index.html

Implements various functions for parameter estimation, model selection as well as cross-validation tools.

$\stackrel{\varrho}{9}$
 Farameter inference with the R package

Effective population size in a coalescent model

Posterior with "neuralnet" "rejection" and prior as reference

Euclidean distances
N(All / plotted) $=50000 / 1000$

Residuals from nnet()

$\stackrel{m}{\sim}$
 Eiross validation for parameter inference

๓
 Eiross validation for model selection

Confusion matrix: How many times the predicted models are the same as the true models?

	bott	const	exp
bott	408	89	3
const	90	310	100
exp	25	117	358

은
 Eollaborators

Katy Csilléry, Grenoble

Olivier François, Grenoble

Viet-Chi Tran, Lille

