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Abstract 

Tumors become invasive by penetrating adjacent connective tissue, but the underlying 
biological mechanisms remain obscure. We recently identified a precise gene expression 
signature of fibroblastic origin associated with cancer invasion, the first step of the metastatic 
cascade. The signature contains many coordinately overexpressed genes, prominent among 
which are COL11A1, THBS2 and INHBA. Here we show that there is a striking similarity 
between the set of expressed genes in this metastasis-associated fibroblastic (MAF) signature 
and the set of genes that are downregulated when fibroblasts are reprogrammed to induced 
pluripotent stem cells (iPSCs). Because it is known that fibroblast reprogramming involves a 
mesenchymal-epithelial transition (MET), the above facts suggest that, conversely, the 
metastasis-associated fibroblasts responsible for the signature may result from stem-like cells 
undergoing some type of epithelial-mesenchymal transition (EMT).  Therefore, we speculate 
that cancer stem cells (CSCs) undergoing some type of EMT become fibroblastic to obtain 
motility and invasiveness, reactivating early embryonic developmental pathways, and that 
these fibroblast-like cells are the main source of the MAF signature that we previously 
identified. 

 

Introduction 

We recently identified and reported  [1] a precise gene expression signature consisting of a set of 

genes that are coordinately overexpressed only in samples of cancer that have exceeded a 

particular stage, specific to each cancer type (a previous version also available in Nature 

Precedings at http://hdl.handle.net/10101/npre.2010.4503.1). The same signature appears in solid 
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cancer types, including pancreatic, ovarian, colon, prostate, breast, gastric, neuroblastoma and 

Ewing’s sarcoma, the only exceptions that we found being blood and brain cancers. 

 

Among the overexpressed genes are various collagens and proteinases, fibroblast activation 

protein, α-SMA, fibronectin and proteoglycans, suggesting a fibroblastic source. The signature, 

however, is not of a general fibroblastic nature, but instead has its own precise special 

characteristics, one of which is that genes COL11A1, THBS2 and INHBA have the most 

prominent presence. We identified collagen COL11A1 as a reliable proxy for the signature. In 

fact, in each rich cancer dataset, but not in non-cancer datasets, finding the list of genes whose 

expression is most correlated with that of COL11A1 consistently identifies the other genes of the 

signature as a result of the presence of those high-stage samples that contain it.  The signature 

also contains several transcription factors associated with epithelial-mesenchymal transition 

(EMT), particularly slug (SNAI2). Notably, however, it does not contain snail (SNAI1), which we 

found, at least in ovarian cancer, to be methylated. 

 

Therefore, we have hypothesized that the signature corresponds to a biological mechanism 

leading to the presence of a particular type of fibroblasts, to which we refer as the “Metastasis 

Associated Fibroblasts” (MAFs), because cancer invasiveness is the first step of the metastatic 

cascade.  Table 1 shows a list of the 64 genes corresponding to the 100 most overexpressed 

probe sets, as we previously reported [1], of the signature, to which we refer as the “MAF 

signature.”   

 

To obtain clues about the origin and nature of the MAF signature, we compared it with other 

known signatures. Among all signatures that we searched outside cancer datasets, we found by 

far the largest enrichment to be present in the set of genes that are downregulated in induced 

pluripotent stem cells (iPSCs) as well as embryonic stem cells (ESCs) compared to the 

fibroblasts before reprogramming. The presence of the signature was most evident in several 

gene expression datasets comparing mouse embryonic fibroblasts (MEFs) reprogrammed into 

iPSCs.  

 

Because it is known [2] that a mesenchymal-epithelial transition (MET) is part of the 

reprogramming of mouse fibroblasts into stem-like cells, we hypothesize that, conversely, the 

MAF signature is mainly produced by fibroblasts resulting, at least partly, from cancer stem cells 

(CSSs) undergoing some type of EMT and obtaining mesenchymal phenotype. 

 

Results 

Since the three genes COL11A1, THBS2, INHBA are required and prominent in the MAF 

signature, we performed Gene Set Enrichment Analysis in the Molecular Signature Database of 

the Broad Institute for these three genes. The search only revealed five sets containing all genes 

(Table 2). Consistent with the discovery of the MAF signature [1], four of these sets correspond 

to genes upregulated in high-stage vs. low-stage cancer samples, specifically in lobular breast 

cancer, gastric cancer, ductal breast cancer, and papillary thyroid cancer. The fifth one included 

514 genes downregulated in primary fibroblast cell culture after infection with HCMV (AD169 
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strain) at 48 h time point that were not downregulated at the previous time point, 24 h. However, 

only nine of these 514 genes were among the 64 MAF genes of Table 1. 

Additional independent search yielded some other results. For example, we found that part of the 

signature is present in keloid lesions [3], in which, however, THBS2 is interestingly shown to be 

downregulated, contrary to its prominent upregulation in the MAF signature.  

The most remarkable similarity by far, however, was identified in a study analyzing the 

reprogramming of somatic cells to induced pluripotent stem cells [4], where all three genes 

COL11A1, THBS2, INHBA, were mentioned in a list of genes found to be lower expressed in ES 

and iPS cells compared to mouse embryonic fibroblasts before reprogramming. Specifically, the 

section “Functional description of the genes lower expressed in ES and iPS cells compared to  

fibroblasts in mouse” in Supplementary text S1 mentions 22 among the top 64 MAF genes of 

Table 1, including, in addition to COL11A1, THBS2, INHBA an almost identical additional 

collagen composition (COL5A1, COL5A2, COL1A1, COL1A2, COL3A1, COL6A1, COL6A3) as 

well as genes POSTN, ADAM12, LOX, FBN1, MMP2, TIMP3, DCN, ACTA2, PDGFRB, SNAI2, 

THY1, PRRX1).  

We then downloaded and analyzed the seven datasets from mouse fibroblast reprogramming 

mentioned in [4], as described in Materials and Methods, confirming the remarkable similarity of 

the differentially expressed genes with the MAF signature. Table 3 includes the 45 top-ranked 

genes that we identified, which includes 14 MAF genes from the 64 genes of Table 1                 

(P < 10
-27

). Four of these 14 MAF genes (ASPN, LOXL2, CDH11, SERPINF1) are in addition to 

the list of 22 MAF genes mentioned above. The resulting heat maps for the 64 MAF genes of 

Table 1 for the seven datasets are shown in Figures 1a-1g.  

 

Discussion 

The parallels between embryonic development and tumor progression involving EMT have been 

well recognized [5]. On the other hand, recent research suggests that cell “stemness” and the 

ability to shift between epithelial and mesenchymal characteristics (probably in a continuous 

rather than abrupt manner) are qualities that appear to be closely related. For example, EMT 

generates cells with properties of stem cells [6]. Conversely, MET is involved in the 

reprogramming of fibroblasts into stem cells [2].  Therefore, our hypothesis, based purely on 

computational analysis, is consistent with the notion that cancer stem cells with mesenchymal 

characteristics, derived from cancer cells poised to undergo EMT, obtain metastatic potential [7].  

We speculate that these fibroblastic cells (MAFs) originate from the primary tumor rather than 

the stroma and constitute the main source of the MAF signature. They could be triggered from 

contextual reactive stroma microenvironmental signals, and they would open passageways 

perhaps allowing for other cancer cells to also go through the adjacent connective tissue.  

Furthermore, because the MAF signature is observed even in non-epithelial cancers, such as 

neuroblastoma [1], the above hypothesis would imply the employment of a mesenchymal 

transition mechanism more general than what EMT is assumed to be. 
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Many among the top MAF genes have previously been individually identified as associated with 

metastatic potential in cancer. If our hypothesis is correct, such associations can largely be 

explained by the fact that these genes are expressed by the cancer cells themselves after they 

have obtained mesenchymal phenotype and become invasive. 

 

Materials and Methods  

Gene Expression Data 

The gene expression datasets were downloaded from Gene Expression Omnibus under accession 

ID GSE7815 [8], GSE7841 [9], GSE8024 [10], GSE13211 [11], GSE13770 [12], GSE14012 

[13], GSE15267 [14]. The expression data were normalized as provided by the original author. 

We applied base-2 logarithm to the expression value if the dataset values were not 

log-transformed.  

 

Differential Expression Analysis 

The differentially expressed genes were identified by the limma package in R. We applied linear 

model and empirical Bayesian methods on the probe-level data, then taking the minimum of the 

P values of all probes corresponding to the same genes as the gene’s P value for differently 

expression. Since we are only interested in genes that are overexpressed in fibroblasts, we only 

computed the upper-tail P value in the fibroblast vs. ESC or iPSC comparisons. 

After obtaining the P values of each gene in each datasets, we simply take the log10-average of 

the P values across datasets as the scores for overexpression for the gene across each datasets. 

We then rank the scores and Table 3 shows the top 45 entries. 

 

Data Visualization 

We first collapsed the probe-level expression data into gene-level using the median of the probes 

corresponding to the same gene. Then we extracted the 64 MAF genes of Table 1 existing in the 

dataset to create heatmaps using GenePattern [15]. The column is clustered using pairwise 

average-linkage, with Euclidean distance as column distance measure.   
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Table 1. Top genes overexpressed in the MAF signature. 

 

 

Rank Gene Rank Gene 

1 COL11A1 33 ENTPD4 /// LOXL2 

2 THBS2 34 COL6A3 

3 COL10A1 35 MXRA5 

4 COL5A2 36 MFAP5 

5 INHBA 37 NUAK1 

6 LRRC15 38 RAB31 

7 COL5A1 39 TIMP3 

8 VCAN 40 CRISPLD2 

9 FAP 41 ITGBL1 

10 COL1A1 42 CDH11 

11 MMP11 43 TMEM158 

12 POSTN 44 SPOCK1 

13 COL1A2 45 SFRP4 

14 ADAM12 46 SERPINF1 

15 COL3A1 47 DCN 

16 LOX 48 C7orf10 

17 FN1 49 COPZ2 

18 AEBP1 50 NOX4 

19 SULF1 51 EDNRA 

20 FBN1 52 ACTA2 

21 ASPN 53 PDGFRB 

22 SPARC 54 RCN3 

23 CTSK 55 SNAI2 

24 TNFAIP6 56 AMACR ///C1QTNF3 

25 HNT 57 COMP 

26 EPYC 58 LGALS1 

27 MMP2 59 THY1 

28 PLAU 60 PCOLCE 

29 GREM1 61 COL6A2 

30 BGN 62 GLT8D2 

31 OLFML2B 63 NID2 

32 LUM 64 PRRX1 
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Table 2. MSigDB results that contains all three COL11A1, INHBA, THBS2 genes. 
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Table 3. Top 45 differentially expressed genes ranked by the log-average of P values of ESC vs. 

MEF in seven mouse datasets 

 

 

 

Rank Gene log.avg MAF? Rank Gene log.avg MAF? 

1 KIF26B 7.605591 
 

24 THBS2 5.886092 MAF 

2 ZEB2 7.466951 
 

25 COL5A1 5.831077 MAF 

3 POSTN 7.141856 MAF 26 CXCL12 5.806576 
 4 MXRA7 6.537514 

 
27 RHOJ 5.77863 

 5 COL11A1 6.446498 MAF 28 TGFB3 5.756418 
 6 RBMS3 6.398836 

 
29 FARP1 5.744399 

 7 FBN1 6.288468 MAF 30 SLC24A3 5.708312 
 8 A730054J21RIK 6.249052 

 
31 COL1A2 5.706657 MAF 

9 STX2 6.229643 
 

32 GHR 5.675805 
 10 COL1A1 6.208823 MAF 33 TMEM176A 5.650911 
 11 TMEM176B 6.178267 

 
34 MSRB3 5.644383 

 12 WISP1 6.153605 
 

35 TWIST2 5.624833 
 13 LOXL2 6.100156 MAF 36 LSP1 5.617865 
 14 PRRX1 6.08831 MAF 37 OGN 5.616873 
 15 TMEM119 6.078214 

 
38 PTX3 5.595969 

 16 CMTM3 6.07064 
 

39 COL3A1 5.590278 MAF 

17 P4HA3 6.068265 
 

40 NCAM1 5.57965 
 18 MMP14 6.054013 

 
41 FKBP10 5.571953 

 19 SRPX 6.045175 
 

42 ASPN 5.560051 MAF 

20 ALDH1L2 6.007391 
 

43 CDH11 5.525121 MAF 

21 PDGFRB 5.980855 MAF 44 SERPINF1 5.522322 MAF 

22 SH3PXD2B 5.960571 
 

45 IGF1 5.520588 
 23 SGCB 5.954762 
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Figure 1a 
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Figure 1b 
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Figure 1c 
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Figure 1d 
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Figure 1e 
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Figure 1f 
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Figure 1g 
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