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Abstract 
 
Background: Severe Acute Respiratory Syndrome (SARS) is characterized by acute 

respiratory distress (ARDS) and pulmonary fibrosis, and monocyte/macrophage is the 

key player in the pathogenesis of SARS.  

Methods: In this study, we compared the transcriptional profiles of SARS coronavirus 

(SARS-CoV) infected monocytic cells against that infected by coronavirus 229E (CoV-

229E). Total RNA was extracted from infected DC-SIGN transfected monocytes (THP-1-

DC-SIGN) at 6 and 24 h after infection and the gene expression was profiled in 

oligonucleotide-based microarray.  

Results: Analysis of immune-related gene expression profiles showed that at 24 h after 

SARS-CoV infection, (i) IFN-/-inducible and cathepsin/proteosome genes were down-

regulated; (ii) the hypoxia/hyperoxia-related genes were up-regulated; and (iii) the 

TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-

related, the lysosome-related, MHC/chaperon-related, and fibrosis-related genes were 

differentially regulated.  

Conclusion: These results elucidate that monocyte/macrophage dysfunction and 

dysregulation of fibrosis-related genes are two important pathogenic events of SARS.  
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Background 

 

During the months of November 2002 to July 2003, the outbreak of Severe Acute 

Respiratory Syndrome (SARS) greatly impacted the public health around the world.  A 

total of 8096 cases and 774 deaths [1] were reported.  About 20% of SARS patients 

developed acute respiratory distress syndrome (ARDS) [2].  Chest X-rays revealed 

bilateral diffuse consolidation in these patients [3]. Massive macrophage infiltration is a 

prominent feature in the lung sections of patients who died of SARS [4].  SARS-CoV 

infects human monocytes [5] and monocytic cells infected by SARS-CoV produce 

chemokines that attract the migration of neutrophils, macrophages and activated T 

lymphocytes [6].  Patients who recovered from SARS often suffered a sequel of 

pulmonary fibrosis [7] and macrophages play a role in fibroblast accumulation [8]. Thus, 

it is strongly indicated that immune response plays an important role in the pathogenesis 

of SARS and that monocyte/macrophage is the key player in the immunopathogenesis of 

SARS.  

 

Microarray is a recently developed tool that is useful in revealing the host response to an 

infectious agent at the genomic level. The microarray methodology has been used to  

show immune cell gene expression profile after infections by Mycobacterium leprae, 

CMV, HIV, E. coli, Chlamydia pneumoniae, and influenza virus H5N1 [9-14].  The gene 

expression profile in the peripheral blood mononuclear cells of convalescent SARS 

patients has been reported in a microarray study [15].  The molecular signature and 

disease severity index thus identified are useful for the diagnosis and prognosis of SARS-
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CoV infection if another SARS outbreak should occur [15]. However, the expression of 

immune function-related genes in SARS-CoV-infected monocyte/macrophage has never 

been revealed  

 

In the present study, oligo-microarray was used to profile the expression of immune 

function-related genes. We used DC-SIGN stably transfected monocytic THP-1 cells as 

targets to model the alveolar environment, as it has been shown that interstitial alveolar 

macrophages in the histologically normal adult lung tissue constitutively express DC-

SIGN [16]. The gene expression profile induced by SARS-CoV was compared to the 

human coronavirus 229E (CoV-229E), a group I coronavirus that causes mild common 

cold, of which the infectivity of DC-SIGN-transfected THP-1 cells is comparable to that 

of SARS-CoV [6]. Since SARS-CoV induced chemokine gene expression in monocytic 

cells peaks at as early as 24 h [6], we chose to study the gene expression profiles at both 6 

and 24 h after infection. The results of the present study showed that after SARS-CoV 

infection of monocytes, the expressions of (i) IFN--inducible and 

cathepsin/proteosome genes were down-regulated; (ii) the hypoxia/hyperoxia-related 

gene were up-regulated; and (iii) the TLR/TLR-signaling, cytokine/cytokine receptor-

related, chemokine/chemokine receptor-related, the lysosome-related, MHC/chaperon-

related, and fibrosis-related genes were differentially regulated.  

 

Methods 

 

Monocytic cell culture 
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The THP-1 cell line human monocytic cell line THP-1 stably transfected with DC-SIGN 

(THP-1-DC-SIGN) was kindly provided by Dr. Vineet N. Kewal Ramani (Model 

Development Section, HIV Drug Resistance Program, National Cancer Institute, National 

Institute of Health).  The cell line was maintained in RPMI1640 supplemented with 10% 

heat-inactivated fetal bovine serum (FBS) in 5% CO2 at 37°C.   

 

Virus infection 

THP-1-DC-SIGN cells were seeded in 15ml culture tubes at a density of 1x106 cells/ml. 

Cells were left in medium or infected with SARS-CoV TW1 [17] or CoV-229E at 100-

fold 50% tissue culture infective doses (TCID50, titered in Vero E6 or MRC-5 cells, 

respectively) and incubated for 6 or 24 h.  At different time points after infection, cells 

were harvested and culture supernatants were collected and stored at –70°C. For chip 

hybridization assay, cell pellets were resuspended in TRIzol.  Experiments that required 

handling SARS-CoV were performed in the P3 facility in the National Taiwan University 

College of Medicine. All procedures were performed according to the Centers for 

Disease Control and Prevention P3 Biosafety Guidelines.  

 

RNA extraction  

Total RNA was extracted from un-infected, CoV-229E infected, and SARS-CoV infected 

THP-1-DC-SIGN cells. After chloroform was added to each tube, samples were 

centrifuged and RNA contents were isolated from the upper aqueous phase.  Glycogen 

and iso-propanol were added to precipitate the total RNA. After wash by 75% ethanol, 

total RNA was spun down and stored in DEPC-water.  The A260/A280 O.D. ratio of all 
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RNA samples were >1.800 as determined by nanodrop-spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA).  Capillary RNA gel electrophoresis (Agilent Inc, 

Palo Alto, CA) was performed to ensure that the total RNA samples had clear 18S and 

28S ribosomal RNA bands.  

 

Chip hybridization  

Oligonucleotide-based microarrays, validated by the U.S. National Cancer Institute[18], 

were provided by Compugen (Jamesburg, NJ) and printed by an OmniGrid arrayer (San 

Carlos, CA).  A total of 19,137 oligos was used in the microarrays.  QIAgen (Valencia, 

CA) RNA clean-up column containing DNase was used to further purify RNA samples. 

Twenty μg of RNAs from SARS-CoV- and CoV-229E-infected DC-SIGN-THP-1 cells 

and 40 μg of RNAs from uninfected controls were labeled with cyanine 3-dUTP(Cyt3) 

and cyanine 5-dUTP(Cyt5), respectively. The Cyt3 and Cyt5 labeled samples were then 

mixed with 1 μ1 of human Cot1-DNA(10μg/μl), polyA (8-10μg/μl) and yeast tRNA 

(4μg/μl) each to block non-specific binding.  The sample mixture was then denatured at 

100C for 1 min. Twenty μl of 2X hybridization buffer (50% formamide, 10X SSC, and 

0.2% SDS) was added onto each prehybridized slide.  Hybridization was performed in a 

humid chamber in a water bath at 42C overnight.  Two arrays for both SARS-CoV and 

CoV-229E for each time-point were obtained. 

 

Image and Data analysis  

After hybridization, the slides were scanned on a GenePix 4000A scanner (Axon 

Instrument, Foster City, CA). The TIFF images were then analyzed by GenePix Pro 
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software and GPR files were generated. Signal dots were aligned with the grid first.  The 

signal dots that were too small were deleted.  In the appearance of bubbles and severe 

scratches in the slide image, the signal dots were considered invalid.  A PMT gain of red 

light (635nm) intensity and green light (532nm) intensity was adjusted according to the 

following principles: First, a general normalization method was applied to ensure that the 

ratio of total correct light intensity to green light intensity was equal to 1:1.  Second, all 

the housekeeping gene-glyceraldehyde-3-phosphate dehydrogenease (GAPDH) dots were 

adjusted so they appear to be yellow, as GAPDH should not have been up- or down-

regulated.  Microarray chip hybridization results for SARS-CoV and CoV-229E at 24h 

time point are shown as Figure 1A and 1B, respectively.  All the data were uploaded to 

the US National Cancer Institute Microarray Website for data processing, transformation, 

and annotation. The transformed numeral data, with gene annotations, were then 

downloaded from the above website. Genes were highlighted when the average 

expression ratios (Fold change) were >1.5 (>1.5-fold up-regulation (boldface) or <0.67 

(>1.5-fold down-regulation ) (underlined boldface). When the intensity ratio was positive 

from one replicate and negative from the other replicate, the images from the GPR files 

were re-checked.  If the dada were still inconsistent, they were excluded from further 

analysis. Heatmap of microarray results is shown. (Figure 1) 

 

Pathway network analysis  

Ingenuity pathway analysis software was used to identify specific up-regulated or down-

regulated gene-to-gene network at 24h after SARS-CoV infection. Data including gene 

name and fold change levels were input into the software. Genes which are immune 
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response related genes were selected in the pathway analysis. In this analysis, two major 

immunological pathway networks were identified including IL-8 centered network and 

proteasome-related gene network. (Figure 2) 

 

Results 

 

The expressions of IFN α/β inducible genes are down-regulated  

 

IFN α/β is the first line of host defense against virus infection. The expressions of IFN 

14, and RNA activated protein kinase, an enzyme that phosphorylates EIF2 to inhibit 

cellular protein translation [19], were slightly up-regulated after CoV-229E infection at 

both 6 h and remained up-regulated at 24 h, and IFN-inducible guanylate binding proteins 

(GIP2 and GIP3) and IFN-inducible myxovirus resistance1 (MX1) were moderately 

down-regulated at 24 h (Table 1) after infection. Interestingly, almost all interferon-

related genes were down-regulated by >1.5-fold in SARS-CoV infected monocytic cells 

at 6 h (Table 1). These genes included IFN-induced protein 35 (IFI 35), IFN-inducible 

G1Ps (GIP3 and GIP2), 2’, 5’ oligoadenylate synthetase 2 (2,5 OAS2), IFN-inducible 

myxovirus resistance1 (MX1), and IFN-inducible protein 44. At 24 h after SARS-CoV 

infection, more IFN-related genes were down-regulated and these IFN-related genes 

included IFN-14, IFN-stimulated 3 gamma (ISGF3g), IFN-induced exonuclease, RNA 

activated protein kinase (eukaryotic translation initiation factor 2 kinase, EIF2AK), in 

addition to IFN-induced protein 35, G1Ps, 2,5 OAS2, MX1, and IFN--inducible protein 

44.  It is worth noting that IFN-inducible GIP3, 2,5 OAS2, MX1, and IFN--inducible 
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protein 44 were down-regulated by >2-fold at both 6 and 24h after SARS-CoV infection.  

These results indicate that while CoV-229E induces IFN responses, SARS-CoV 

infection of macrophages not only does not induce IFN response but also down 

regulate IFN-related genes.  

 

The expressions of Toll-like receptors and Toll-like receptor signaling molecules are 

differentially regulated  

 

Triggering Toll-like receptor-signaling pathway is important to the induction of innate 

immune responses [20]. CoV-229E infection induced up-regulation of Toll-like receptor 

adaptor molecule1 (TRIF 1) but most TLR-related genes remained unchanged (Table 2).  

While only slight changes of most TLR-related genes were observed at 6 h after SARS-

CoV infection, both the negative regulator of Toll-like receptor signaling IRAK-M and 

TLR7 were >2-fold up-regulated at 24 h.  In the mean time, the downstream molecules of 

Toll-like receptor pathway: MyD88, TRIF, and Toll pathway evolutional conservative 

(SITPEC) were all down-regulated. The expressions of other Toll-like receptors, 

including TLR5, TLR4, TLR2, and TLR9 remained unchanged. High expression of 

IRAK-M and down-regulation of the downstream signal molecules suggest that although 

TLR7 was up-regulated, the TLR downstream signals may not be transduced in SARS-

CoV infected monocytes.     

 

The expressions of cytokines, receptors and signaling molecules are differentially 

regulated 
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 10

 

As cytokines are important immune mediators, we studied the cytokine, receptor and 

signal molecule gene expressions in monocytes (Table 3). While the only change of gene 

expression induced by CoV-229E infection was the down-regulation of IL-10R at 6 h 

after infection, we observed that SARS-CoV induced the down-regulation of TNF 

superfamily 14 (TNFSF14) and endoglin by >1.5-fold at 6 h after infection. At 24 h after 

SARS-CoV infection, the genes that were up-regulated were TNF receptor 21 (TNFRSF 

21), TNF-α inducible protein 1 (TNFAIP1), IL-10R and IFN- receptor 1 (IFN- R1).  

Among them, the gene expression of TNF receptor 21 was up-regulated by >2-fold. 

Nevertheless, other genes in the TNF superfamily including TNF receptor associated 

factor 4 (TRAF4), TNF ligand family 10 (TRAIL), TNF receptor 1A (TNFRSF 1A), and 

TNF family 14 (TNFSF14) and those in the TGF family, TGF-β 2 (TGFB2), TGF- β 

induced 68KD (TGFB1 68 KD) and endoglin were >1.5-fold down-regulated by SARS-

CoV at 24 h after infection. Among them, endoglin was down-regulated by >2-fold. 

Interestingly, even though IFN-γR1 was up-regulated, IFN-γ inducible adhesion 

regulating molecule 1 (ADRM1) was down-regulated. Other cytokine-related genes such 

as IL-6 receptor (IL-6R), cytokine-like factor1 (CLF1), IL-2 receptor-enhancing 

thioredoxin, and IL-13 were all down-regulated.   

 

The expressions of lysosome-related genes are differentially regulated  

 

Lysosomal enzymes responsible for degrading foreign proteins are important to the 

biological functions of macrophages [21]. While not much change was observed in the 
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expression of lysosome-related genes after 229E-CoV infection except ATPase 21KD 

V0C and palmitoyl-protein thioesterase 1 (PPTE1), the expressions of GlcNAc 

phosphotransferase (GlcNAcp) and lysosome-associated protein 4 alpha (LAMP4 alpha) 

were down-regulated at 6 h after SARS-CoV infection (Table 4). At 24 h after SARS-

CoV infection, all but ATPaseV01 and glucosamine-6-sulfatase (G-6-S) lysosome-related 

genes were down-regulated. These genes included GlcNAc phosphotransferase 

(GlcNAcp), palmitoyl-protein thioesterase 2 (PPTE2), mannosidase, lysosome ATPase 

subunits (14KDV1F, 16KDV0C, & 21KDV0C), lysosomal associated proteins (LAMP 

4 and LAMP 5), adaptor-related protein complex 2, mu-1 subunit (AP2M1), and 

prosaposin. It is worth noting that lysosome ATPase 21KDV0C and prosapsin were >2-

fold down-regulated at 24 h after SARS-CoV infection. These data demonstrated that 

although the genes of lysosome-related enzymes were differentially regulated after 

SARS-CoV infection, most of them were down-regulated. The results indicate that 

SARS-CoV-infected monocytes lost the ability to degrade ingested proteins.  

 

The expressions of genes of the cathepsin and proteasome family are down-

regulated  

 

The cathepsins and proteosomes are directly involved in antigen processing in the MHC 

class II and I pathways, respectively [22, 23].  While CoV-229E infection of monocytes 

did not result in much change in the cathepsin and proteosome genes, SARS-CoV 

infection induced down-regulation of all of them (Table 5).  It was most apparent at 24 h 

after infection, that cathepsins A, S, C, H, and D as well as proteosomes 4, 2, 26S 
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ATPase 4 (26s/A4), 9, activator 2, 3, activator 1, 26S non-ATPase8 (26s nA8), and 5 

were all down-regulated >1.5-fold in which the changes of cathepsins H and D and 

proteosomes activator 2, activator 1, 26s nA8 and 5 gene expressions were >2-fold. 

These results show that the MHC class II and I antigen processing pathways are inhibited 

in SARS-CoV infected monocytes.  

 

The expressions of chaperon and MHC-related genes are differentially regulated  

 

To further understand the regulation of genes that are directly involved in antigen 

processing/presentation, chaperon and MHC-related genes were analyzed.  Table 6 shows 

that CoV-229E induced down-regulation of SEC61B and upregulation of X-box binding 

protein 1, HSP70KD8, and calrecticulin genes at 6 h and upregulation of HSP70KD8 at 

24 h after infection. The expressions of other chaperon and MHC-related genes remained 

unchanged at either 6 or 24 h. SARS-CoV infection, however, induced upregulation of 

cyclophilin G and chaperonin containing TCP1-7 and down-regulation of cyclphilin C, 

X-box binding protein 1, and FK506 binding protein 10 at 6 h. By 24 h after SARS-CoV 

infection, while cyclophilins D and G and heat shock factor 1 were up-regulated, most 

chaperon and MHC-related genes were down-regulated. The down-regulated genes 

included chaperonins (chaperoinin containing TCP16A, TCP1-7, valosin-containing 

protein), HLA genes (HLA-B-associated transcript 2, HLA-HA1, HLA complex group 9, 

X-box binding protein1), FK506 binding proteins (FK506 BP8, FK506 BP10), heat shock 

proteins (activator of HSP90KD, HSP10KD1, HSP70KD8), cyclophilins (E, C, B), and 

MHC transporters (BAP31, SEC61B, calreticulin). The expression profiles of cathepsins, 
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proteosomes, cheperons, and MHC-related molecules together strongly indicate that 

antigen processing and presentation pathways are dysfunctional in SARS-CoV-infected 

monocytes.  

 

The expressions of chemokines, receptors and related genes are differentially 

regulated  

 

Given that recruitment of leukocytes to the site of inflammation is orchestrated by 

chemokines [24], and ARDS is characterized by heavy infiltration of monocytes, 

neutrophils, and fibroblasts to the lungs [25], we next examined the expression profile of 

chemokine-related genes.  While all chemokine-related genes except MIP-1/CCL3 

(down-regulated at both 6 and 24 h) in the CoV-229E-infected cells remained unchanged, 

many of them were up- or down-regulated in SARS-CoV-infected cells (Table 7). In fact, 

at as early as 6 h after SARS-CoV infection, the down-regulation of MIP-1/CCL3, 

prostaglandin D synthase (PGDS), RANTES/CCL5, and LTXC4 synthase genes were 

already obvious. At 24 h after infection, those genes that were upregulated include major 

basic protein homolog (MBPH), CXCL8/IL-8, hyaluronidase 3, PDGF receptor  

(PDGFR, lelukotriene A4 (LTXA4) hydroxylase, and hyaluronan-mediated motility 

receptor (RHMM). The expression of MBPH and CXCL8/IL-8 genes were >2-fold 

higher than the control. Others like microsomal glutathione-S transferase (MGST2), 

prostaglandin E synthase (PGEs), chemokine-like factor (CLF), GRO/CXCL3, MGST3, 

MIP-1/CCL3, CCR9, RANTES/CCL5 and LTXC4 synthase were down-regulated. 

Among them, the expressions of CCL3/MIP-1, CCR9, RANTES/CCL5 and LTXC4 
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synthase genes were >2-fold lower than the control. The upregulated genes (CXCL8/IL-8, 

hyaluronidase 3, PDGF receptor alpha, LTXA hydroxylase) are known to recruit 

monocytes, neutrophils, and fibroblasts which may explain the complication of ARDS in 

SARS-CoV infection.   

 

The expressions of fibrosis-related genes are differentially regulated  

 

Pulmonary fibrosis resulting from lung injury is a serious complication of ARDS and 

SARS.  Thus, we examined whether fibrosis-related gene expression is changed after 

SARS infection.  Data in Table 8 show that while CoV-229E infection did not change the 

gene expression profile except tissue inhibitor of metalloproteinase (TIMP1) and proline 

2-oxoglutarate 4-dioxygenase (P4HA1) at 6 h. SARS-CoV infection induced up- and 

down-regulation of fibrosis-related genes. The expression of proline 2-oxoglutarate 4-

dioxygenase (P4HA1), a key enzyme in collagen synthesis, was up-regulated at 6 h and 

further increased at 24 h after SARS-CoV infection. The other genes that were 

upregulated at 24 h include plasiminogen activator inhibitor type 2 (SERPINB2), matrix 

metalloproteinase 28 (MMP28), A disintingrin and metalloproteinase domain 19 (ADAM 

19). On the other hand, other fibrosis-related genes were down-regulated and these 

include protein S, metalloproteinase 2 (MMP2), collagens XVIII1, and I2, spondin 2 

(SPON2), procollagenlysin-2-oxoglutarate 5-dioxygenase 3 (PLOD3), metallopeptidase 

with thrombospondin type 1 motif 4 (ADAMTS4), fibroblast growth factor 3 (FGF3), 

tissue inhibitor of metalloproteinases 3 and 1 (TIMP3, TIMP1). The genes that were 

down-regulated by >2-fold were FGF3, collagens XVIII1, and I2 and TMPs 1 and 3.  

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
90

8.
1 

: P
os

te
d 

17
 A

pr
 2

01
1



 15

The regulation of fibrosis-related genes may help to explain the pathogenesis of ARDS 

and pulmonary fibrosis in SARS-CoV infection.  

  

The expressions of oxygen stress-related genes are up-regulated 

 

Change of oxygen tension is a source of stress.  While CoV-229E infection did not 

induce oxygen stress-related genes, SARS-CoV infection induced the up-regulation of   

hypoxia-related genes at as early as 6 h and sustained until 24 h (Table 9).  These were 

hypoxia-inducible 2 and hypoxia up-regulated 1 genes. The oxidative responsive 1 gene 

up-regulation was observed only at 24 but not at 6 h after infection. These results 

demonstrate that SARS-CoV infection of monocytes creates a hypoxic environment, 

which induces the expression of hypoxia-related genes. 
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Discussion 

 

Monocytes play a key role in mediating inflammatory response in the lungs of SARS 

patients [4].  Thus, the interaction between SARS-CoV and monocytes is important to the 

outcome of the infection.   How SARS-CoV regulates gene expression has been a subject 

of interest.  The peripheral blood mononuclear cells (PBMC) and monocyte gene 

expression profiles were analyzed.   A microarray analysis of PBMC of patients 

recovering from SARS revealed that SARS-CoV infection causes a general suppression 

of gene expression and induces the up-regulation of only several specific ESTs and 

eosinophil-derived neurotoxins [15].  A different study showed that in contrast to CoV-

229E and influenza (H1N1) infections, interferon- signaling fails to occur in 

macrophages after SARS-CoV infection [5]. The results of our study showed that most of 

the IFN- inducible, lysosome-related, cathepsin/proteosome, and MHC/chaperon 

genes are down-regulated, while the genes of which products play suppressive roles, i.e. 

IRAK-M, and IL-10R are up-regulated.  These results together indicate that SARS-CoV 

infection causes macrophage dysfunction.  

 

TLR-7 is amongst the few genes that are up-regulated by SARS-CoV (Table 2). TLR-7 is 

recently shown to appear on the endosomal membrane and plays as an intracellular 

receptor for single-stranded RNA(ssRNA) [20, 26].  It can distinguish cellular from viral 

ssRNAs because the cellular RNAs contain a greater number of modified nucleotide 

bases (m5C, m6A, m5U, and s2U)  [27].  It has not been explored whether intracellular 

TLR-7 binds the nucleic acid of SARS-CoV and triggers downstream signals.  Our data 
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showing that SARS-CoV induces the up-regulation of TLR-7 and the negative signal 

regulator IL-1 receptor associated kinase M (IRAK-M) and the down-regulation TLR 

downstream signal molecules MyD88, Toll-like receptor adaptor molecule 1 (TRIF1), 

and Toll pathway evolutional conservative (SITPEC) as well as most of the IFN- 

inducible genes, demonstrate that even if TLR-7 binds to SARS-CoV nucleic acids its 

downstream signaling is inhibited [28, 29].  It has been shown that Mycobacterium 

tuberculosis binding to DC-SIGN on dendritic cells inhibits TLR signaling and thus 

inhibits dendritic cell maturation [30].  It is, therefore, also possible that SARS-CoV 

binding to DC-SIGN on THP-1-DC-SIGN monocytes inhibits the TLR signals as it has 

been demonstrated in M. tuberculosis.  

 

Cytokines are important immune mediators.  SARS-CoV down-regulates most of the 

TNF-related genes and up-regulates only TNF receptor 21 (TNFRSF 21) and TNF-α 

inducible protein 1 (TNFAIP1) (Table 3).  All the TGF-related genes are down-

regulated (Table 3).  These findings are consistent with several previous studies 

measuring cytokine response in SARS-CoV infected culture cells or SARS patients [31-

33].  In addition, while IL-10R and IFN- receptor 1 (IFN- R1) are up-regulated, IFN-γ 

inducible adhesion-regulating molecule 1 (ADRM1) is down-regulated.  Therefore, 

although cytokine storm has been implicated as an important immune indicator for SARS, 

our data show that macrophages are not a likely source  

 

Lysosomal enzymes being responsible for digesting vesicular proteins in the lysosome 

are important to the functions of monocytes and macrophages [34].  SARS-CoV infection 
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down-regulates most lysosomal enzymes including phosphotransferase (GlcNAcp), 

thioesterase (PPTE2), mannosidase, and ATPase (14KDV1F, protein 1, 16KDV0C, 

21KDV0C) (Table 4).  Being professional antigen-presenting cells, 

monocytes/macrophages process antigens through the activities of cathepsins and 

proteasomes and present antigens via chaperon/MHC molecules [35].  It is interesting 

that SARS-CoV infection down-regulates all the cathepsin and proteasome genes and 

most of the chaperon/MHC genes (Tables 4, 5 and 6) and that most of these down-

regulated genes in the proteosome family are directly or indirectly interrelated (Figure 2) 

seemingly rendering the monocyte/macrophage unable to process and present antigens.  

Thus, it appears that by down-regulating the genes that are important to antigen 

processing and presentation, SARS-CoV suppresses the primary functions of 

monocyte/macrophage.   Since interferon up-regulates MHC related genes, the down-

regulation of interferon  genes could be partially responsible for the down-regulation 

of MHC-related genes [19].  It is our speculation that by suppressing the antigen-

processing and presentation functions of monocyte/macrophage, SARS-CoV delays 

specific T cell activation and thus delays its own clearance.   

 

The clinical picture of SARS is characterized by pulmonary cellular infiltration and lung 

consolidation [1].  We have demonstrated infiltration of neutrophils, macrophages and T 

lymphocytes in the lungs of SARS-CoV-infected patient during early phase of infection 

(Yen 2006 JVI) and CXCL8/IL-8 was produced by SARS-CoV-infected monocytes.  The 

results of microarray analysis in this study showed that in addition to CXCL8/IL-8 and 

major basic protein homolog (MBPH), is up-regulated by >2–fold (Table 7).  Pathway 
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network analysis showed many genes that up-regulate CXCL8/IL-8 were up-regulated 

after SARS-CoV infection (Figure 2).  These include C/EBP delta, CD14, complement 

C3, and major basic protein homologue PRG3 [36-39].  A previous study demonstrated 

that C/EBP delta can substitute for IL-17 to induce neutrophil activation and 

accumulation [40].  Interestingly, alanyl aminopeptidase (ANPEP, Figure 2) which is 

known to suppress IL-8 expression [41] was down regulated after SARS-CoV infection.  

Taken together, SARS-CoV infection induces the up-regulation of the genes that up-

regulate and the down-regulation of the gene that suppresses CXCL8/IL-8, showing that 

inducing neutrophil migration and activation is an important event in SARS-CoV-

infection.       

 

The anti-inflammatory high-molecular mass-hyaluronan is known to be a protective 

factor against acute lung injury [42].  Hyaluronidase degrades high-molecule-mass 

hyaluronan to hyaluronan fragments [43].   In patients with acute lung injury the 

hyaluronan fragments are increased [42].  Through the hyaluronan-mediated motility 

receptor (RHMM), hyaluronan fragments mediate macrophage and neutrophil migration, 

increase the phagocytic function of neutrophils [44] and macrophage CXCL8/IL-8 

production [45].  Interestingly, SARS-CoV infection induces the up-regulation of 

hyaluronidase 3, and the receptor for hyaluronan-mediated motility (RHMM) (Table 7).  

We speculate that through the activity of hyaluonidase 3 and increased RHMM 

expression, more hyaluronan fragments are produced which contribute to the increase of 

neutrophil and monocyte infiltration and functions.    
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The relationship between leukotriene and lung fibrosis has been demonstrated in mice 

deficient in 5-lipoxygenase knockout mice.  The knockout mice which are deficient in 

leukotriene are protected from lung fibrosis induced by bleomycin ([46].  No increase of 

inflammatory cells in the lungs was noted in the knockout mice in contrast to wild-type 

mice which have abundant leukocytes.  Leukotriene A4 (LTXA4) hydroxylase catalyses 

the production of leukotiene B4 from leukotriene A4 while leukotriene C4 (LTXC4) 

synthases mediates the production of leukotriene C4 from leukotriene A4 [47, 48].  Our 

results showing down-regulation of LTXC4 synthases (LTXC4 synthase, microsomal 

glutathione-S-transferase2, microsomal glutathione-S-transferase3) and up-regulation of 

LTXA4 hydroxylase (Table 7) indicate that there is increased leukotriene B4 

accumulation after SARS-CoV infection. Therefore, leukontriene B4, a potent 

chemoattractant for neutrophils [49], could also be accounted for the increase of 

neutrophil migration in the lungs.   

 

Prostaglandin E (PGE) is commonly used as a treatment for ARDS [50]. PGE2 inhibits 

fibroblast proliferation, collagen synthesis and fibroblast chemotaxis [51]. In 

cycloxygenase-2-deficient mice, the severity of intratracheal bleomycin-induced lung 

fibrosis is increased due to PGE2 reduction [52].  It is worth noting that both 

prostaglandin E and prostaglandin D synthetases (PGES and PGDS) are down-regulated 

in SARS-CoV infected cells (Table 7) implying the PGE2 level is reduced in SARS 

patients which may contribute to lung fibrosis. Platelet-derived growth factor (PDGF) is a 

major fibroblast mitogen [53] . It also serves as a chemoattractant for neutrophils, 

monocytes, and fibroblasts [54].  Therefore, up-regulation of PDGF receptor  by SARS-
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CoV (Table 7) through PDGF signaling would result in fibroblast proliferation, 

neutrophil and monocyte infiltration and worsened lung fibrosis [55].    

 

Lung fibrosis is a squeal of severe acute pulmonary disease [7].  It is thus of interest to 

understand how SARS-CoV affects the expression of fibrosis-related genes. A previous 

study revealed that collagen III is up-regulated in ARDS and its levels are related to poor 

prognosis [56].  Proline 2-oxoglutarate 4-dioxygenase (P4HA1), a key enzyme in 

collagen synthesis is up-regulated but collagen I2 and collagen XVIII1 are down-

regulated by SARS-CoV infection (Table 8).  Studies have also shown that tissue 

inhibitors of metalloproteinases (TIMP) deficiency or TIMP/MMP (Matrix 

metalloproteinase) imbalance contributes to [57, 58] and plasminogen activator inhibitor 

(SERPINB2) deficiency protects against pulmonary fibrosis [59].  Fibrinolytic proteins 

are protective against lung fibrosis [60].  SARS-CoV infection up-regulates proteinases: 

matrix metalloproteinase 28 (MMP28), A disintegrin and metalloproteinase domain 19 

(ADM19), and plasminogen activator inhibitor (SERPINB2) and down-regulates tissue 

inhibitors of metalloproteinases 1 and 3 (TIMP1 and TIMP3) and fibrinolytic protein 

(protein S) (Table 8).  Our data showing the up- and down-regulation of fibrosis-related 

genes provide the molecular basis of the clinical presentation of pulmonary fibrosis in 

SARS.   

 

Conclusion 

In summary, our study of the gene profiles in macrophages after SARS-CoV infection 

show that the expressions of (i) IFN--inducible and cathepsin/proteosome genes are 
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down-regulated; (ii) the hypoxia/heperoxia-related gene are up-regulated; and (iii) the 

TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-

related, the lysosome-related, MHC/chaperon-related, and fibrosis-related genes are 

differentially regulated.  These results demonstrate that SARS-CoV infection causes 

monocyte/macrophage dysfunction and induces pulmonary fibrosis both of which are 

important in the pathogenesis of SARS.  
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Figure legends 

Figure 1.   

Heatmap image of microarray analysis result of SARS-CoV and CoV-229E infected 

THP1-DC-SIGN cells.  S6M: SARS 6h mean, S6A: SARS 6h sample A, S6B: SARS 6h 

sample B; E6M: CoV-229E 6h mean, E6A: Cov-229E 6h sample A, E6B: CoV-229E 6h 

sample B; S24M: SARS 24h mean, S24A: SARS 24h sample A, S24B: SARS 24h 

sample B; E24M: CoV-229E 24h mean, E24A: Cov-229E 24h sample A, E24B: CoV-

229E 24h sample B  

Figure 2 

Pathway analysis of specific gene-to-gene network of IL-8 and proteosome families.  

Red and green colors denote up-regulation and down-regulation, respectively.  Darker 

color indicates greater up- or down-regulation and lighter color mild to moderate up- or 

down-regulation.  Solid and dotted lines lines indicate direct and indirect up-regulation 

from upstream gene A to downstream gene B, respectively.  Straight lines with blunt end 

indicate down-regulation from upstream gene A to downstream gene B.  
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Table 1. Interferonα/β inducible gene expressions             
            Fold change*†         
Gene GeneBank     6h         24h     
 Accession     SARS- CoV       Cov- 229E     SARS- CoV      CoV- 229E 
   Number Mean A B Mean A B Mean A B Mean A B 
Interferon alpha14 NM002172 0.95 0.96 0.93 1.34 1.78 0.90 0.66 0.41 0.91 1.11 1.10 1.12 

              
ISF3g‡ NM006084 1.04 0.97 1.10 1.00 1.00 1.00 0.62 0.54 0.69 1.01 1.05 1.11 

              
IFN exonuclease NM002201 0.93 0.96 0.90 1.03 1.51 0.56 0.62 0.43 0.81 0.99 1.01 0.98 

              
EIF2Ak§ NM002759 0.98 0.88 1.08 2.05 2.55 1.55 0.58 0.54 0.62 1.25 1.18 0.97 

              
IFN inducible IFI35 NM005533 0.58 0.49 0.67 1.09 1.00 1.18 0.55 0.61 0.49 0.80 0.83 1.32 
              
IFN inducible G1P3** NM002038 0.28 0.25 0.31 0.96 0.84 1.08 0.39 0.32 0.46 0.57 0.57 0.77 
              
2,5OAS2†† NM002535 0.28 0.30 0.26 1.47 1.00 1.95 0.34 0.42 0.26 0.76 0.73 0.58 
              
MX1‡‡ NM002462 0.40 0.35 0.44 1.07 0.95 1.19 0.28 0.31 0.24 0.64 0.65 0.80 
              
Interferon inucible 44 NM006417 0.32 0.27 0.37 1.28 0.96 1.59 0.26 0.34 0.18 0.93 0.90 0.62 
              
IFN inducible G1P2§§ NM005101 0.61 0.55 0.66 0.64 0.70 0.57 0.20 0.19 0.21 0.58 0.57 0.95 
 

 

 
                                                 
*  
† Bold face: up-regulation>1.5x; Underlined boldface: down-regulation<0.67x 
‡ ISF3g: IFN-stimulated 3 gamma 

§ EIF2AK: RNA activated protein kinase 
** IFN inducible G1P3: IFN inducible guanylate binding protein 3 

†† 2,5OAS2: 2,5 oligoadenylate synthetase 2 

‡‡ MX1: myxovirus resistance 1 

§§ IFN inducible G1P2: IFN guanylate binding protein 2 
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Table 2. Toll-like signaling gene expressions           
         Fold change*           
Group/Gene GeneBank     6h         24h     
 Accession  SARS-CoV     CoV-229E  SARS-CoV      CoV- 229E 
   Number Mean A B Mean A B Mean A B Mean A B 
Toll-like signaling:             
IRAK-M† NM007199 1.00 1.00 1.00 1.00 1.00 1.00 2.35 2.51 2.19 1.36 1.40 1.31 
              
MyD88‡ NM002468 0.90 0.78 1.01 0.77 1.00 0.53 0.63 0.68 0.59 0.98 1.01 0.94 
              
TRIF§ NM014261 0.73 0.66 0.81 1.57 1.73 1.40 0.60 0.40 0.80 1.12 1.07 1.16 
              
SITPEC** NM016581 0.73 0.79 0.67 1.00 1.00 0.99 0.51 0.43 0.59 0.93 0.91 0.95 
              
TLR molecules:             
TLR7 NM016562 1.17 1.35 1.00 1.00 1.00 1.00 2.10 1.84 2.36 1.03 1.01 1.04 
              
TLR5 NM003268 0.78 0.72 0.83 0.97 1.10 0.83 1.32 1.16 1.48 1.01 1.05 0.97 
              
TLR4 NM003266 1.19 1.39 1.00 1.00 1.00 1.00 1.27 1.54 1.00 0.98 0.96 1.00 
              
TLR2 NM003264 1.06 1.13 1.00 1.00 1.00 1.00 1.12 1.22 1.01 1.03 1.02 1.04 
              
TLR9 NM017442 0.88 0.95 0.82 1.11 1.00 1.22 0.71 0.81 0.61 1.00 1.03 0.98 
 

 
 
 
            

                                                 
* Bold face: up-regulation>1.5x; Underlined boldface: down-regulation<0.67x 
† IRAK-M: IL-1 receptor associated kinase-M 

‡ MyD88: myeloid differentiation protein 88 

§ TRIF: Toll-like receptor adaptor molecule 1 

** SITPEC: Toll pathway evolutional conservative 
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Table 3. Cytokine-related gene expressions 

           Fold change*           
Group/Gene GeneBank     6 h         24h     
 Accession  SARS- CoV      CoV- 229E  SARS-CoV     CoV- 229E 
   Number Mean A B Mean A B Mean A B Mean A B 
TNFsuperfamily:              
TNFRSF21† NM614452 1.00 1.00 1.00 1.00 1.00 1.00 2.23 2.16 2.30 1.11 1.06 1.17 
              
TNFAIP1‡ NM021137 1.05 1.10 1.00 1.00 1.00 1.00 1.93 2.55 1.32 0.85 0.81 0.88 
              
TRAF4§ NM004295 0.72 0.68 0.77 1.11 1.80 0.41 0.67 0.49 0.86 0.96 0.99 0.92 
              
TRAIL** NM003810 0.94 0.99 0.88 1.05 1.00 1.10 0.64 0.52 0.75 0.76 0.73 0.79 
              
TNFRSF1A†† AK130807 1.11 0.88 1.35 1.69 2.85 0.52 0.61 0.50 0.73 0.95 0.97 0.94 
              
TNFSF14 NM003807 0.64 0.59 0.69 1.34 1.87 0.81 0.55 0.46 0.63 0.93 0.94 0.91 
              
TGFB-related:              
TGFB2 NM003242 1.06 1.00 1.12 0.87 1.13 0.61 0.65 0.48 0.82 0.93 1.01 0.85 
              
TGFBI68KD‡‡ NM000358 0.81 0.73 0.90 1.11 1.68 0.54 0.64 0.37 0.91 0.95 0.95 0.95 
              
Endoglin NM000118 0.65 0.63 0.66 1.09 1.25 0.94 0.27 0.26 0.29 0.72 0.76 0.68 
              
Interleukin-related              
IL10Ra§§ NM001558 0.91 0.82 1.00 0.60 1.00 0.20 1.88 2.03 1.74 1.01 1.08 0.93 
              
IL6R NM181359 0.83 0.79 0.88 1.17 1.00 1.34 0.66 0.46 0.86 1.12 1.16 1.08 
              
CLF1*** NM001330 0.71 0.71 0.71 0.90 1.19 0.61 0.67 0.41 0.92 1.01 1.06 0.95 
              
Thioredoxin NM003329 1.07 0.91 1.24 0.74 0.66 0.81 0.64 0.43 0.85 0.98 0.99 0.96 
              
IL13 NM002188 0.76 0.84 0.69 1.33 1.52 1.14 0.55 0.36 0.74 1.01 0.95 1.08 
              
IFN-g related:              
Interferon-g R1 NM006416 1.27 1.42 1.11 1.80 3.20 0.40 1.78 1.35 2.22 1.12 1.13 1.11 
              
ADRM1††† NM007002 1.14 1.21 1.06 0.79 1.00 0.57 0.55 0.62 0.48 0.88 0.86 0.90 

                                                 
* Bold face=Up-regulation>1.5x; Underlined boldface=down-regulation<0.67x 
† TNFRSF21: TNF receptor superfamily 21 
‡ TNFAIP1: TNF-alpha inducible protein 1 
§ TRAF4: TNF receptor associated factor 4 
** TRAIL: TNF ligand family 10 
†† TNFRSF1A: TNF receptor superfamily 1A 
‡‡ TGFBI68KD: TGF-beta induced 68KD 
§§ IL10Ra: IL10 receptor alpha 
*** CLF1: cytokine-like factor 1 
††† ADRM1:Adhesion-regulating molecule1 
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Table 4. Lysosome-related gene expressions             
            Fold change*           
Gene GeneBank     6h         24h     
 Accession  SARS-CoV     CoV- 229E  SARS-CoV     CoV- 229E 
   Number Mean A B Mean A B Mean A B Mean A B 
ATPaseV01 NM005177 1.21 1.41 1.00 1.00 1.00 1.00 2.45 1.78 3.12 1.23 1.45 1.00 
              
G-6-S† NM002076 1.00 1.00 1.00 1.00 1.00 1.00 1.55 1.55 1.56 1.17 1.17 1.16 
              
GlcNAcp‡ NM032520 0.60 0.54 0.66 1.23 1.00 1.45 0.66 0.62 0.69 0.86 0.87 0.85 
              
PPTE2§ NM005155 0.75 0.69 0.81 1.00 1.00 1.00 0.66 0.57 0.75 1.02 1.02 1.03 
              
Mannosidase NM022077 0.80 0.81 0.78 0.80 0.73 0.87 0.66 0.48 0.85 0.84 0.86 0.82 
              
ATPase14KDV1F NM004231 0.87 0.86 0.88 0.72 0.81 0.63 0.67 0.40 0.97 0.93 0.96 0.90 
              
ATPaseProtein1 NM001183 0.62 0.63 0.62 0.99 1.00 0.97 0.60 0.57 0.62 0.81 0.84 0.78 
              
LAMP4 alpha** NM014713 0.56 0.50 0.62 0.89 1.33 0.46 0.59 0.59 0.59 1.03 1.09 0.97 
              
PPTE1†† NM000310 1.10 1.07 1.13 1.76 0.47 3.05 0.65 0.32 0.99 1.09 1.06 1.11 
              
ATPase16KDV0C NM001694 0.98 1.13 0.84 0.81 1.04 0.57 0.62 0.33 0.90 0.96 0.98 0.93 
              
AP2M1‡‡ NM004068 0.93 0.91 0.95 1.00 0.83 1.16 0.53 0.34 0.73 0.91 0.96 0.86 
              
LAMP5§§ NM006762 1.16 1.13 1.19 0.92 0.92 0.91 0.52 0.23 0.81 1.02 1.01 1.02 
              
ATPase21KDV0C NM004047 1.01 1.02 0.99 0.67 0.85 0.49 0.46 0.29 0.64 0.76 0.79 0.73 
              
Prosaposin NM002778 0.72 0.74 0.70 1.34 1.52 1.17 0.49 0.22 0.75 1.00 0.97 1.03 

                                                 
* Bold face=Up-regulation>1.5x; Underlined boldface=down-regulation<0.67x 
† G-6-S: glucosamine-6-sulfatase 

‡ GlcNAcp:GlcNAc phosphotransferase 

§ PPTE2: palmitoyl-protein thioesterase2 

** LAMP4 alpha: lysosomal-associated protein 4 alpha 

†† PPTE1: palmitoyl-protein thioesterase1 
‡‡ AP2M1: adaptor-related protein complex 2, mu-1 subunit 
§§ LAMP5: lysosomal-associated protein 5 
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Table 5. Cathepsin/proteasome gene expressions               
         Fold change*           
Group/Gene GeneBank     6h         24h     
 Accession  SARS-CoV     CoV- 229E    SARS-CoV      CoV- 229E 
   Number Mean A B Mean A B Mean A B Mean A B 
Cathepsins:              
Cathepsin A NM000308 0.87 0.75 0.99 1.22 1.00 1.43 0.59 0.40 0.78 0.88 0.92 0.84 
              
Cathepsin S NM004079 0.53 0.59 0.47 1.52 1.00 2.04 0.54 0.42 0.66 1.07 1.11 1.03 
              
Cathepsin C NM001814 1.14 0.90 1.39 1.17 0.66 1.67 0.53 0.42 0.63 0.95 0.95 0.96 
              
Cathepsin H NM004390 0.65 0.62 0.68 1.00 1.00 1.00 0.45 0.56 0.33 1.00 0.93 1.07 
              
Cathepsin D NM001909 1.09 0.90 1.28 0.75 1.00 0.49 0.39 0.24 0.54 1.29 1.34 1.25 
                  
Proteasomes:                  
Proteasome 4(PSMA4) NM002789 1.25 1.12 1.38 1.49 0.71 2.27 0.67 0.47 0.88 1.18 1.27 1.08 
              
Proteasome 2(PSMB2) NM002794 1.07 1.15 1.00 0.96 1.00 0.92 0.63 0.57 0.69 1.05 0.96 1.14 
              
Proteasome 26s,A4† NM006503 1.00 0.96 1.05 1.07 1.39 0.75 0.54 0.62 0.47 0.82 0.85 0.80 
              
Proteasome 9(PSMB9) NM002800 0.51 0.46 0.55 1.00 0.50 1.49 0.54 0.48 0.59 0.83 0.83 0.82 
              
PSME2‡ BC072025 0.78 0.71 0.85 1.10 0.43 1.78 0.50 0.45 0.56 0.84 0.86 0.82 
              
Proteassome 3(PSMB3) NM002795 1.10 0.96 1.24 0.75 0.45 1.04 0.52 0.36 0.67 0.85 0.86 0.84 
              
PSME1§ NM006263 0.78 0.77 0.80 1.22 0.46 1.97 0.49 0.32 0.66 0.90 0.92 0.88 
              
Proteasome 26s nA8 NM002812 1.20 1.06 1.33 0.96 0.70 1.21 0.46 0.36 0.55 0.85 0.84 0.86 
              
Proteasome 5(PSMA5) NM002790 0.80 0.73 0.87 1.12 0.47 1.77 0.34 0.24 0.43 0.98 1.02 0.94 
 

 

 

 

 

 

                                                 
* Bold face=Up-regulation>1.5x; Underlined boldface=down-regulation<0.67x 
† Proteasome 26s, A4: proteasome 26s ATPase 4,  

‡ PSME2: proteasome activator 2 
§ PSME1: proteasome activator 1 
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Table 6. Chaperon/HLA gene expressions                      
         Fold change*           
Gene GeneBank     6h         24h     
 Accession  SARS-CoV      CoV- 229E    SARS-CoV     CoV- 229E 
  Number  Mean A B Mean A B Mean A B Mean A B 
Cyclophilin D NM005038 1.00 1.00 1.00 1.00 1.00 1.00 1.95 2.04 1.85 1.11 1.10 1.12 
              
Heat Shock Factor 1 NM005526 1.00 1.00 1.00 1.00 1.00 1.00 1.69 1.91 1.48 0.99 0.96 1.01 
              
Cyclophilin G NM004792 2.44 2.20 2.68 1.00 1.00 1.00 1.66 1.59 1.73 1.39 1.45 1.32 
              
Chaperonin TCP16A NM001762 1.36 1.78 0.95 1.28 1.93 0.63 0.63 0.64 0.62 1.15 1.04 1.27 
              
HLA-B Associated 2 NM004638 0.98 0.99 0.97 0.78 1.00 0.55 0.63 0.71 0.56 1.46 1.52 1.41 
              
FK506BindingProtein8 NM012181 0.69 0.58 0.81 0.85 0.65 1.05 0.64 0.51 0.76 0.87 0.91 0.84 
              
Activator 0f HSP90KD NM012111 1.02 1.04 1.00 1.00 1.00 1.00 0.63 0.71 0.54 0.98 0.88 1.08 
              
Cyclophilin E NM006112 0.92 0.89 0.95 1.30 0.49 2.11 0.67 0.40 0.95 0.89 0.92 0.86 
              
HLA-HA1 NM012292 0.71 0.63 0.80 0.83 0.52 1.14 0.59 0.53 0.64 0.74 0.76 0.72 
              
HLA complex group9 NM005844 1.12 1.03 1.21 1.02 1.00 1.04 0.58 0.49 0.66 0.84 0.90 0.78 
                  
BAP31† NM005745 0.74 0.71 0.77 0.98 0.59 1.37 0.60 0.41 0.78 0.93 0.95 0.92 
              
SEC61 complex Beta NM006808 0.80 0.73 0.88 0.62 0.74 0.51 0.61 0.38 0.84 0.87 0.93 0.80 
              
Cyclophilin C NM000943 0.58 0.57 0.59 1.07 0.57 1.57 0.62 0.32 0.92 0.91 0.91 0.91 
              
Valosin-contain protein NM007126 1.18 1.25 1.11 1.06 1.09 1.02 0.53 0.36 0.71 0.93 0.90 0.95 
              
HeatShockProtein10KD1NM002157 0.86 0.84 0.88 1.25 0.37 2.13 0.51 0.37 0.66 0.87 0.88 0.87 
              
Chaperonin TCP1-7 NM006429 2.20 1.78 2.62 0.89 0.49 1.29 0.49 0.37 0.61 0.98 0.97 0.99 
              
X-box binding protein1 NM005080 0.41 0.42 0.41 1.59 0.40 2.77 0.49 0.36 0.62 1.08 1.14 1.03 
              
FK506BindingProtein10 NM021939 0.66 0.68 0.63 1.03 1.23 0.83 0.48 0.36 0.61 0.89 0.88 0.91 
              
HeatShockProtein70KD8NM006597 1.02 1.09 0.95 1.80 0.54 3.05 0.46 0.27 0.65 1.52 1.56 1.48 
              
Calreticulin NM004343 1.23 1.36 1.10 1.96 2.45 1.48 0.43 0.23 0.62 1.27 1.23 1.31 
              
Cyclophilin B NM000942 0.69 0.71 0.67 1.12 0.54 1.71 0.36 0.12 0.59 1.03 1.04 1.01 
 

                                                 
* Bold face=Up-regulation>1.5x; Underlined boldface=down-regulation<0.67x 
† BAP31: B cell receptor associated protein 31 
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Table 7. Chemokine-related gene expressions              
         Fold change*           
Gene GeneBank     6 h         24 h     
 Accession  SARS -CoV      CoV- 229E   SARS- CoV     CoV- 229E 

   Number Mean A B Mean A B Mean A B Mean A B 

MBPH(PRG3)† NM006093 1.74 1.74 1.74 1.09 1.84 0.33 2.57 2.83 2.31 1.05 1.15 0.96 
              
Interleukin8 NM000584 0.80 0.60 1.00 8.50 16.91 0.08 2.55 2.28 2.83 0.91 0.90 0.92 
              
C/EBP delta(CEBPD) NM005195 1.18 1.05 1.32 0.82 1.21 0.44 2.04 1.30 2.77 0.86 0.79 0.82 
              
Hyaluronidase3 NM003549 1.29 1.27 1.30 1.00 1.00 1.00 1.80 1.35 2.25 0.79 0.77 0.81 
              
Complement3 NM000064 1.09 1.18 1.00 1.00 1.00 1.00 1.66 1.75 1.57 0.99 0.93 1.05 
              
PDGF receptor alpha NM006206 1.03 1.00 1.06 1.00 1.00 1.00 1.65 1.68 1.62 1.27 1.29 1.24 
              
LTXA4 hydroxylase‡ NM000895 1.00 1.00 1.00 1.00 1.00 1.00 1.68 1.37 1.99 1.08 1.07 1.08 
              
CD14 NM000591 1.00 1.00 1.00 1.00 1.00 1.00 1.58 1.62 1.54 1.14 1.24 1.04 
              
RHMM§ NM012484 1.64 2.28 1.00 1.00 1.00 1.00 1.55 1.71 1.40 1.40 1.34 1.46 
              
MGST2** NM002413 0.55 0.54 0.57 1.21 0.43 2.00 0.59 0.50 0.69 0.95 0.96 0.93 
              
PGE Synthase NM004878 1.10 0.86 1.34 1.00 1.00 1.00 0.58 0.59 0.57 1.15 1.18 1.13 
              
CLF†† NM016326 0.83 0.65 1.00 1.00 1.00 1.00 0.58 0.72 0.44 1.16 1.25 1.08 
              
CXCL3 NM002090 0.77 0.74 0.81 0.97 1.39 0.55 0.56 0.41 0.70 0.82 0.85 0.78 
              
ANPEP‡‡ NM001150 0.75 0.78 0.71 0.85 1 0.69 0.57 0.47 0.68 1.08 1.13 1.04 
              
MGST3§§ NM004528 0.76 0.73 0.78 0.92 0.35 1.48 0.57 0.36 0.78 0.89 0.87 0.91 
              
CCL3 NM002983 0.19 0.20 0.18 1.35 1.00 1.69 0.49 0.52 0.45 0.39 0.42 0.37 
              
PGD Synthase NM014485 0.49 0.44 0.55 0.98 1.00 0.95 0.54 0.28 0.80 0.82 0.85 0.78 
              
CCR9 NM006641 0.95 1.07 0.84 1.47 2.17 0.76 0.47 0.37 0.57 0.93 0.93 0.92 
              
CCL5 NM002985 0.35 0.33 0.38 0.73 0.87 0.59 0.28 0.26 0.29 0.94 1.02 0.86 
              
LeukotrieneC4synthase NM000897 0.32 0.28 0.37 1.30 1.00 1.59 0.28 0.25 0.30 0.69 0.74 0.64 
 

                                                 
* Bold face=Up-regulation>1.5x; Underlined boldface=down-regulation<0.67x 
† MBPH: Major basic protein homolog 
‡ LTXA4 hydroxylase: leukotriene A4 hydroxylase 
§ RHMM: hyaluronan-mediated motility receptor 
** MGST2: microsomal glutathione-S-transfersae2 
†† CLF: chemokine-like factor 
‡‡ ANPEP:alanyl aminopeptidase 
§§ MGST3: microsomal glutathione-S-transfersae2 
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Table 8. Fibrosis-related gene expressions            
         Fold change*           
Gene GeneBank     6 h         24 h     
 Accession  SARS -CoV     CoV- 229E  SARS-CoV    CoV- 229E 

   Number Mean A B Mean A B Mean A B Mean A B 

P4HA1† NM000917 2.12 3.25 1.00 2.07 3.81 0.33 2.93 1.69 4.17 1.17 1.13 1.21 
              
SERPINB2‡ NM002575 1.12 1.25 1.00 1.00 1.00 1.00 2.69 1.29 4.08 1.08 1.02 1.13 
              
MMP28§ NM024302 1.00 1.00 1.00 1.00 1.00 1.00 1.75 1.99 1.51 0.77 0.77 0.78 
              
ADAM19** NM023038 1.00 1.00 1.00 1.00 1.00 1.00 1.65 1.62 1.67 1.07 1.13 1.01 
              
Protein S NM000313 0.58 0.62 0.55 1.00 1.00 1.00 0.66 0.60 0.71 1.24 1.26 1.23 
              
MMP2†† NM004530 0.94 0.88 1.00 1.00 1.00 1.00 0.64 0.55 0.74 0.91 0.88 0.94 
              
Spondin2 NM012445 0.82 0.84 0.79 1.04 0.70 1.38 0.63 0.43 0.82 0.93 0.94 0.93 
              
PLOD3‡‡ NM001084 0.73 0.64 0.81 1.07 0.68 1.46 0.61 0.78 0.44 0.71 0.74 0.67 
              
ADAMTS4§§ NM005099 0.80 0.59 1.00 1.00 1.00 1.00 0.56 0.62 0.50 1.10 1.19 1.01 
              
FGF3*** NM005247 0.92 0.83 1.01 0.97 0.69 1.24 0.50 0.29 0.73 1.01 1.01 1.02 
              
CollagenXVIIIa1 NM030582 0.76 0.75 0.77 0.81 0.89 0.74 0.48 0.31 0.66 0.90 0.93 0.87 
              
TIMP3††† NM000362 1.03 0.93 1.13 1.16 1.26 1.06 0.45 0.26 0.63 1.09 1.13 1.06 
              
CollagenIa2 NM000089 0.57 0.57 0.57 0.98 0.91 1.04 0.40 0.25 0.55 0.97 0.93 1.01 
              
TIMP1‡‡‡ NM003254 0.75 0.69 0.81 0.67 0.82 0.51 0.38 0.15 0.62 0.98 1.04 0.91 

                                                 
* Bold face=Up-regulation>1.5x; Underlined boldface=down-regulation<0.67x 
† P4HA1: proline 2-oxoglutarate 4-dioxygenase 
‡ SERPINB2: plasminogen activator inhibitor type 2 
§ MMP28: matrix metalloproteinase 28 
** ADAM19: A disintegrin and metalloproteinase 19 
†† MMP2: matrix metalloproteinase 2 
‡‡ PLOD3: procollagenlysine-2-oxoglutarate-5-dioxygenase 3 
§§ ADAMTS4: ADAM metalloproteinase with thrombospondin type 1 motif 4 
*** FGF3: fibroblast growth factor 3 
††† TIMP3: tissue inhibitor of metalloproteinase 3 
‡‡‡ TIMP1: tissue inhibitor of metalloproteinase 1 
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Table 9. Hypoxia-related gene expressions           
            Fold change*           
Gene GeneBank     6 h         24 h     
 Accession  SARS -CoV     CoV- 229E  SARS-CoV    CoV- 229E 

   Number Mean A B Mean A B Mean A B Mean A B 

Hypoxia-inducible2 NM013332 1.44 1.41 1.47 1.11 1.91 0.31 1.92 1.17 2.66 1.11 1.11 1.11 
              
Oxidative responsive1 NM005109 1.00 1.00 1.00 0.87 1.00 0.73 1.64 1.83 1.45 1.04 0.97 1.12 
              
Hypoxia up-regulated 1 NM006389 1.52 1.49 1.55 0.78 0.90 0.67 1.65 1.29 2.01 0.99 1.09 0.88 

                                                 
* Bold face=Up-regulation>1.5x; Underlined boldface=down-regulation<0.67x 
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Figure 1 

 

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
90

8.
1 

: P
os

te
d 

17
 A

pr
 2

01
1



 40

Figure 2 
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