It was (not) me: Causal Inference of Agency in goal-directed actions

Experiment

$\longrightarrow-x_{2}$ subjectively experiered

 of the own motor a action X_{e} (fig 3.3).

Parameter Estimation (1)

In order to learn the parameters $\Theta=\left\{P_{P, f}, \sigma_{e}^{2}, \sigma_{v}^{2}, \sigma_{t}^{2}, \sigma_{c}^{2}, \mu_{0}\right\}$ it is necessary to max
imize the likelihood of the (indepent

 ability

Parameter Estimation (2)

Only equations for model 11 are shown here, as the derivations for model 2 are similar. The joint probability of (5) can be calculated by exploiting the factorizatio
described by the graphicical model, giving

With the probability distributions in eqs. (1) and (2) and eqs,
iteria. Results of
(1)
Bayesian Learning
 anymore. One approximation approach is the optimization of the variational bound (Gibbs free energy, $[6]), \mathcal{L}$, commonly done by E steps to aternately optimize for
he variational posterior $q(a g e n c y y)$ and the posterior hyperparameters $(\alpha, \beta, \xi, \lambda)$. Within the exponential family yoniugate priof framework in $[6]$ priors conjugate to the
$P_{\text {evf }} \sim \operatorname{Beta}\left(P_{e x j} \mid a_{s}, b_{s}\right), \quad \sigma_{t}^{2} \sim \Gamma^{-1}\left(\sigma_{t}^{2} \mid a_{t}, b_{t}\right), \quad \sigma_{e}^{2} \sim \Gamma^{-1}\left(\sigma_{e}^{2} \mid a_{e}, b_{e}\right), \quad \sigma_{v}^{2} \sim \Gamma^{-1}\left(\sigma_{v}^{2} \mid a_{v}, b_{v}\right), \quad \mu_{0}, \sigma_{0}^{2} \sim \mathcal{N}-\Gamma^{-1}\left(\mu_{0}, \sigma_{0}^{2} \mid l_{0}, k_{0}, a_{0}, b_{0}\right.$,

Results (1)

10 healhy subjects participated in the experiment. The parameters θ were esti-
mated using maximum likelihood optimizaztion. To compmare the assumption of
and

and single representative subiects. Both models accurately predict the data (Table 1), showinist that small deviations between predicted and actual visual information were attributed to ones own action. This was not the case for large deviationss
whres subiest reied more on interal information
Presented ebew are the esults of representative subjects. The upper row holds

 Altion of the sens
An ligures 4 (4 - -7)

Results (2)
Fig, 4) shows

 internal estimates, i.e.the propricective measurements and the predictionens by the

Disccussion and Conclusion
Subjectivel Experienced Consequence. The tendency to a trtibute observed vi-
sual consequences to one's own action varied from subject to subject. For small deviations buetween real and predicted visial consequences of the own action, in
ternal state estimate and visural feedhack were inter

 imuli more to consequences of their own actions than to external influences.

Acknowledgements

References

