
Predicting What Comes Next

Individuals develop strong expectations of upcoming  
events in environment based on recent experience.

Expectations illuminate brain’s encoding of sequenc es.

E.g., two choice task
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Dual Priming Model (Wilder, Jones, & Mozer, 2009)

Brain predicts what will happen next based on histo ry, 
which is captured in two memory traces.

• First-order trace — YXXXY

• Second-order trace — ARRA

Prediction combines both traces

S(t+1) = w1(t) + w2(t) S(t)

Response time is fast if next stimulus matches pred iction
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Experiment Objectives

• Further test dual priming model

• Use EEG to tease apart stimulus and response primi ng

• Examine long-term learning of environmental statis tics 
via two conditions

positive autocorrelation (2/3 repetition rate)
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negative autocorrelation (1/3 repetition rate)
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Reaction Time Analysis

Lateralized readiness potential (LRP) 
can be used to decompose RT into 
stimulus processing time and 
response execution time.

Model’s two memory traces dissociate into stimulus 
processing and response execution stages.
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predicts human RTs
in the two autocorrelation
conditions.
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Adaptation To Environment

If individuals adapt to long-term structure of envi ronment, 
response identity priming should be stronger in pos itive 
autocorrelation condition than negative.
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Cue Competition And Error-Correction Learning

Inverse adaptation effect is explained by replacing  
Hebbian learning with error-correction learning.

Model prediction as before

S(t+1) = w1(t) + w2(t) S(t)

• First-order weight — YXXXY

∆∆∆∆w1(t) = ϕ ϕ ϕ ϕ (S(t) – S(t))

• Second-order weight — ARRA

∆∆∆∆w2(t) = γ γ γ γ (S(t) – S(t))S(t–1)

Error contributed by w2(t) pushes w1(t+1) in opposite 
direction ⇒ inverse adaptation effect

S(t)1

S(t+1)

w1 w2

error-correction learning
(Rescorla & Wagner, 1972)
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Toward A Normative Account

DBM: Dynamic Belief Model 
Jones and Sieck (2003); Mozer, Kinoshita, and 
Shettel (2007); Yu and Cohen (2009)

Assumes repetition 
probability ( W2) is fixed for 
runs, with occasional 
changepoints ( C)

Predicts repetition or 
alternation ( R)

DBM2: Dynamic Belief 
Mixture Model
Wilder, Jones, and Mozer (2009)

Assumes stimulus ( S) 
distribution is a Bernoulli 
mixture based on identity and 
repetition/atlernation

Predicts stimulus/response 
identity

Dual priming model is a good 
approximation to DBM2

Kalman Filter Model

Instead of changepoint 
dynamics, assumes 
continuous fluctuation in
first- and second-order 
probabilities

Produces produces updates in 
which the two cues ( W1, W2) 
compete to predict stimulus
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Toward A Neural Account

Cascaded diffusion processes

Relative processing speed of
each stage can

• explain alternation bias

• amplify or attenuate first- and second-order effec ts

Tested in second experiment in which we manipulated

• ease of stimulus processing (random dot kinetogram  coherence)

• ease of response processing (one button press vs. sequence)
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