
$\begin{array}{r}\begin{array}{r}\text { Stimulus } \\ \text { 2nd order sequence }\end{array} \\ \hline\end{array}$ 1st order sequence 1st order sequence Response

Dual Priming Model (Wilder, Jones, \& Mozer, 2009) Brain predicts what will happen next based on history, which is captured in two memory traces.

- First-order trace $-\mathbf{Y X X X Y} \quad$, thimplum on trialt Second-order trace - ARRA
$\mathrm{w}_{2}(\mathrm{t})=(1-\gamma) \mathrm{w}_{2}(\mathrm{t}-1)+\frac{\gamma}{2} \mathbf{S}(\mathrm{t}) \mathbf{S}(\mathrm{t}-1)$
Prediction combines both traces
$\hat{S}(t+1)=w_{1}(t)+w_{2}(t) S(t)$
Response time is fast if next stimulus matches prediction

Experiment Objectives
Further test dual priming model
Use EEG to tease apart stimulus and response priming - Examine long-term learning of environmental statistics Examine long-term
via two conditions

Predicting Temporal Patterns In The Environment: Toward Primitive Mechanisms Of Learning, Memory, And Generalization

Matt C. Jones*», Tim Curran ${ }^{\star \star}$, Michael C. Mozer ${ }^{\star+}$, Matthew H. Wilder ${ }^{+}$

Institute of Cognitive Science*, Departments of Psychology* and Computer Science+, University of Colorado

This research was supported bNSF grants SBE-0542013 Temporal Dymamico of Laaning Learning Conter an LSF Science of Learning Catalyst; Marie Banich, Pl).

Lateralized readiness potential (LRP) can be used to decompose RT in stimulus processing time

Model's two memory traces dissociate into stimulus processing and rerp traces dissociate into

Adaptation To Environment
If individuals adapt to long-term structure of environment, response identity priming should be stronger in positive autocorrelation condition than negative.

