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Abstract

After completion of a number of large scale Genome-Wide Association Studies (GWAS), 

there is still a significant amount of trait and disease variance that cannot be explained by 

existing  genetic  variability.  This  review  introduces  new,  Integrative  Network-based 

Association Study (INAS) approaches that aim to minimize the impact  from multiple 

hypothesis testing statistics,  thus allowing the identification of rare variants/alterations 

and epistatic  interactions.  In  particular  we discuss  methods  that  rely  on  the  de  novo 

computational,  experimental,  and  integrative  dissection  of  context  specific  molecular 

interaction networks (or interactomes, for short). We provide several examples of how 

these  approaches  may  be  used  to  tackle  discovery  of  genetic  variants  and  somatic 

alterations causally related to the presentation of specific traits  and diseases. We also 

discuss how more complex systems, including a variety of non-cell-autonomous traits 

and  diseases  will  require  new  multicellular  networks  that  explicitly  represent  short 

distance paracrine and long distance endocrine interactions.

Introduction

Over the last ten years, the genome wide study of both heritable and somatic  human 

variability  has  gone  from  a  theoretical  concept  to  a  broadly  implemented,  practical 

reality,  covering  the  entire  spectrum  of  human  diseases:  from  cancer  to  obesity  to 

neurodegenerative disorders.  While a number of exciting findings have emerged from 

these studies1, the result of such genome wide association studies (GWAS) has been for 

the most part sobering. For instance, although several genes displaying medium to high 

penetrance  within  heritable  traits  have  been  inferred  by  these  approaches  for  certain 

conditions, other diseases are still missing identification of much of the genetic risk2-7, 

and  few  epistatic  interactions  or  low  penetrance  genes  have  been  identified  due  to 

impractical  requirements  for  cohort  sizes8 as  well  as  a  lack  of  methodological 

developments  that  maximize  power  for  such  detections9.  At  the  other  end  of  the 

spectrum, the extensive somatic genomic rearrangements observed in solid tumors10 yield 

such a broad range of candidate alterations that distinguishing ‘driver’ from ‘passenger’ 

alterations is difficult. 

This begs the question of whether, in a post-GWAS era, existing GWAS datasets 
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may still hold a trove of hidden value. It has been suggested, for instance, that GWAS 

data could be more insightful when studied integratively within the context of other data 

modalities. Indeed, a number of previous studies have integrated significant genotype-

phenotype associations with databases of gene annotations, such as the Gene Ontology11, 

MSigDB12,  or  the  Kyoto  Encyclopedia  of  Genes  and  Genomes13.  The  goal  of  these 

studies is to recognize higher-order structure within the data through aggregation of loci 

that encode genes with similar functions or that are in the same pathway.

A particularly important framework for the integration of genomic, metabonomic, 

and proteomic data is provided by the context-specific networks of molecular interactions 

that determine cell behavior. The basic hypothesis is straightforward. Among the entire 

spectrum of  genetic  and  epigenetic  variants,  those  contributing  to  a  specific  trait  or 

disease  must  have  some  broad  coalescent  properties,  allowing  their  effect  to  be 

functionally canalized via the cell regulatory machinery or via the cell-communication 

machinery  that  allows  distinct  cell  types  to  interact.  Thus,  if  a  comprehensive  and 

accurate map of all  intra and inter-cellular molecular interactions were available,  then 

genetic  and  epigenetic  events  implicated  in  a  specific  trait  or  disease  should  cluster 

within sets of closely interacting genes, within the cell’s regulatory network.

Two approaches are then possible. First, if the regulatory networks determining 

the cell  pathophysiological  behavior  were known  a priori,  e.g.  a canonical  cancer  or 

functional pathway, one could systematically reduce the number of statistical tests for 

association between genetic or epigenetic variations and the trait or disease of interest by 

considering only events that form significant clusters within regulatory networks. This is 

because events that are closer in the regulatory topology of the cell are more likely to 

produce related phenotypic effects.  Such a Pathway-Wide Association Study (PWAS) 

strategy14 may  improve  our  ability  to  distinguish  signals  from  background  noise  by 

mitigating the magnitude of the multiple  hypothesis  testing correction.  In most cases, 

unfortunately, the set of molecular interactions or pathways necessary to present a trait or 

a disease-related phenotype are not well characterized at the molecular level. Indeed the 

entire classical notion of relatively linear and interpretable disease pathways may need to 

be revisited in light of the dynamic, multi-scale, and context-specific complexity of gene 

regulatory networks. Thus, a second approach requires the simultaneous reconstruction of 
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both  context-specific  (and  possibly  multi-cell)  gene  regulatory  networks  and  of  the 

genetic and epigenetic events they harbor. We shall call this second strategy Integrative 

Network-based  Association  Studies  or  INAS  and  suggest  that  INAS  will  become 

increasingly dominant as the dynamic and cell-context specific nature of gene regulatory 

networks is further elucidated.

In this perspective, we explore current advances in PWAS and INAS research, the 

natural corollaries of a regulatory-network-oriented view of traits and disease, and future 

directions that are being pursued within the emerging community of Systems Genetics. 

We will explore how networks (and pathway motifs within them) can be reconstructed 

and validated and how they may provide a valuable integrative framework to interpret 

GWAS as well as other genetic and epigenetic variability data.

THIS IS NOT MY BEAUTIFUL PATHWAY 

An increasing  body  of  evidence  suggests  that  canonical  pathways  may  be  woefully 

inadequate  to  represent  and  model  the  complex  interplay  of  signal  transduction, 

transcriptional, post-transcriptional, metabolic, and other regulatory events that ultimately 

determines  cellular  behavior.  Rather,  they  satisfy  our  need  to  interpret  biological 

Figure 1a: FOXM1 and MYB co-regulation network 
from the Human B Cell Interactome15. Red and blue 
represents  gene  over  and  under  expression, 
respectively, in germinal centers. Blue arcs represent 
protein-protein interactions.

Figure 1b.  Visualization  of  the  signalome-
transfactome molecular interaction network in human 
B cells16. 
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phenomena as linear chains of events or other simple pathway models that can be easily 

visually  interpreted.  Unfortunately,  this  is  a  dramatic  oversimplification.  Biological 

processes and their regulatory control are anything but linear and cellular processes are 

determined  by  complex,  multivariate  interactions  that  cannot  be  visually  interpreted. 

Both require the power of computational modeling to yield valuable biological insight. 

For instance, it has been shown that individual transcription factors regulate hundreds to 

thousands of highly cell-context dependent target genes. Indeed, functional specificity is 

achieved opportunistically by combinatorial interactions between multiple transcription 

factors. For instance, while FOXM1 and MYB individually regulate transcription of more 

than  a  thousand  distinct  genes,  the  about  roughly  100  targets  they  co-regulate  are 

exquisitely  specific  to  human B cells  during  germinal  center  formation,  see  Fig.  1a. 

Conversely, those regulated by either one independently have a wide range of functions 

and are not specifically differentially expressed15. Similarly, transcription factor activity 

is modulated by hundreds of signal transduction proteins16, whose availability is again 

context specific. Fig. 1b, for instance, shows a map of all transcription factors and of their 

computationally  inferred  upstream  modulators  in  a  human  B  cell.  Many  of  these 

interactions have been experimentally validated with low false positive rates, indicating 

that such a level of complexity is realistic. Additionally, recent large-scale screens for 

protein-protein  interactions  in  human  cells20 suggest  that  their  number  are  orders  of 

magnitude  larger  than the few thousand captured  in canonical  pathways.  Clearly,  the 

concept of a relatively small number of hierarchical and relatively independent signal 

transduction pathways is not reconcilable  with these observations.  Finally,  adding yet 

another level of complexity,  causal dependencies between the genetic,  regulatory,  and 

functional  layers  provide  insight  into  the  mechanisms  by  which  rare  germline  allele 

variants and somatic alterations may 

impact  the  activity  of  entire 

constellations  of  transcription 

factors,  which  in  turn  regulate 

thousands of genes , see Fig. 2.

As  discussed,  such  intrinsic 

complexity  is  made  even  more 

Figure 2. Genetic subnetwork controlled by  Zfp90 (black 

node) as a central node in the liver transcriptional network. 

This subnetwork was obtained from a full liver expression 

network by identifying all nodes that were descended from 

and within a path length of 3 of the  Zfp90 node. Nodes 

highlighted in green represent genes testing as causal for 

fat mass. 
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daunting by the exquisite cell-context specific nature of the cell regulatory machinery. In 

other words, what we learn in one cellular phenotype may not hold true for another. For 

instance,  it  is well  known that the oncogenic nature of genetic lesions is cell  context 

specific and that depending on the microenvironment signals specific lesions in the same 

cell  may or may not be tumorigenic27.  Indeed, the paracrine and endocrine molecular 

interactions that allow distinct cell types and even whole organs to communicate form the 

highest  order networks in a  living organism that  directly  define its  physiological  and 

pathological states.  Thus, while canonical pathways may provide useful conceptual tools, 

they cannot recapitulate the full complexity of cellular regulation. To be truly predictive 

and informative, cellular networks must be reconstructed  de novo  within each cellular 

phenotype context of interest.  Further, we can distinguish between cell autonomous and 

non cell autonomous processes in thinking about more predictive biological networks. 

Whereas cancer may make a reasonably good cell autonomous system (given when you 

profile cancer you get both stroma and cancer at the same time), common non-cancer 

human diseases like obesity and type II diabetes can result from a failure in multiple 

organ systems including the central nervous system and tissues involved in partitioning 

and disposal of nutrients, and so may be best modeled as a non-cell autonomous system. 

In  fact,  we  have  shown  that  interaction  networks  constructed  between  tissues  like 

hypothalamus  and  adipose  tissue  collected  from  an  experimental  cross  population 

segregating obesity and type II diabetes, may be specific to cross tissue interactions28. 

That is, some subnetworks identified in cross-tissue interaction networks are not visible 

within  single  tissue  networks,  exhibiting  a  degree  of  regulation  that  may go beyond 

simple cell  autonomous systems.  Molecular  networks constructed from heterogeneous 

tissues  have  also  exhibited  extraordinary  context  sensitivity,  with  interactions  among 

different cell types making up a given organ specific to functions associated with that 

organ. In a model for type II diabetes, molecular interactions between different tissues 

were observed to be more abundant than interactions within any given tissue (or cell 

type)29, and insulin signaling in osteoblasts has been shown to be necessary for whole-

body glucose homeostasis30.  These examples highlight that molecular networks capable 

of predicting whole system behavior will require modeling approaches that go beyond 

cellular networks, requiring the explicit representation of interactions at a hierarchy of 
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scales that provide a path to define the molecular interactions that define physiological 

states related to disease phenotypes31.  

REVERSE ENGINEERING CELLULAR NETWORKS 

Just a few years ago, determining and experimentally validating a single kinase substrate 

or transcription factor target required a year or more of bench work. Since regulatory and 

protein-complex  networks  in  eukaryotes  appear  to  be  highly  complex  –hundreds  of 

thousands  of  interactions,  –  context-specific34,  and  dynamic,  how  can  one  possibly 

reconstruct them in sufficient depth and with sufficient accuracy? Indeed, imagine having 

not only to elucidate hundreds of thousands of these interactions but also having to assess 

how they  may  change  and  reorganize  themselves,  under  multivariate  control,  within 

distinct cellular phenotypes and possibly under distinct stimuli.  It is precisely out of this 

necessity  that  the  fields  of  high-throughput  computational  and  experimental  reverse 

engineering  have  blossomed.  This  is  an  important  and timely  effort.  Ultimately,  our 

success  in elucidating  disease related  mechanisms on a  rational,  predictive  basis  will 

depend  on  our  ability  to  use  stochastic  and  kinetic  models  to  accurately  map  cell 

regulatory networks and to predict their response to pathophysiological stimuli.  

On  the  experimental  side,  large-scale,  high-throughput  efforts  have  started  to 

release enormous amounts of raw data over the last five years. These data can be used as 

a  scaffold  for  the  assembly  of  entire  regulatory  and  protein-complex  networks,  thus 

providing insight  into the architecture  of  the  cell  in  terms of  how direct  interactions 

between molecules may allow assembly of protein complexes, transduction of signals, 

and  control  of  the  transcriptional  machinery  of  the  cell37.  For  example,  networks  of 

protein–protein interactions in human cells have been assembled using yeast two-hybrid 

(Y2H) technology or tandem affinity purification coupled with mass spectrometry (TAP–

MS)20.  Similarly,  candidate  transcriptional  targets  of  specific  transcription  factors 

(protein–DNA  interactions)  have  been  mapped  using  the  techniques  of  chromatin 

immunoprecipitation coupled with DNA microchips (ChIP–chip)38  or sequencing (ChIP–

PET)39, DNA adenine methylase identification (DamID)40, or yeast one-hybrid assays41. 

Physical interactions can also be measured in vitro using DNA or protein arrays, which 

have  been  used  to  identify  transcription  factor  binding  sites  and  the  substrates  of 

kinases44.  While  interactions  characterized  by  high-throughput  experimental  methods 
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generally have high false positives and false negative rates and are unlikely to generalize 

to cellular contexts other than the one in which they were ascertained, they nonetheless 

provide an initial if sparse snapshot of regulatory networks, especially when integrated 

with other types of data that can help filter the interactions most appropriate to a given 

context25. By mapping and interpreting changes among snapshots in different contexts we 

can begin to create a more comprehensive scaffold.

Complementing  and  extending  high-throughput  experimental  assays, 

computational  reverse-engineering  algorithms  have  recently  achieved  accuracy  and 

sensitivity comparable with their experimental counterpart, at a fraction of their cost and 

time  requirements.  Computational  methods  for  reverse-engineering  cellular  networks 

were first developed for the study of prokaryotes and lower eukaryotes45-47 and have more 

recently  become  highly  successful  in  reconstructing  the  transcriptional32,  post-

translational,  post-transcriptional50,  metabolic51,  and  protein-complex15 logic  of  human 

cells,  as well as of their dependence on the genetic information encoded in the DNA 

molecule, thus paving the road to the regulatory network based study of human disease. 

Among  recent  approaches,  there  has  been  significant  success  in  using  integrative 

approaches to combine both multiple clues as well as multiple layers of regulation within 

cellular networks. 

Computational methods all rely, in one way or another, on measuring changes in 

distinct molecular moieties (e.g., mRNAs, microRNAs, proteins, etc.) as a response to 

either  endogenous  or  exogenous  perturbations.  The  former  include,  for  instance, 

differences in kinetic constants induced by the genotypic variability between different 

individuals or the different spectrum of genetic lesions associated with a particular tumor 

phenotype54.  The  latter  include  small-molecule60,  RNAi,  and  environmental 

perturbations61,  such as differences in temperature,  nutrients,  or culture serum, among 

many  others.  In  fact,  several  methods  have  been  published  that  specifically  use 

perturbations  to  infer  regulatory  networks  or  to  interrogate  them  to  infer  drug 

sensitivity63, resistance64, and mechanism of action. 

Finally,  meta-network information,  highlighting functional  rather  than physical 

interactions,  is  provided  by  genetic  interactions,  which  chart  the  combinatorial 

relationships among genes in control of a common phenotype. Genetic interactions are 
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identified by comparing the phenotypic effect of disrupting (or overexpressing) a gene 

individually to the effect of disrupting two or more genes in combination65. For example, 

‘synthetic sickness’ (or in the extreme ‘synthetic  lethality’)  is a genetic  interaction in 

which disrupting both genes has a far more deleterious effect than expected from either 

disruption alone. ‘Epistasis’ is a genetic interaction in which one gene disruption masks 

the phenotypic effect of the other.  In model organisms such as yeast, large networks of 

genetic interactions are being measured through systematically-applied combinations of 

gene  knockouts66.  In  higher  eukaryotes  including  worms,  flies,  and  humans,  genetic 

interactions are presently being explored through the technique of combinatorial RNAi65 

and other RNAi-based screening approaches67. Importantly, synthetic-sick and epistatic 

interactions  are  also  prevalent  in  GWAS,  in  which  genotypes  at  multiple  loci  come 

together to exert combinatorial control over the phenotypic trait. Alternatively, epistasis 

can occur when one locus with strong individual linkage to the phenotype is modified by 

the presence of another ‘genetic modifier’.  In the absence of prior information, however, 

de-novo identification of epistatic  interactions in GWAS is greatly  limited by lack of 

statistical power, although emerging methods are beginning to address this limitation. 

EXAMPLES OF PWAS AND NBAS APPROACHES

In the following, we discuss several approaches that have been successful in identifying 

genes that are critically involved in the presentation of a phenotype, due to either genetic 

alteration  or  functional  dysregulation.  This  list,  rather  than  being  comprehensive,  is 

intended to illustrate different approaches in both PWAS and NBAS

Canonical Pathway Analysis:  Canonical  pathways are compact  representations of the 

knowledge accumulated in a large number of manuscripts and supported by experimental 

assays  about  the  relationship  between  multiple  proteins,  usually  in  the  context  of  a 

specific biological process, e.g. embryogenesis, apoptosis, or tumorigenesis. While the 

knowledge represented  within  canonical  pathways  is  likely  incomplete  and may lack 

context specificity, it does represent an important collection of molecular interactions that 

have previously resulted in the elucidation of key biological mechanisms.

For instance, integration of NF-κB pathway and targets analysis with GWAS data 
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from a  large  collection  of  Diffuse  Large  B  Cell  Lymphoma  (DLBCL)  samples  was 

successful  in  the  identification  of  this  gene  as  the  key  integrator  of  a  spectrum  of 

upstream genetic  alterations  characterizing  the  more  aggressive  ABC subtype  of  the 

disease from its GCB counterpart71. These included several genes in the BCR and other 

signal  transduction  pathways,  such  as  CARD11,  A20,  TRAF2,  TRAF5,  TAK1,  and 

RANK, among others. Surprisingly, while Nf-κB itself was not genetically altered in the 

ABC subtype, it was shown to constitute a key non-oncogene addiction for ABC-DLBCL 

cells.

There have also been attempts to create more informative pathways by automated 

data-mining of literature data, using machine-learning approaches. These more complex 

and non human-interpretable  networks  have  been used to  cluster  information  coming 

from disease-related human variability data, such as for instance in the study of genetic 

predisposition to several human diseases72. 

Integrative genomics:  There is already a rich literature on methods for using cellular 

networks, including protein-protein and protein-DNA interaction networks, to interpret 

gene expression profiles, with the goal of identifying network “hot spots” or “expression-

activated modules”. Expression-activated modules are sets of proteins enriched for both 

interaction and coexpression across several conditions; they provide an important means 

of distilling the thousands of interactions present in a typical molecular network to arrive 

at  a  smaller  number  of  discrete  modules  of  activity.   As  recent  examples,  DEGAS 

(DysrEgulated  Gene  set  Analysis  via  Subnetworks)  and  IDEA  (Interactome 

Dysregulation Enrichment Analysis) represent methods for identifying connected gene 

subnetworks  significantly  enriched for  genes  that  are  dysregulated  in  specimens  of  a 

disease or following a chemical perturbation. In Parkinson's disease, DEGAS found novel 

evidence for involvement of mRNA splicing, cell proliferation, and the 14-3-3 complex 

in the disease progression, while in B cell lymphoma, IDEA identified genetic alterations 

in Chronic Lympocytic Leukemia and Follicular Lymphoma.

In parallel, a set of related methods have been developed for integration of protein 

networks with the results of genome wide linkage and association studies.  For instance, 

Lage et al.77 searched for protein complexes whose genes were associated with similar 
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phenotypes, using a human protein–protein interaction network integrating both human 

interactions  and  interactions  from  model  organisms.  Proteins  were  ranked  by  the 

phenotype  similarity  score  of  their  associated  diseases  and  of  those  of  their  direct 

network  neighbors.  In  dmGWAS78,  dense  subnetworks  of  protein-protein  interactions 

were  tested  for  the  enrichment  of  genes  harboring  low  p-value  SNPs  from  GWAS 

studies.   Compared  with  other  pathway-based  approaches,  the  method  introduces 

flexibility  in  defining  a  gene  set  through  use  of  local  protein-protein  interaction 

information. 

A similar approach integrated 

a  large-scale  human  protein-protein 

interaction  network  and  a  set  of 

genes linked to ataxia to demonstrate 

a potential gain in statistical power37. 

Further  integrative  genomics 

attempts to boost statistical power to 

identify  genetic  interactions  in 

GWAS included the use of pairs of 

SNP markers whose combined state 

was associated with the phenotype79. 

A bi-clustering method was used to 

group  SNP-SNP  interactions  into 

interactions between larger genomic 

regions,  i.e.,  reinforced  by 

interactions  involving  multiple 

SNPs, which were then projected on 

a  protein-protein  interaction  network,  see  Fig.  3.   The  analysis  showed  that  genetic 

interactions uncovered by GWAS were strongly enriched within and between complexes 

of protein-protein interaction.  A novel discovery from this GWAS-based method was 

that  the  INO80  chromatin  remodeling  complex  has  functional  links  to  transcription 

elongation  via  RNA polymerase  II  and vacuolar  protein  degradation.  Finally,  related 

approaches were developed for using prior knowledge to infer epistatic interactions from 

Figure  3. Genetic  networks  extracted  GWAS  elucidate 

pathway architecture. (A) A global map of the top GWAS 

genetic  interactions  between  protein  interaction 

complexes.  Each node represents  a protein complex and 

each interaction represents a significant number of genetic 

interactions. Node sizes are proportional to the number of 

proteins in the complex. (B,C) Two specific examples of 

protein  complexes  spanned by  dense  bundles  of  genetic 

interactions mined from the GWAS data. 
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GWAS data38.

 Genetical Genomics: Another class of integrative genomics approaches used to reverse 

engineer  regulatory  networks  is  systems  genetics,  a  broad  class  of  approaches  that 

integrate naturally occurring genetic variation with large-scale molecular phenotypic and 

higher order phenotype data (e.g., clinical trait data) to infer causal relationships among 

genes and between genes and phenotypes of interest.   Variations in DNA can directly 

affect protein function, transcript structure (alternative splicing), transcription levels of 

sense  strand  of  genes,  antisense  transcription  of  genes,  non-coding  transcript  levels, 

among other molecular phenotypes.  These “cis” changes in gene activity can in turn 

affect  the  states  of  many  other  genes  (in  “trans”),  so  that  they  can  be  viewed  as 

perturbations in the same way as artificial perturbations (e.g.,  gene knockouts, siRNA 

knockdown, transgenics, and chemical perturbations) commonly employed in biology to 

establish causal relationships.  However, naturally occurring DNA variation is a more 

relevant perturbation source given common forms of human disease are caused by such 

variation, and so understanding causality in the context of such variation is perhaps the 

most relevant context in understanding disease, how best to assess disease risk, how best 

to track disease progression, and how best to treat disease. 

It  is  now well  established that  variations  in DNA can be used to infer causal 

relationships  among  molecular  phenotypes  and  reconstruct  entire  gene  networks  by 

systematically  assessing  the  impact  of  DNA  variation  on  gene  expression,  protein 

expression,  metabolite  expression,  and the interactions  between proteins,  proteins  and 

DNA, and proteins and metabolites.  The construction of large-scale gene networks can 

elucidate  subnetworks  comprised  of  highly  interconnected  sets  of  genes  driven  by 

common  genetic  factors  that  in  turn  associate  with  disease  (or  other  phenotypes  of 

interest), without depending on known pathway information (i.e., completely data driven; 

objective).  As an example, Zhong et al.  identified a subnetwork from a large-scale gene 

network constructed from islets isolated from a population of mice segregating a type 2 

diabetes phenotype, where genetic loci in this population associated with t2d were very 

strongly enriched for associating with genes in this network.  The integration of these 

data were then used to show that over half of the genes in this population supported as 
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causal for t2d were located in this single subnetwork.  SNPs in human populations that 

were associated with the genes comprising this mouse-derived t2d network were then 

observed to be greater than 8 times enriched for SNPs that associate with t2d in GWAS 

(one of the most striking pathway enrichments published to date for a common human 

disease).  Interestingly, no similar enrichments were observed in using known pathways 

defined in the GO and KEGG databases (Zhong et al. AJHG paper). 

Along  similar  lines,  module  networks  approaches45 were  extended  to  identify 

genetic  determinants  of  genetic  module differential  regulation80 as  well  as to  identify 

genetic alteration causally related to the presentation of tumor phenotypes81. 

Regulatory Network Analysis: Causal regulatory networks have also been successful in 

the inference of disease-related genes that have been experimentally validated. In these 

networks, similar to networks linking genetic variants with regulation,  interactions are 

directed (i.e.  causal)  rather than undirected as in protein-protein interaction networks. 

Thus, if the regulatory network is sufficiently accurate and comprehensive one may use it 

to traverse back the regulatory event to identify the regulators that are most likely to have 

produced the specific genetic profile (e.g. gene expression signature) within a specific 

disease-related  phenotype.  This  method  was  originally  proposed  for  networks 

reconstructed from DNA binding signatures of transcription factors, without experimental 

validation82.  More  recently,  these  Master  Regulator  genes  were  inferred  and 

experimentally validated both in disease, for human high-grade glioma54, and in normal 

physiologic processes, for formation of the germinal center15. For instance, in high-grade 

glioma, the MARINa (Master Regulator Inference algorithm) was used to identify the 

key  transcription  factors  that  implement  the  gene  expression  signature  of  the 

mesenchymal subtype of the disease, associated with the worst prognosis. The analysis 

identified  two genes,  C/EBP (including  the  C/EBPβ and δ  subunits)  and STAT3,  as 

master regulators. Ectopic expression of both genes, but not of each gene in isolation, 

was sufficient to reprogram neural stem cells along an aberrant mesenchymal lineage. 

Co-silencing in high-grade glioma lines, but not silencing of either gene in isolation, was 

sufficient  to  abrogate  the  mesenchymal  phenotype  and  tumorigenesis  in  vivo.  Direct 

exploration of GWAS data from the TCGA study on Glioblastoma in the context of genes 
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upstream of  these  master  regulators  has  identified  genetic  alterations  responsible  for 

virtually  100%  of  the  most  aggressive  high-grade  glioma,  including  the  focal 

amplification of C/EBPδ gene in ~20% of the mesenchymal cases. 

Diseaseome Approaches: Generalizing from pathways, sets of related genes, transcripts, 

and proteins  are  well  known to follow prescribed programs in the context  of human 

diseases.  Thus, another approach for the analysis of data from genome-wide association 

studies is by exploiting prior biological knowledge on the similarities or dissimilarities 

across diseases.

For  example,  while  there  is  widespread  belief  that  the  immune  system  is 

implicated in a variety of pathophysiological  phenotypes, suggesting that autoimmune 

disorders may share causal genetic variants with them, there are also notable differences 

across  these  disorders.   For  example,  the  G  allele  of  the  rs2076530  polymorphism 

BTNL2 (butyrophilin-like 2, a MHC class II associated gene) is more frequent among 

patients with Type 1 Diabetes and Rheumatoid Arthritis than in healthy controls, while 

the A allele was more frequent in patients with Systemic Lupus Erythematosus than in 

healthy individuals83.  One way to exploit these disease-relations is to study the results of 

multiple GWAS with each other, to find SNPs commonly predisposing to the entire set of 

diseases,  or  more  interestingly  find  SNPs  predisposing  to  some  in  the  set,  while 

significantly protecting against the others.  Such “toggleSNPs” could be used to shed 

light on the molecular details in actual human disease incidence, a key advantage over 

disease studies in animal models84.

Phenotype canalization: In many diseases but especially in cancer, there is evidence of 

an apparent paradox. While the number of distinct genetic and epigenetic alterations, both 

germline and somatic, associated with the etiology of the disease is generally large, the 

number of distinct molecular subtypes arising from the analysis of molecular profile data 

is significantly smaller. For instance, in high-grade glioma, dozens of genetic alterations 

have been reported85 and yet there are only three or four distinct molecular subtypes. If 

both observations  are  true,  then one has to  conjecture  the existence of an integrative 

logic,  usually  at  the  transcriptional  regulation  level,  that  canalizes  signals  from  the 
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complex spectrum of genetic and epigenetic alterations into a few molecular phenotypes, 

representing aberrant yet highly stable developmental states of the cell. The existence of 

this integrative logic has been elucidated in several tumors, including lymphomas71 and 

high-grade gliomas54. These observations suggest yet another approach to NBAS, based 

on the identification of the regulatory modules that control the disease subtype signatures 

followed by interrogations of pathways directly upstream of these modules as well as by 

association of genetic alterations in the tissue sample with the activity of these modules, 

for instance using the mutual information, , between the presence of a specific 

alteration Ax and module activity M. These types of approaches may significantly reduce 

the number of hypotheses that may need to be tested and increase the specificity of the 

molecular link from alteration→cellular-phenotype  to alteration→molecular-phenotype, 

the latter being far less prone to assessment errors.

A NEED TO REVIEW HOW WE WORK TOGETHER

The  power  to  build  better  maps  of  disease  in  the  post-GWAS era  clearly  leverages 

emerging “omics” technologies that will benefit from collecting data from large samples 

of patients over multiple  intervals of time. Most of the historic studies that drive our 

current understanding of diseases have been performed by single institutions often with 

the primary goal of taking data to build models that are then communicated as the results 

and conclusions  conveyed by citable  scientific  articles.  This  current  process does not 

assume that most data might be more useful if it could be accessed by others to build 

further models and hypotheses, beyond those envisioned by the original scientist. In fact, 

the absence of a culture of appropriate data sharing in the life and biomedical sciences is 

perhaps  the  single  greatest  impediment  to  the  rapid  development  of  the  integrative 

techniques  described above. For instance,  GWAS data will  no longer be sufficient  in 

isolation to understand the complexity of disease and how best to predict and treat it, but 

instead will need to be paired with additional molecular profile data as well as with data 

that  may be used to  dissect  the underlying  regulatory  model  for  the  specific  cellular 

context of interest.

Even though genomic data is robust and may be successfully used across a wide 

range of analyses, most investigators involved in clinical genomic studies hold the data 
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hostage for fear of missing out on the opportunity to extract the last bit of publishable 

value from it. The net result is that 80% of data is never published and more importantly 

never shared. Although journals and funding agencies have started to request that data be 

made publically accessible, investigators rarely provide their data in a format that is easy 

to access by others to reproduce their original ideas, or even better to explore new models 

or  new  hypotheses  not  originally  contemplated.  Even  more  problematic,  the  review 

process may delay release of a critical dataset by years. This should be seen as akin to 

living in a 21st century scientific “hunter-gatherer” society.

For  clinical  scientists  and  network  biologists  to  evolve  toward  a  more  generative 

scientific society, where open access to useful data and models is the rule, both technical 

and cultural changes are necessary. Most data is not annotated in ways that allow others 

to  easily  integrate  it  or  even  interpret  it.  Yet  other  fields  such  as  electronics  and 

economics live in a world of fully shareable standards for data exchange. This integration 

will  thus  require  new  standards  and  annotations  that  have  become  a  part  of  other 

scientific disciplines such as astronomers, physicists and climatologists who work with 

large datasets. The cultural barriers to evolving data sharing involve re-examining current 

reward structures for career advancement and peer recognition that are based on being a 

first or last author, and the need to own intellectual property around biologic insights. We 

need to transition to a workplace where scientists are rewarded for their insights, such as 

the proposing of new disease models, so that they can occur much earlier in the process 

of working with clinical/genomic data sets.

One example  of  piloting  the  advantages  of  sharing data,  models,  and tools  is 

called “The Federation”. In the summer of 2010 five groups: Sage Bionetworks, the Butte 

lab, the Califano lab, the Ideker lab, and the Schadt lab decided to test the mechanics of 

data  sharing  by  jointly  working  on projects  in  aging,  diabetes,  and cancer  based  on 

predefined rules  on data  access  and data  sharing.  Federation  rules  imply that  anyone 

interested in data,  tools,  and models produced by any of the five groups would have 

access  to  these  pooled  resources  and  would  implicitly  respect  publication  rights  by 

including data producers in their  manuscripts  and by notifying each other of pending 

manuscripts using this data. More importantly, it was set up so that disease models would 
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be built by teams dynamically formed for the projects in an environment usually only 

seen  for  “open  source”  software  projects.  Multiple  early  experiments  such  as  The 

Federation will be needed to aid in the development of the type of governance rules and 

processes required to facilitate the sharing in a laboratory environment needed to build 

the generative disease maps possible in the NBAS and PWAS worlds that follow the 

large national scale effort in GWAS.

Conclusions

Regulatory networks are emerging as powerful integrative frameworks to understand and 

interpret the role of genetics and epigenetics in disease predisposition and etiology. By 

providing the backbone of molecular interactions through which signals are transduced 

and  gene  expression  is  regulated,  they  dramatically  limit  the  search  space  of  allele 

variants and alterations that can be causally linked to the presentation of a phenotype. In 

addition,  by  providing  accurate  regulatory  models  of  the  cellular  machinery  that 

integrates  signals that  are  dysregulated  in  disease,  they yield valuable  hypotheses  for 

diagnostic and prognostic biomarkers, for therapeutic targets, and for the understanding 

of context-specific synthetic lethality. 

For regulatory networks to yield their full potential, however, we must understand 

their variability across cellular context, their dependence on the genetic and epigenetic 

layer,  and their  dynamics  over  time.  The latter  is  particularly  important  for  diseases 

where the underlying cellular pathophysiology cannot be considered to be close to steady 

state, such as metabolic and neurological diseases. 

Surprisingly,  even  rough  regulatory  models  that  are  largely  inaccurate  and 

incomplete are starting to show significant value in dissecting the genetics of disease. 

Thus, we expect that as these models progress and become better able to deal with the 

dynamic,  cell  context-specific  nature  of  biological  process  regulation,  they  will 

dramatically increase their ability to yield key insight into both normal cell physiology 

and its dysregulation in disease. We herald network reverse-engineering and interrogation 

as one of the most critical challenges of quantitative biology. 
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