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ABSTRACT 

 

Background: A growing number of studies reports that chemotherapy may impair brain functions 

inducing cognitive changes which can persist in a subset of cancer survivors.  

Aims: To investigate the neural basis of the chemotherapy-induced neurobehavioral changes by 

means of metabolic imaging and voxel-based statistical parametric mapping analyses. 

Methods: We studied the resting brain [18]FDG-PET/CT images of 43 adult cancer patients with 

solid (n=12, 28%) or hematologic malignancies (n=31, 72%); 12 patients were studied prior the 

chemotherapy (No chemotherapy) while treated patients were divided in two matched subgroups: 

Early High (<9 months after chemotherapy, >6 chemotherapy cycles, n=10), and Late Low (>9 

months after chemotherapy, <6 chemotherapy cycles, n=21).  

Findings: Compared to No chemotherapy, the Early High subgroup showed a significant bilateral 

(p<0.05) lower regional cerebral metabolic rate of glucose metabolism in both the prefrontal 

cortices and white matter, cerebellum, posterior medial cortices and limbic regions. A similar 

pattern emerged in the Early High versus Low Late comparison,  while no significant result was 

obtained in the Low Late versus No chemotherapy comparison. The number of cycles and the post-

chemotherapy time were negatively and positively correlated, respectively, with a set of these same 

brain regions.  

Interpretation: The present study shows that chemotherapy induces significant transient changes in 

the glucose metabolism of multiple cerebral cortical and white matter regions with a prevailing 

involvement of the prefrontal cortex. The severity of these changes are significantly related with the 

number of chemotherapy cycles and a subset of brain regions seems to present longer lasting, but 

more subtle, metabolic changes.  

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
63

7.
1 

: P
os

te
d 

5 
F

eb
 2

01
1



 3 

INTRODUCTION 

 

Background  

Cognitive changes in cancer patients after adjuvant chemotherapy (CHT) treatments have been 

reported since the mid 1970s, with systematic research starting in the early 1990s. Since then most, 

but not all [12, 22, 28], neuropsychological studies on cancer survivors having received adjuvant 

CHT have reported cognitive impairments in multiple domains such as executive functions, 

learning, memory (especially working memory, while the retrieval of remote memories seems to be 

spared), attention, verbal fluency and speed of information processing [3, 4, 17, 36, 42, 49, 52]. 

Both prior meta-analyses [14, 21] and, more recently, longitudinal studies [9, 20, 41, 50] have 

consistently shown that the CHT-induced cognitive impairments are small to moderate, involving 

mostly the cognitive functions subserved by the frontal lobes.  

Data are however less consistent regarding to the evolution in time of these changes and to the 

possible dependency on CHT dose. Findings emerging from controlled longitudinal studies [9, 15, 

50, 51] indicate that the cognitive changes tend to fully resolve over time while cross-sectional 

studies suggest that they may persist for many years following completion of treatment at least in a 

significant subset of patients [2, 8]. The CHT dose-effects relationships among cancer survivors has 

been mostly investigated by comparing the neurobehavioral performance among breast cancer 

patients receiving high or standard dose adjuvant CHT. High-dose therapy was found to elevate the 

risk of cognitive dysfunctions in some [41, 49] but not in all studies [43]. In a study performed on a 

mixed population of long-term breast cancer and lymphoma survivors [2] a significant, but low, 

negative correlation was found between the number of cycles and the cognitive performance, 

indicating that more cycles of CHT was associated with a greater cognitive disturbance.  

Recent structural Magnetic Resonance Imaging studies have provided consistent evidence that CHT 

can induce both gray and white matter changes which can however be, at least partially, reversible. 

A CHT-related reduction in the gray matter volume [19] of structures significantly correlated with 
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indices of attention/concentration and/or visual memory (such as the prefrontal, cingulate and 

parahippocampal cortex), and a loss of white matter integrity [6, 11, 16, 19, 47] has been shown by 

comparing CHT treated with untreated cancer patients. The reversibility, at least partial, of these 

changes was suggested by longitudinal examination of cancer patients finding a significant increase 

in white matter volume from 6 months to 1 year after CHT [7] and no more gray and white matter 

volume difference 3 years after completion of CHT [19]. Two neuroimaging studies suggest, 

however, that CHT can induce long lasting adverse effects on the brain functions. Using [15]O 

water PET in an activation short-term recall task, modulation of cerebral blood flow in specific 

regions of frontal cortex and cerebellum was significantly altered, compared to a control sample, in 

breast cancer women investigated 5-10 years after receiving CHT [45]. An fMRI memory task 

performed on a sample of breast cancer women recruited 3-5 years after completion of CHT [24] 

showed a lower prefrontal cortex activation and an altered cerebellar recruitment compared to 

controls. 

In sum, neither behavioural nor neuroimaging data are conclusive about the relationships between 

CHT dosage/number of cycles and cognitive impairments, as well as about the reversibility of the 

effects. Besides, little is known about the mechanisms leading these changes and how the brain tries 

to adaptively react. The recruitment of compensatory mechanisms aimed at overcoming the CHT-

induced structural and/or functional impairments has been suggested by a fMRI in pairs of 60-year-

old identical twins discordant for breast cancer [16]. While performing an identical working 

memory task with increasing levels of difficulty, the CHT-treated twin showed, compared to the 

other, a greater spatial extent of activation in the fronto-parietal dorsal attentional network. 

The mechanisms for CHT-induced cognitive changes are largely unknown; however, several 

candidate mechanisms have been proposed, including blood brain barrier alterations, cytokines and 

hormonal deregulation, as well as a direct neurotoxicity of chemotherapic agents [1].  
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Aim of the Study 

The present study used brain resting state [18]FDG-PET, combined with neuropsycological tests to 

assess relations between regional cerebral metabolic glucose rate (rCMRglc), cognitive 

performances and oncologic/therapeutic variables. 
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MATERIALS AND METHODS   

 

Patients  

Cancer patients were enrolled among those who were planned to undergo a whole-body [18]FDG 

PET on a clinically routine basis for cancer staging or to monitor the disease after treatment.  

Patients were considered eligible if they did not have symptoms of neurological and psychiatric 

disorders and medications that could potentially alter neuropsychological performances and/or brain 

metabolism. Eligible patients gave written informed consent to participate in the project, which was 

approved by the ethical committee of San Giovanni Battista University Hospital, Turin.  

Of the 43 enrolled patients 31 (72%) were prior treated with systemic CHT and 12 patients (28%) 

were not treated (No CHT). Their demographic and clinical characteristics are shown in Table 1. 

The chemotherapy protocols used are presented in Supplementary Table 1. The number of cycles of 

CHT ranged from 2 to 16 cycles (39%, n=12, <5 cycles; 48%, n=15, 5-10 cycles and 13%, n=4, >10 

cycles). The time elapsed from the end of the treatment ranged from 1 week to 51 months (29%, 

n=9, <1 month; 35%, n=11, 2-9 months; 13%, n=4, 12-24 months; 16%, n=5, 2-3 years and 6 %, 

n=2, >3 years). 

Since both animal [29, 40] and human studies suggest that CHT dose [41, 49] and number of CHT 

cycles [2], as well as the time elapsed since completion of the treatment [9, 15, 50, 51] can 

modulate the CHT effects on neurobehavior and brain metabolism, we divided the CHT group in 

two subgroups on the basis of both number of cycles (C) and post-CHT time (T). The first subgroup 

(subgroup EH), comprised 10 cancer patients observed after a delay <9 months (Early) and received 

more than 6 CHT cycles (High). The second subgroup (subgroup LL) comprised the remaining 21 

cancer patients, observed after a delay >9 months (Late) or received less than 6 CHT cycles (Low). 

The characteristics of subgroups are shown in Table 1. The two CHT subgroups were balanced for 

age, gender and education level between themselves and also compared to the No CHT subgroup. 

They showed a significant difference (p=0.006) in the red blood cell count (RBC), the EH subgroup 
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showing a greater degree of anemia. This latter finding was somewhat expected since anemia 

frequently occur in cancer patients and its incidence and severity increases with CHT [34]. Finally, 

within the Late cancer patients, we selected, for further subanalysis, a subgroup (LH) comprising 

only those patients (n=9) investigated after a delay >9 months (Late) and received ≥6 CHT cycles 

(High). 

Neuropsychological examination 

The assessment  battery of psychological and neuropsychological tests included: Mini Mental State 

Examination (MMSE), Trail Making Test B (TMT-B), Phonemic Fluency, Short Story Test, 

Hospital Anxiety and Depression Scale (HADS), Montgomery-Asberg Depression Rating Scale 

(MADRS), State and Trait Anxiety Inventory (STAI).  

PET Scanning  

In a quiet waiting room participants, lying in a supine position, were asked to refrain from moving 

and instructed “to keep their eyes closed, to not engage in any structured mental activity such as 

counting, rehearsing, etc., and to avoid to fall asleep”. They were then blindfolded and ear plugged 

and received intravenously about 4.5–5.5 MBq kg−1 of 2-deoxy-2 [18F]fluoro-D-glucose (FDG). 

About 30 minutes later PET/CT scan was performed by a Philips Gemini scanner (Philips Medical 

System, Cleveland, Ohio, USA). The brain scan acquisition time was of 20 minutes. Reconstructed 

brain images had a dimension of 128 x 128 x 90 voxels (2 x 2 x 2 mm
3
). After the planned whole 

body FDG PET/CT examination was performed, the coronal, sagittal and transverse data sets were 

reconstructed using an 3D iterative technique (row action maximum likelihood algorithm, RAMLA-

3D) and corrected with single
 
scatter simulation (SSS). 

Statistical parametric mapping analysis 

[18]FDG-PET brain images were preprocessed and voxel-based statistical analyses were performed 

using SPM2 (www.fil.ion.ucl.ac.uk/spm) running on MATLAB 6.5 software. All images were non 

linearly spatially normalized into the Montreal Neurological Institute (MNI) space and smoothed 

with an isotropic Gaussian kernel with 12 mm FWHM. Confounding effects of global activities 
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differences were removed by normalizing the count of each voxel to the mean count of a 

standardized pontine region of interest (ROI) in order to avoid a biased normalization [5].  

The hypothesis of a negative linear association between the rCMRglc and C was tested on the 

whole CHT group (n=21) on a voxel-by-voxel basis using the SPM2 single-subject covariate only 

option. Age, T (months) and hormonal status (see supplementary materials for its definition) were 

entered in the general linear model as nuisance factors.  

The hypothesis of a positive linear association between the rCMRglc and the time elapsed since the 

end of the treatment was tested with the same SPM option with age, gender and C entered as 

nuisance factors.  

Between subgroups (EH versus LL; EH versus No CHT; LL versus No CHT; No CHT versus CHT) 

comparison analyses were performed using the ANCOVA model using age, hormonal status and 

education level as covariate of no interest.  

Results were thresholded at p<0.005 uncorrected for multiple comparisons, with an extent threshold 

cluster extent (Ke) of 20 voxels. Statistical inferences were performed by applying the Random 

Field Theory. Clusters with p≤0.05 corrected for multiple comparisons were considered as 

significant. 

For subanalyses, we examined the correlations between neuropsychological scores and regional 

glucose metabolism of the voxels of interest. Patient characteristic data were analyzed with 

Kruskal-Wallis test for continuous variables and χ2 test for categorical variables. Pearson’s 

correlations was used to analyze rCMRglc data resulting from SMP2 analysis. SPSS 13.0 was used 

for statistical analysis, p<0.05 was considered significant. To compare correlations between 

subgroups in our sample we used the Fisher’s Z-test.  

Supplementary Material 

The supplementary material contains a complete section of Material and Methods with  all the steps 

of patients selection, all the neuropsychological tests descriptions, the detailed PET scanning and 

statistical procedures used. 
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RESULTS  

 

Correlation between T and rCMRglc 

A large cluster (9798 voxels) involving bilaterally the pregenual anterior cingulate cortex, the 

anterior thalamic nuclei, most of the right PFC, including the inferior (BA44, BA9), middle (BA9, 

BA46), superior (BA10) and medial frontal (Supplementary Motor Area, BA6) gyri as well as the 

left middle cingulate cortex showed a significant (Z=4.15) positive correlation between T and the 

rCMRglc (see Table 3, Supplementary Tables 2, 3 and Figure 1a, 2a).  

Correlation between C and rCMRglc 

A significant (Z=3.66) large cluster (4555 voxels) encompassing both the prefrontal cortices (PFC) 

and the left temporal pole was negatively correlated with C (see Table 3, Supplementary Tables 2, 3 

and Figure 1b, 2a). The PFC involvement included the right dorsolateral PFC (DLPFC, BA9 and 

BA46), the right ventrolateral PFC (BA44), both the frontal poles (right BA10 and left BA11) and 

the left medial PFC (BA10). As it can be appreciated in the Figure 1, both the temporal poles were 

involved (BA38) even if the significant threshold was reached, as reported on the table, only on the 

left side. The body of Corpus Callosum and the right side of the posterior limb of the internal 

capsule were included in this cluster.  

Comparison between No CHT (n=12) and CHT (n=31) subgroups 

No significant clusters survived in a whole brain analysis thresholded at p<0.005. However, by 

applying a small volume correction (SVC), a left parahippocampus cluster (177 voxel) showed a 

significant (Z=3.13, p=0.039 corrected for multiple comparison) rCMRglc decrease in patients 

having received CHT compared to non treated ones (Table 3). The SVC was performed since 

several previous animal studies [44, 53] indicate this region as one of the most vulnerable to the 

adverse effects on brain functions induced by the CHT (see Table 3, Supplementary Table 4, 5 and 

Figure 3a).  

Comparison between No CHT (n=12) and EH (n=10) subgroups 
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Compared to No CHT, the EH patients showed (see Table 3, Supplementary Table 4, 5 and Figure 

1c, 2b) a bilateral lower rCMRglc in the DLPFC (Z=4.42), including the middle and medial frontal 

(BA9, BA10, BA46), in the precentral gyri (BA4), in the cunei (BA19) and in cerebellum; right-

sided involvement was shown in the precuneus (BA7), in the lingual and in the parahippocampal 

gyri (BA19); left-sided involvement in the superior temporal gyrus (BA38) and in the posterior 

(BA30) and middle anterior cingulate cortex (BA32). Both the anterior and posterior left corona 

radiata and the right anterior corona radiata were included in this cluster. 

Comparison between No CHT (n=12) and LL (n=21) subgroups 

No suprathreshold cluster was revealed. 

Comparison between EH (n=10) and LL (n=21) subgroups 

Compared to LL, the EH patients showed a lower rCMRglc in two main large clusters involving the 

right and medial occipital cortex, the right temporal cortex and the prefrontal cortex bilaterally (see 

Table 3, Supplementary Table 4, 5 and Figures 1d, 2b). The most significant posterior cluster 

(Z=3.61) included, on the right hemisphere, the fusiform and middle occipital gyri (BA19), the 

inferior (BA37) and medial (BA39, BA19) temporal gyri, the precuneus (BA7) and, medially, both 

cunei (BA19). The anterior prefrontal cluster included the middle frontal gyrus (BA11) on both 

sides, the right middle and medial frontal gyri (BA47, BA10), the right superior frontal gyrus 

(BA10, BA11), the left medial frontal gyrus (BA25) an the right superior temporal gyrus (BA38). 

Neuropsychological scores and rCMRglc 

We did not find any significant correlation between rCMRglc and neuropsychological or 

psychological variables in the total sample, in the CHT and in the No CHT groups. In the CHT 

subgroups no cluster survived to a correction for multiple comparison.  

We did not find any significant difference in the neuropsychological performances of our subgroups 

(Table 2). 

Comparison between EH (n=10) and LH (n=9) subgroups 
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This comparison was performed by applying at p=0.0058 to have the same threshold t=2.90 as in 

the above EH<LL comparison (see Table 3, Supplementary Table 4, 5 and Figure 1e). Compared to 

LH, the EH subgroup showed a lower rCMRglc in both the DLPFC, including the middle (BA10) 

and superior frontal gyri (BA10), and in the middle cingulate cortex (BA32). The CMRglc was 

moreover asymmetrically reduced in the left pregenual cingulate cortex (BA32) and the right 

superior frontal gyrus (BA9). Only the left cluster (DLPFC, MCC, pgACC) survived the correction 

for multiple comparisons. 

Comparison between No CHT (n=12) and LH (n=9) subgroups 

No suprathreshold cluster was revealed. 
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DISCUSSION 

 

Amongst the several competing heuristic models of CHT-induced brain damage (see Figure 3c, 3d, 

3e) which can be proposed through the analysis of the available neuropsychological and 

neuroimaging data, conclusive or convincing evidence favouring the one or the other has still not 

been reached. To address these questions we performed a set of correlation analysis exploring the 

relationships between the rCMRglc and T or C. We then performed a set of comparisons intended 

to confirm and strengthen the former analysis. The correlation analysis between the rCMRglc and T 

uncovered a set of brain areas (including the right middle, inferior and superior frontal gyri along 

with other midline and subcortical brain regions, as well as white matter regions including the body 

of corpus callosum and the posterior limb of internal capsule) partially reproduced and confirmed 

by the comparison of the two subgroups of CHT-treated patients (EH<LL, see Table 3, 

Supplementary Table 4, 5 and Figure 1c, 2b). Moreover, partially overlapping results were obtained 

in the comparison of the EH subgroup with the No CHT subgroup. Interestingly, the peak of 

greatest rCMRglc decrease found in this latter comparison in the right middle frontal gyrus (see 

Table 3, Supplementary Table 4, 5 and Figure 1c, 2b) was very close (x, y, z = 38, 62, 6) to that 

reported (x, y, z = 30, 64, 4) by a previous cited structural study [19] in a comparison between 

treated and non treated cancer patients. Our data therefore strongly support a reversible model of 

CHT-induced brain damage (see Figure 3d, 3e) suggesting that the chemotherapy-induced cerebral 

glucose metabolic impairment could be transient and rapidly (~1 year) reversible over the time, 

paralleling or even preceding the structural recovery of the CHT targeted brain regions. These 

results are in agreement with findings emerging from controlled longitudinal neuropsychological 

studies [9, 15, 50, 51] indicating that the cognitive changes tend to fully or partially resolve over 1 

year. These assumptions on the reversibility of brain metabolic impairment must however be taken 

with caution. Obviously in a cross-sectional study as the present work, the real dynamics of the 

metabolic changes triggered by the CHT cannot be adequately studied. Furthermore, we cannot 
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 13 

exclude that a subset of brain regions did not recover or recover only partially over the time as 

suggested by some neuropsychological [2, 8] and neuroimaging [24, 45] studies. Candidate regions 

which could have, in the present study, a longer lasting metabolic impairment are the precentral gyri 

(BA4), a set of midline cortical structures such as left medial frontal gyrus (BA9, BA6) and the 

right posterior cingulate cortex (BA30), as well as the left middle frontal gyrus (BA46, BA8) and 

the cerebellum. These regions indeed showed a lower rCMRglc in the EH<No CHT comparison 

(see Table 3, Supplementary Table 4 and Figure 1c, 2b), but not in the EH<LL and in EH<LH 

comparisons (see Table 3, Supplementary Table 4 and Figure 1d, 1e, 2b) and did not show any 

significant positive correlation with T (see Table 3, Supplementary Tables 2, 3 and Figure 1a, 2a). 

Since both the No CHT>LL and No CHT>LH comparisons did not give significant results we 

suppose that these areas only partially recovered over time. With respect to the cerebellum, the 

partial recovery hypothesis suggested by our data, is consistent with previous [O-15] water PET 

[45] and fMRI studies [24].  

A further region showing an incomplete recovery over time was the left parahippocampus, which 

showed in the comparison of non treated with the whole group of treated patients (No CHT>CHT: 

see Table 3, Supplementary Table 4, 5 and Figure 3) a significantly lower rCMRglc. A subanalysis 

evidenced that, compared to non treated patients, the rCMRglc of this region was significantly 

(p=0.006) lower in patients investigated at a mean of more than 1 year after the completion of CHT 

and having received a C comparable to the EH subgroup (LH subgroup, see Figure 3b).  

To gain more insights on the mechanisms underlying these chemotherapy-related adverse effects we 

looked for a relationship between C and the cerebral glucose metabolism. The voxel-based 

correlation analysis evidenced a set of brain areas (including the right superior, middle, inferior 

frontal gyri, the left middle frontal and superior temporal gyri) showing a significant negative 

association between C and the rCMRglc, which partially overlapped those uncovered by both the 

comparative and correlation analysis described above. These results therefore support a model in 

which the CHT-induced brain damage appears to be related to C (Figure 3d), in agreement with 
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previous neuropsychological data [2] reporting a negative relationship between C and the cognitive 

performance.     

 The pattern of CHT-induced brain metabolic impairment, markedly characterized by a 

disproportionate involvement of frontal lobes, is reminiscent of that seen in ageing [10, 23, 32, 48] 

and some age-related neurodegenerative processes [46]. However, a salient finding of our study was 

that the wide frontal metabolic impairment evidenced in the EH subgroup was not associated with 

any significant cognitive impairment (Table 2). Such mismatch between metabolic and cognitive 

data is well known in the field of Alzheimer’s disease (AD) FDG-PET studies. In cognitively 

normal subjects at genetic risk of developing AD, such as apolipoprotein E (ApoE) E4 carriers, 

such studies showed a reduced glucose metabolism in the same regions of the brain as in patients 

with probable AD [37-39] such as the retrosplenial, the parietal and the frontal cortex. Moreover 

they evidenced that in these cognitively normal subjects this reduced glucose metabolism could be 

associated with perceived loss of memory ability [13] and subjective cognitive complaints [31]. 

This could be relevant since, as reported by previous studies, cancer survivors treated with CHT 

often self-report higher levels of cognitive problems but, as was seen in this work, perform 

normally on neuropsychological tests [16, 35]. Furthermore, recent functional and structural studies 

have shown that cognitively healthy people with a maternal family history of late onset AD (FHm), 

have a rCMRglc reductions [30] and less gray matter volume [18] in AD-vulnerable brain regions, 

including the frontal cortex, compared to subjects with no parental history of AD. Interestingly, 

compared to subjects with a negative history those with a FHm showed the lowest CMRglc in the 

right superior frontal gyrus at coordinates (x, y, z = 34, 61, 4), similar to those found by us (x, y, z = 

38, 62, 6). Moreover, FHm subjects compared to subjects with a paternal familial history of late 

onset AD showed a lower CMRglc in the superior frontal gyrus at coordinates (x, y, z = 30, 63, 1). 

Hypometabolism in FHm is thought to be due to a combination of dysfunction of mitochondria [54] 

(maternally inherited), increased oxidative stress, and possible mitochondrial DNA mutations [25], 

leading to CMRglc changes in vulnerable brain regions [33]. Many of these processes have been 
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proposed as candidate mechanisms mediating the adverse effects of CHT on brain functions [1]. 

Oxidative DNA damage and decreased mitochondrial function are well established processes 

underlying brain aging changes [27],  findings leading Maccormick [26] to hypothesize that adverse 

effects associated with CHT might be related to acceleration of the ageing process. Inspired by this 

hypothesis we performed a post-hoc analysis looking for differences in the correlations between age 

and the rCMRglc of regions showing a lower glucose metabolism in the EH<No CHT subgroups 

comparison. This analysis showed that, compared to non treated patients, the CMRglc of the medial 

posterior cortices in the EH patients had a more significant and negative association with age 

(Fisher’s z test: p<0.05, see Supplementary Table 6 and Figure 4a, 4b), meaning that older subjects 

undergo an higher than expected CHT-induced metabolic impairment. Taken together, these 

findings lead us to speculate that CHT induces aging-like and/or potentiates aging-related processes 

such as oxidative stress, and decreased mitochondrial function which could lead to the rCMRglc 

reduction evidenced, in patients receiving CHT.   

The supplementary materials contains an extended in depth discussion and the study limitations. 

Conclusions 

This study evidenced significant chemotherapy-related changes of glucose metabolism in multiple 

brain regions involving both the cortex and the white matter, with a prevailing involvement of the 

frontal lobes. Such metabolic changes appear to be positively related in many of these same areas 

with the time elapsed from the end of the treatment suggesting that they are transient and rapidly 

reversible. A subset of these areas undergoes a metabolic impairment proportional to the number of 

CHT cycles while a subset, including the cerebellum and midline cortical regions, present evidences 

of partial or delayed metabolic recovery. 
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TABLES 

 

Table 1. Clinical and demographic characteristics 

 

Subgroups 
No CHT  

(n=12) A 

CHT  

(n=31) B 

EH  

(n=10) C 

LL  

(n=21) D 

LH  

(n=9) E 
Sign. 

Age (y) 57.5(47-67.8) 47(36-59) 41.5(28-54.8) 48(41.5-61) 56(45-67.5) NS 

Gender (m/f) 9/3 16/15 5/5 11/10 3/6 NS
§ 

Education (y) 13(8-18.8) 13(8-15) 13(8-16.5) 11(8-14) 8(8-13) NS 

BMI (kg/m
2
) 24.5(23.3-28) 26(22-30) 26(20.8-31.8) 26(22.5-29) 28(23-29.5) NS 

Solid Tumors [n(%)] 6(50) 6(19.4) 0(0) 6(28.6) 3(33.3) 

Lymphoma [n(%)] 6(50) 25(80.6) 10(100) 15(71.4) 6(67) 

HL 1(8.3) 6(19.4) 2(20) 4(19) 2(22) 

NHL  5(41.7) 19(61.3) 8(80) 11(52.4) 4(44) 

NS
§ 

Age at onset (y) 57.5(47-65.5) 45(35-58) 40.5(27.8-53.8) 45(37-59.5) 51(35-62) 
A>B* 
A>C* 

Disease Duration (mos) 1.5(1-4.3) 15(9-33) 11.5(8.3-25) 16(8.5-45.5) 34(29-63.5) 

A>B* 
A>C* 
A>D* 
C>E* 

Surgery [n (%)] 1(8.3) 6(19.4) 1(10) 5(23.8) 4(44.4) NS
§ 

RT  [n (%)] 0(0) 14(45.2) 5(100) 9(42.9) 4(44.4) 
A>C*

§ 

A>D*
§ 

Post RT time (mos)  4(3-35.3) 4(3-4.5) 7(3-47) 30.5(0-76.5) NS 

Cycles Number   6(4-8) 8(6.8-10.5) 4(3-6.5) 7(6-8.5) C>D* 

Post CHT time (mos)  5(1-23) 4(3-4.5) 12(1-27) 26(20.5-33) C>E* 

T/C ratio  0.8(0.3-3) 0.4(0.1-0.6) 2(0.5-3.4) 3.5(2.8-4.7) 
C<D* 
C<E* 

Corticosteroids [n (%)] 0(0) 24(77) 9(90) 15(71) 6(66.6) NS
§ 

WBC (10
3
/mL)  8.2(5.2-9.7) 4.8(3.8-8) 6.2(3.8-8.7) 4.7(3.7-8.8) 4.8(4-6.9) NS 

RBC (10
6
/mL)  4.8(4.7-5.3) 4.3(3.4-4.7) 3.4(2.9-3.9) 4.3(4.1-4.9) 4.6(4.1-5) 

A>B* 
A>C* 
C<D* 
C<E* 

Hb (g/dL)  14(13.5-15.2) 12.8(10.2-13.9) 10.2(9.9-14.2) 12.9(12.4-13.9) 13.8(12.9-14) NS 

Hb <12 g/dL [n (%)] 0 (0) 10 (32) 6(60) 4(19) 1(11) A>B* 

s-Glucose (mg/dL) 103(93-109) 99(86-111) 96(88-114) 99(81-112) 106(84-116) 
A>B*

§ 

C<D*
§ 

 Cholesterol (mg/dL)  202(146-225) 197(172-215) 199(161-219) 197(180-216) 213(168-245) NS 

Values represent, when not otherwise specified,  median (interquartile range).  

Significance (Kruskal Wallis test): NS = not significant, *p<0.05. §Chi Square Test.  

BMI = Body Mass Index; CHT = Chemoterapy; C= number of CHT cycles; f = females; Hb = Hemoglobin;  

HL = Hodgkin’s Lymphoma; m = males; mos = months; NHL = non  Hodgkin’s Lymphoma; RBC = Red blood cells;  

RT = Radiation Therapy; T = time post CHT; WBC = white blood cells; y = years.  

EH = Early High CHT subgroup; LL = Late Low CHT subgroup; LH = Late High CHT subgroup. 
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Table 2. Neurobehavioral characteristics 

 

Subgroups 
No CHT  

(n=12) A 

CHT  

(n=31) B 

EH  

(n=10) C 

LL  

(n=21) D 

LH  

(n=9) E Sign. 

MMSE 
<23.8 n(%) 

27.4(26.2-28.3) 
0(0) 

26.6(25.6-27.6) 
2(6) 

26.7(25.6-27.8) 
1(10) 

26.5(25.5-27.5) 
1(5) 

27.2(25.4-27.5) 
1(10) 

NS 

Verbal Fluency 
<17.5 n(%) 

34.2(31.7-39.4) 
0(0) 

30.7(24.2-41.6) 
3(10) 

29.1(22-36) 
1(10) 

30.8(25.1-42.4) 
2(10) 

30.8(27.4-42.8) 
0(0) 

NS 

Short Story  
<7.25 n(%) 

11.9(7.8-12.8) 
3(25) 

11.7(8.9-12.9) 
2(6) 

12.3(9.6-12.9) 
0(0) 

11.6(8.9-13.3) 
2(10) 

11.7(10-14.1) 
0(0) 

NS 

TMT-B (n=42) 
>283’’ n(%) 

86(63.8-116.8) 
0(0) 

80(53.3-128.8) 
0(0) 

116(73-140.3) 
0(0) 

78(43-109.8) 
0(0) 

78(25.3-82.3) 
0(0) 

NS 

MADRS 
>11 n(%) 

9.5(5.3-12.8) 
5(41) 

6.0(3-15) 
11(35) 

11.5(3.8-17.5) 
5(50) 

5.0(3-13.5) 
6(28) 

4.0(1-6) 
0(0) 

NS 

HADS-D (n=40) 
>8 n(%) 

5(4-8) 
3(25) 

5(1-9) 
8(26) 

5(0.8-8.8) 
2(20) 

4(1-9) 
6(28) 

3(0-8.5) 
2(22) 

NS 

HADS-A (n=40) 
>8 n(%) 

5(2-8) 
6(50) 

5(2-8) 
8(26) 

5(3.8-7.8) 
3(30) 

5(1-8) 
5(24) 

1(0.5-7) 
2(22) 

NS 

HADS-T (n=40) 
>13 n(%)  

11(7-14) 
8(66) 

10(5-17) 
7(23) 

11(5.8-17.3) 
3(30) 

9(3-18) 
4(19) 

8(0.5-13.5) 
2(22) 

NS 

STAI-Y1 (n=37) 
>50 n(%) 

48(37.3-53) 
4(33) 

41(36-53.5) 
8(26) 

41(37.5-52) 
2(20) 

41(35.2-54.5) 
6(28) 

41(38-46.3) 
1(11) 

NS 

STAI-Y2 (n=37) 
>50 n(%) 

44(34-51) 
3(25) 

44(34-58.8) 
9(29) 

44(32.8-48.3) 
3(30) 

45(36.3-63.3) 
6(28) 

43(35.5-60.8) 
2(22) 

NS 

Significance (Kruskal Wallis test): NS = not significant. 

HADS-D = Hospital Anxiety and Depression Scale: Depression; HADS-A = Hospital Anxiety and Depression Scale: 

Anxiety; HADS-T = Hospital Anxiety and Depression Scale: Total; MADRS = Montgomery-Asberg Depression Rating 

Scale; MMSE = Mini Mental State Examination; STAI = State Trait Anxiety Inventory; TMT = Trail Making Test.  

CHT = Chemotherapy; EH = Early High CHT subgroup; LL = Late Low CHT subgroup; LH = Late High CHT subgroup. 

Other annotations as in Table 1. 
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Table 3. Voxel-based analysis 

 

Talairach Coordinates 
Cerebral Region BA p corr. Ke z 

x y z 

Between subgroups comparison analysis (n=43) No CHT (n=12) > CHT (n=31) 

(L) Parahippocampus (Uncus)  28 0.039 (SVC) 177 3.13 -24 4 -29 

Between subgroups comparison analysis (n=22) No CHT (n=12) > EH (n=10) 

(R) Middle Frontal Gyrus 10 <0.001 7622 4.42 38 62 6 

(R) Superior Frontal Gyrus 10   3.92 34 57 14 

(L) Cuneus 19 <0.001 3657 4.41 -2 -82 37 

(R) Cuneus 19   4.25 8 -78 33 

(L) Medial Frontal Gyrus (SMA) 6 <0.001 6644 4.15 -6 -7 52 

(L) Middle Frontal  Gyrus 46   3.82 -48 34 26 

(L) Cerebellum Tonsilla - 0.001 2493 3.61 -36 -51 -40 

(L) Cerebellum Tuber -   3.06 -32 -64 -29 

(R) Cerebellum Tonsilla - 0.017 1447 3.50 36 -41 -35 

(R) Cerebellum Culmen -   3.07 42 -42 -23 

(R) Anterior Corona Radiata WM 3.56 12 34 -8 3.56 12 

(L) Anterior Corona Radiata WM 3.02 -14 34 -12 3.02 -14 

Between subgroups comparison analysis (n=33) No CHT (n=12) > LL (n=21) 

No suprathreshold cluster        

Between subgroups comparison analysis (n=19) No CHT (n=10) > LH (n=9) 

No suprathreshold cluster        

Between subgroups comparison analysis (n=31) EH (n=10) < LL (n=21) 

(R) Fusiform Gyrus 19 0.025 2714 3.61 30 -65 -9 

(R) Middle Occipital Gyrus 19     3.29 44 -80 2 

(R) Middle Frontal  Gyrus 10 0.001 5263 3.43 42 52 20 

(L) Middle Frontal  Gyrus 11     3.22 -22 30 -13 

Between subgroups comparison analysis (n=31) EH (n=10) < LH (n=9) 

(R) Superior Frontal Gyrus 10 0.012** 1074 3.94 40 59 16 

(R) Superior Frontal Gyrus 9    3.24 38 44 29 

(L) Middle Frontal  Gyrus 10 0.046 1557 3.86 -40 53 18 

(L) Anterior MCC 32     3.02 -6 18 38 

Negative correlations with the number of CHT cycles in the CHT subgroup (n=31) 

(L) Superior Temporal Gyrus 38 0.002 4555 3.66 -46 16 -19 

(R) Middle Frontal Gyrus 9   3.37 48 6 37 

Positive correlations with the post-CHT time in the CHT subgroup (n=31) 

(L)  Subgenual ACC 25 <0.001 9798 4.15 -2 9 -9 

(R) Middle Frontal Gyrus 46   3.50 55 30 24 

(L)  Body of Corpus Callosum WM <0.001 9798 3.67 10 7 27 

(R) Posterior Limb of Internal Capsule WM   2.93 18 -3 15 

Height threshold p = 0.005 uncorrected for multiple correlations; p corr. = p corrected for multiple correlations;  

SVC = Small Volume Correction.  

ACC = Anterior Cingulate Cortex; BA = Brodmann Area; CHT = chemotherapy; Ke = cluster extent; L = left; R = 

right; SMA = Supplementary Motor Area; WM = White Matter.  

EH = Early High CHT subgroup; LL = Late Low CHT subgroup; LH = Late High CHT subgroup.  

  

 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
63

7.
1 

: P
os

te
d 

5 
F

eb
 2

01
1



 26 

FIGURES 

 

 

Figure 1. Patterns of CHT-induced rCMRglc changes  
 

 
 

T-maps obtained by correlations (a-b) and comparisons (c-d) analysis overlaid on canonical 3-D brain templates. Red 

coloured maps show positive correlations (a) or comparisons (d); blue coloured maps show negative correlations (b) or 

comparisons (c). CHT = chemotherapy; EH = Early High subgroup; LL = Late Low subgroup. As it can be appreciated, 

at the cortical level a significant overlap exist among the four voxel-based analysis results. 
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Figure 2. Patterns of CHT-induced rCMRglc changes in midline cerebral structures 

 

 
 

T-maps obtained by correlations (a) and comparisons (b) analysis overlaid on sagittal brain slices of a canonical brain 

template. Colour bars show the t values. Other annotations as in figure 1. 

The time-related metabolic recovery in the anterior cingulate cortex, in the Corpus Callosum and in the thalamic 

Anterior Nuclei are clearly appreciable in the top (a). The midline cortical brain regions showing a lower rCMRglc in 

the EH subgroup compared to LL are evidenced in the bottom (b). 
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Figure 3. Comparison between the No CHT (n=12) and the CHT (n=21) groups 
 

 
 

The whole group of patients having received chemotherapy compared to those non treated shows a significant lower 

rCMRglc in the left parahippocampus (a). Subanalysis indicates (b) the significant rCMRglc difference between the two 

subgroups (EH and LH) of CHT patients and the lack of a complete metabolic recovery in the LH subgroup (one 

asterisk=p<0.05, two asterisks=p<0.01). These findings are consistent with a time-dependent (d-e) against a non time-

dependent (c, irreversible impairment) heuristic model  of CHT-induced rCMRglc changes. The models take in account 

moreover the possible cumulative neurotoxic effects of the CHT cycles (asterisk). 
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Figure 4. Ageing in the No CHT (n=12) and EH (n=10) groups 

 

 
 

Compared to non treated patients, the rCMRglc of the medial posterior cortices showed in the EH patients a more 

significant and negative association with age (a, b). Blue dots  = females, green dots = males. 
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SUPPLEMENTARY MATERIALS 

 

EXTENDED MATERIALS AND METHODS   

 

Patients  

Cancer patients were enrolled among those who were planned to undergo a whole-body [18]FDG 

PET on a clinically routine basis for cancer staging or to monitor the disease after treatment. The 

week before the scan session patients received a call from a researcher who initially described the 

aim and the procedure of the study and performed a brief standardized medical and neurobehavioral 

screening focused on signs and symptoms of neurological and psychiatric disorders and medications 

that could potentially alter neuropsychological performances and/or brain metabolism. On the day 

of the scan eligible patients completed session the medical assessment and gave written informed 

consent to participate in the project, which was approved by the ethical committee of our institution.  

Cancer patients were excluded from the study if they had signs or symptoms of CNS disease, had 

received intrathecal therapy or CNS radiation therapy, had an history of neurologic disorder, 

including head injury with loss of consciousness or had an axis I psychiatric disorder (Diagnostic 

and Statistical Manual of Mental Disorders, Fourth Edition) such as drug abuse, mood, anxiety and 

psychotic-spectrum disorders.  

Of the 45 eligible cancer patients who agreed to participate 2 were excluded once the FDG-PET 

scan was acquired since their brains showed metabolic patterns (clinically silent marked inter-

hemispheric asymmetry, ventricular dilatation) that made them not suitable for the subsequent 

voxel-based analysis. Of the remaining 43 patients 31 (72%) were prior treated with systemic CHT 

and 12 patients (28%) were not treated (No CHT). Their demographic and clinical characteristics 

are shown in Table 1. Within the CHT
 
patients the majority (n=19, 61%) had a non-Hodgkin’s 

lymphoma (NHL), 6 (19%) a Hodgkin’s lymphoma (HL) and 6 (19%) a solid tumor (sarcoma, n=1; 

breast cancer, n=3; bladder cancer, n=1; rectal cancer=1). Among them, 15 patients had not been 
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previously treated with surgery and radiation therapy (RT), 2 underwent surgery alone, 10 RT alone 

and 4 both surgery and RT. Within the 12 No CHT patients, 5 (41%) had a NHL, 1 (8%) a HL and 

6 (50%) a solid tumor (bladder cancer, n=1; breast cancer=2; lung cancer, n=1; rectal cancer=2). Of 

these patients, only 1 underwent surgery while no one was subjected to radiotherapy. 

The ABVD [Adriamycin (doxorubicin), bleomycin, vinblastine and dacarbazine] chemotherapy 

protocol (one of the most common CHT regimens for treating Hodgkin's Lymphoma) was used in 

19% (n=6) of patients. The CHOP protocol [cyclophosphamide, hydroxydaunorubicin, Oncovin 

(vincristine), and prednisone/prednisolone] (widely employed in the treatment of NHL) was used in 

39% (n=12) of patients, in all but one case associated with the monoclonal antibody rituximab, this 

latter being used in other combinations in more than 55% (n=17) of all cases. Corticosteroid therapy 

was used in about 77% (n=24) of patients. Other, less frequently used regimens, are presented in 

Supplementary Table 1. The number of cycles of CHT ranged from 2 to 16 cycles with 39% (n=12) 

of treatments consisting of less than 5 cycles, 48% (n=15) of less than 10 cycles and only 13% 

(n=4) in more than 10 cycles. The time elapsed from the end of the treatment ranged from 1 week 

(recorded as 0 months) to more than 4 years (51 months) with 29% (n=9) of cases observed after 1 

month or less since the end of the treatment, 35% (n=11) between 2 and 9 months, 13% (n=4) 

between 12 months and two years, 16% (n=5) between 2 and 3 years and only 6 % (n=2) observed 

after more than 3 years from the end of the treatment. 

Since both animal [32, 48] and human studies suggest that CHT dose [49, 56] and number of CHT 

cycles [3], as well as the time elapsed since completion of the treatment [13, 19, 59, 61] can 

modulate the CHT effects on neurobehavior and brain metabolism, we divided the CHT group in 

two subgroups on the basis of both number of cycles (C) and post-CHT time (T). We reasoned that 

patients having received an higher number of cycles and investigated in a shorter delay from the end 

of the CHT could have undergone greater neurobehavioral and metabolic disturbances if compared 

to patients after a longer delay or having received a lower number of cycles. To maximize the 

chance of finding these anticorrelated effects (that is a negative association between C and the 
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rCMRglc and a positive association between the T and the rCMRglc) we defined two cut-off scores 

(a C and a T cut-off), dividing the two subgroups on the basis of the following criteria: number of 

patients match  for age, gender and education level, maximal C, T and T/C ratio differences 

between subgroups. We empirically found that, within our CHT group, the most parsimonious cut-

offs satisfying these criteria were T=9 months and C=6 cycles. The first subgroup (subgroup EH), 

comprised 10 cancer patients observed after a delay <9 months (Early) and having received more 

than 6 CHT cycles (High). The second subgroup (subgroup LL) comprised the remaining 21 cancer 

patients, observed after a delay >9 months (Late) or having received less than 6 CHT cycles (Low). 

The characteristics of subgroups are shown in Table 1. The two CHT subgroups were balanced for 

age, gender and education level between themselves and also compared to the No CHT subgroup. 

They showed a significant difference (p=0.006) in the red blood cell count (RBC), the EH subgroup 

showing a greater degree of anemia. This latter finding was somewhat expected since anemia 

frequently occurs in cancer patients and its incidence and severity increases with CHT [42]. Finally, 

within the Late cancer patients we select, for further subanalysis, a subgroup (LH) comprising only 

those patients (n=9) investigated after a delay >9 months (Late) and received ≥6 CHT cycles (High) 

which were matched for age, gender and education level with all others subgroups (see Table 1 E), 

matched with the EH subgroup for number of cycles, and significantly different, compared to EH 

subgroup, with respect to post-CHT time (p<0.0001) and T/C ratio (p<0.0001). 

Neuropsychological examination 

The assessment battery of psychological and neuropsychological tests included: Mini Mental State 

Examination (MMSE), Trail Making Test B (TMT-B), Phonemic Fluency, Short Story Test, 

Hospital Anxiety and Depression Scale (HADS), Montgomery-Asberg Depression Rating Scale 

(MADRS), State and Trait Anxiety Inventory (STAI). The Italian standardization of the tests was 

used when available [54]. The neuropsychological battery was administered in a session of half an 

hour, following a standard protocol, in a quiet, private room in the Hospital before the PET scan. 

The psychological self-report scales were filled by the subjects after the neuropsychological 
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assessment. Mini Mental State Examination (MMSE), used to assess the presence of general 

cognitive impairment [21], is a brief 30-point questionnaire test commonly used to screen for 

dementia. It samples various functions including time and place orientation, repeating lists of 

words, arithmetic such as the serial sevens, language use and comprehension, copy of a geometric 

drawing and basic motor skills. MMSE was corrected for age and education and the cut-off for 

normality was 23.8. The Trail Making Test part B, used to test the visual sustained and alternating 

attention [22, 47], requires a subject to connect the dots of 25 consecutive targets on a sheet of 

paper in which the targets are letters and numbers that the subject alternates in crescent order (1, A, 

2, B, 3, C, etc.). The goal of the subject is to finish the test as quickly as possible. The Trail Making 

Test is age and education corrected and the cut-off for normality was 283’’. Phonemic Fluency, 

used to evaluate the retrieval of words with an uncommon searching trategy [41], requires to name 

as many F-, A- and S- beginning words as possible in consecutive 1-min time periods, exclusive of 

perseverations or out-of-category words. The score is the total number of words retrieved. This test 

was age and education corrected and the cut-off for normality was 17.35. Short Stories Test 

evaluates verbal logical memory with the immediate and delayed free recall of verbal information 

[41]. The examiner reads to the examinee a text containing 27 elements to remind. After the reading 

an immediate recall is administered, then a delayed recall after 10’. The score is the sum of the 

reminded logical concepts in the two trials, the maximum score per trial is 8, the concepts are 

scored on the basis of their relevance in the story. We used 7.25 as cut-off for normality for the total 

score. HADS [63] Italian version [14] was used to evaluate the psychological distress in a non-

psychiatric setting. It is composed of two self-report scales of 14 items, 7 regarding anxiety and 7 

regarding depression. The two scores can be calculated separately with a cut-off of 8 to detect the 

presence of anxiety and depression [9]. By calculating the sum of the two scales, it is possible to 

identify the presence of disturbance in adaptation (cut-off 13). No psychological distress is 

evidenced if the sum of the two scores totals <13. MADRS is a 10-item scale of depression severity 

that is based on patient report and clinical observation. This measure was designed to be sensitive to 
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symptom change in clinical trials [34]. Scores on the MADRS range from 0 to 60, with higher 

scores indicating greater severity of depressive symptomatology, we used a cut-off of 11 to identify 

a patient as depressed or not [64, 65]. The STAI consists of two self-evaluation scales designed to 

assess state-anxiety (form Y1) and trait-anxiety (form Y2) separately. The state-anxiety scale 

evaluates a transitory state-anxiety in which unpleasant feelings, tension, and intensity vary 

according to the situation. The trait-anxiety scale assesses a longer-term personality characteristic. 

Each scale contains 20 items, each of which is rated from 1 to 4. Clinically significant levels of 

state-anxiety or trait-anxiety were defined as scores ≥50 on the state-anxiety or trait-anxiety sub 

scale [52, 53].  

PET Scanning  

In a quiet waiting room participants, lying in a supine position, were asked to refrain from moving 

and instructed “to keep their eyes closed, to not engage in any structured mental activity such as 

counting, rehearsing, etc., and to avoid to fall asleep”. They were then blindfolded and ear plugged 

and received intravenously about 4.5–5.5 MBq kg
−1

 of 2-deoxy-2 [18F]fluoro-D-glucose (FDG). 

Subjects were previously asked to fast for at least 6 h before PET. About 30 minutes later PET/CT 

scan was performed by a Philips Gemini scanner (Phillips Medical System, Cleveland, Ohio, USA). 

The Gemini comprises a Philips MX 8000D dual-slice CT scanner with a gadolinium 

oxyorthosilicate GSO-based Allegro PET scanner. The PET scanner has an axial field of view 

(FOV) of 18 cm, a transaxial FOV of 30 cm, a full width at half maximum (FWHM) axial 

resolution of 5 mm and a transaxial resolution of 4.8 mm. A low-powered CT scan (120 kV, tube 

current 30 mA) is performed to correct attenuation. To minimize head motion, the subject’s head 

was placed in a thermoplastic head holder mounted on the scanner table. The brain scan acquisition 

time was of 20 minutes. Reconstructed DICOM (Digital Imaging and Communications in 

Medicine) brain images with a dimension of 128 x 128 x 90 voxel (voxel dimension = 2 x 2 x 2 

mm
3
) were converted in Analyze format using MRIConvert, a free software application 

(http://lcni.uoregon.edu/~jolinda/MRIConvert). After the planned whole body FDG PET/CT 
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examination was performed, the coronal, sagittal and transverse data sets were reconstructed using 

an 3D iterative technique (row action maximum likelihood algorithm, RAMLA-3D) and corrected 

with single
 
scatter simulation (SSS). 

Statistical parametric mapping analysis 

[18]FDG PET brain images were preprocessed and voxel-based statistical analyses were performed 

using SPM2 (www.fil.ion.ucl.ac.uk/spm) running on MATLAB 6.5 software. All images were non 

linearly spatially normalized into the Montreal Neurological Institute (MNI) space and smoothed 

with an isotropic Gaussian kernel with 12 mm FWHM. Voxel size was set at 2 x 2 x 2 mm
3
. 

Confounding effects of global activities differences were removed by normalizing the count of each 

voxel to the mean count of a standardized pontine region of interest (ROI) in order to avoid a biased 

normalization [5]. The pons was chosen on the basis of its relative stability an late involvement in 

neurodegenerative diseases such as Alzheimer disease [33], a finding leading other investigators to 

use it as reference region [11, 37, 57]. The ROI was a rectangular multislice region (x/x’=-8/8, 

y/y’=-32/-24, z/z’=-44/-34; MNI space) sampling 144 voxels on the central pontine region and 

manually drawn on the PET SPM template using the MRIcro application 

(http://www.sph.sc.edu/comd /rorden/mricro.html). Both ROI coordinates and dimensions were 

chosen to avoid low-counts background voxel sampling and to minimize the random noise effect. A 

previous careful visual inspection of the pons was conducted on each spatially normalized but non 

smoothed brain scan in order to detect metabolic changes which could alter the ROI measure. The 

same ROI was then employed on each spatial normalized and smoothed brain image and the pons 

mean voxel values (
−

pY ) sampled. Using the image calculation tool of SPM, the scaled voxel values 

( 'Y ) of each brain was set at )/('
−

= pYYY  were Y  was the non scaled (“raw”) voxel value. Only 

voxel values greater than 80% of the whole brain mean MRglc were included in the analysis. Two 

correlation analysis and four between groups comparisons were performed. The hypothesis of a 

negative linear associations between the regional cerebral metabolic rate of glucose (rCMRglc) and 
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the number of CHT cycles was tested on the whole CHT group (n=21) on a voxel-by-voxel basis 

using the SPM2 single-subject covariate only option. Age, post-CHT time (months) and a 

categorical variable that we label “hormonal status” [defined as follows: pre menopause females 

(n=5) =0, females with drug-induced amenorrhea (n=3) =1; post menopause females (n=7) =2; 

males (n=16) =3] were entered in the general linear model as nuisance factors. This variable was 

used as confounding factor in order to minimize the recognized confounding multiple effects of 

estrogens on brain functions [8, 25]. The hypothesis of a positive linear associations between the 

rCMRglc and the time elapsed since the end of the treatment was tested with the same SPM option 

with age, gender and number of CHT cycles entered as nuisance factors. comparisons  between 

subgroups (EH versus LL; EH versus No CHT; LL versus No CHT; No CHT versus CHT) were 

performed using the ANCOVA model using age, hormonal status and education level as covariates 

of no interest.  

The set of SPM t-statistics resulting from these analysis were transformed into SPM Z scores. 

Statistical inferences were performed by applying the Random Field Theory. Results were 

thresholded at p<0.005 uncorrected for multiple comparisons, with an extent threshold cluster 

extent (Ke) of 20 voxels. This threshold is the same than previously used in FDG-PET studies in 

neurodegenerative disease such as Alzheimer’s disease or mild cognitive impairment and estimated 

to provide the best compromise, neither too liberal nor over-conservative with risk of type 2 errors. 

The MNI peaks coordinates of the SPM t were converted into the Talairach coordinates using the 

Brett transformation (http://imaging.mrc-cbu.cam.ac.uk/imaging/MniTalairach). Then the Talairach 

Daemon was used ([28], http://www.talairach.org) to label the transformed coordinates respect to 

hemisphere, lobe and gyrus. Only coordinates within 2 mm to a gray matter where classified. The 

cingulate cortex was defined according to the four division model proposed by Vogt et al. [58]. 

For the other coordinates we inspected whether they fell inside a white matter fasciculus 

overlapping the MNI peaks coordinates with the ICBM DTI-81 (http://www.loni.ucla.edu/Atlases/) 
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with the MRIcron viewer (http://www.cabiatl.com/mricro/mricron). This atlas includes the most 

relevant fasciculi in the MNI space extracted by the mean of 81 subjects' DTI. 

 Clusters with p≤0.05 corrected for multiple comparisons were considered as significant. 

For subanalyses, we examined the correlations between neuropsychological scores and regional 

glucose metabolism of the voxels of interest: where cancer patients exposed to adjuvant CHT had a 

significantly lower metabolism and regions where a significant correlation was found. Mean 

regional CMRglc of the most significant clusters (see Table 3 and Supplementary Table 6) were 

calculated by using the volume of interest (VOI) function in the SPM2 software. 

Patient characteristic data were analyzed with Kruskal-Wallis test for continuous variables and χ2 

test for categorical variables. Pearson’s correlations was used to analyze rCMRglc data resulting 

from SMP2 analysis. SPSS 13.0 (SPSS Inc., Chicago, IL, USA) was used for statistical analysis, 

p<0.05 was considered significant. To compare the medians of two defined subgroups we used a 

Kruskal-Wallis non-parametric 2 independent samples test. To compare neurobehavioral 

characteristic of No CHT, EH, LL we used a Kruskal-Wallis non parametric 3 independent sample 

test. To compare correlations between subgroups in our sample we used the Fisher’s Z-test. This is 

a simple Z test computed on the Fisher transformed correlation coefficients (so to become normally 

distributed).  
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EXTENDED DISCUSSION 

 

Several neuroimaging studies have consistently shown that CHT induces structural [1, 6, 7, 16, 24] 

and functional [17, 20, 50] brain changes involving both the cortex and the white matter and with a 

prevailing involvement of the prefrontal cortex. However the time course of such changes are less 

well consistently defined with a study suggesting a complete recovery of the structural damage few 

years after the completion of the treatment [24] and others reporting a longer lasting functional 

impairment [27, 50]. Moreover, no previous neuroimaging study has investigated whether, in 

agreement with some neuropshychological studies, the CHT-induced brain damage could be related 

to the dose or the number of cycles of chemotherapic agents. Thus, neither  conclusive nor 

convincing evidence has been reached favouring the one or the other among the several competing 

heuristic models of CHT-induced brain damage which can be proposed by means of the analysis  of 

the available neuropsychological and neuroimaging data (see Figure 3c, 3d). To address these 

questions, we performed a set of correlation analyses exploring, in patients investigated at different 

times after the completion of treatment, the relationships between the rCMRglc and both these two 

variables, that is the time post-CHT and the number of cycles. We then performed a set of 

comparisons intended to confirm and strengthen the former analysis. The correlation analysis 

between the rCMRglc and the time post-CHT, in which the number of cycles was treated as 

confounding factor, uncovered a set of brain areas (including the right middle, inferior and superior 

frontal gyri along with others midline and subcortical brain regions as well as white matter regions 

including the body of corpus callosum and the posterior limb of internal capsule) showing a 

significant positive association between the rCMRglc and the time elapsed from treatment. These 

results were partially reproduced and confirmed by the comparison of the two subgroups of CHT-

treated patients (EH<LL) (see Table 3, Supplementary Table 4, 5 and Figure 1c, 2b). Partially 

overlapping results were moreover obtained in the comparison of the EH subgroup with the non 

treated subgroup (EH<No CHT). Interestingly, the peak of greatest rCMRglc decrease found in this 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
11

.5
63

7.
1 

: P
os

te
d 

5 
F

eb
 2

01
1



 39 

latter comparison in the right middle frontal gyrus (see Table 3, Supplementary Table 4, 5 and 

Figure 1c, 2b) was very close (x, y, z = 38, 62, 6) to that reported (x, y, z = 30, 64, 4) by a previous 

cited structural study [24] in a comparison between treated and non treated cancer patients. Our data 

therefore strongly support a reversible model of CHT-induced brain damage (see Figure 3c, 3d) 

suggesting that the chemotherapy-induced cerebral glucose metabolic impairment could be transient 

and rapidly (~1 year) reversible over the time, paralleling or even preceding the structural recovery 

of the CHT targeted brain regions. These results are in agreement with findings emerging from 

controlled longitudinal neuropsychological studies [13, 19, 59, 61] indicating that the cognitive 

changes tend to fully or partially resolve over 1 year. These assumptions on the reversibility of 

brain metabolic impairment must however be taken with caution. In a cross-sectional study as the 

present work, the real dynamics of the metabolic changes triggered by the CHT obviously cannot  

be adequately studied. Furthermore, we cannot exclude that a subset of brain regions did not 

recover or recovered only partially over the time, as suggested by some neuropsychological [3, 10] 

and neuroimaging [27, 50] studies. Candidate regions which could have, in the present study, a 

longer lasting metabolic impairment are the precentral gyri (BA4), a set of midline cortical 

structures such as left medial frontal gyrus (BA9, BA6) and the right posterior cingulate cortex 

(BA30), as well as the left middle frontal gyrus (BA46, BA8) and the cerebellum. These regions 

indeed showed a lower rCMRglc in the EH<No CHT comparison (see Table 3, Supplementary 

Table 4 and Figure 1c, 2b), but not in the EH<LL and in EH<LH comparisons (see Table 3, 

Supplementary Table 4 and Figure 1d, 1e, 2b) and did not show any significant positive correlation 

with the post-CHT time (see Table 3, Supplementary Tables 2, 3 and Figure 1a, 2a). Since both the 

No CHT>LL and No CHT>LH comparisons did not give significant results we suppose that these 

areas have only partially recovered over time. With respect to the cerebellum, the partial recovery 

hypothesis suggested by our data, is consistent with previous [O-15] water PET [50] and fMRI 

studies [27] reporting an altered cerebellar recruitment during a memory task in breast cancer 

women investigated at 3-5 and 5–10 years, respectively, after completion of CHT and compared to 
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a control sample. If one considers the wide prefrontal metabolic impairment involving both the gray 

and the white matter the bilateral cerebellar metabolic lower glucose metabolism is not surprising. It 

could result from a disruption of the fronto-cortico-cerebellar networking, that is, from the 

disconnection of one of the afferent loops. 

A further region showing an incomplete recovery over time was the left parahippocampus, which 

showed in the comparison of non treated with the whole group of treated patients (No CHT>CHT: 

see Table 3, Supplementary Table 4, 5 and Figure 3) a significantly lower rCMRglc. A subanalysis 

evidenced that, compared to non treated patients, the rCMRglc of this region was significantly 

(p=0.006) lower in patients investigated at a mean of more than 1 year after the completion of CHT 

and having received a number of CHT cycles comparable to the EH subgroup (LH subgroup) (see 

Figure 3b).  

To gain more insights on the mechanisms underlying these chemotherapy-related adverse effects we 

looked for a relationship between the number of cycles and the cerebral glucose metabolism. The 

voxel-based correlation analysis evidenced a set of brain areas (including the right superior, middle, 

inferior frontal gyri, the left middle frontal and superior temporal gyri) showing a significant 

negative association between the number of CHT cycles and the rCMRglc, which partially 

overlapped those uncovered by both the comparative and correlation analysis described above. 

These results support therefore a model in which the CHT-induced brain damage appears to be 

related to the number of CHT cycles (Figure 3d), in agreement with previous neuropsychological 

data [3] reporting a negative relationship between the number of cycles and the cognitive 

performance. We were however unable to replicate in our sample of cognitively unimpaired cancer 

patients this latter finding.     

 The pattern of CHT-induced brain metabolic impairment, markedly characterized by a 

disproportionate involvement of frontal lobes, is reminiscent of that seen in ageing [15, 26, 37, 55] 

and some age-related neurodegenerative processes [51]. However, a salient finding of our study was 

that the wide frontal metabolic impairment evidenced in the EH subgroup was not associated with 
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any significant cognitive impairment (Table 2). Such mismatch between metabolic and cognitive 

data is well known in the field of Alzheimer’s disease (AD) FDG-PET studies. In cognitively 

normal subjects at genetic risk of developing AD, such as apolipoprotein E (ApoE) E4 carriers, 

such studies showed a reduced glucose metabolism in the same regions of the brain as in patients 

with probable AD [44-46] such as the retrosplenial, the parietal and the frontal cortex. Moreover 

they evidenced that in these cognitively normal subjects this reduced glucose metabolism could be 

associated with perceived loss of memory ability [18] and subjective cognitive complaints [36]. For 

example, in cognitively normal ApoE4 carriers, the rCMRglc of parahippocampal gyrus was the 

most accurate predictor of the subjective cognitive complaints reported by participants [36]. The 

parahippocampal gyrus was, in our study, one of the brain region targeted by the CHT and not 

showing evidence of a complete metabolic recovery. This could be relevant since, as reported by 

previous studies, cancer survivors treated with CHT often self-report higher levels of cognitive 

problems but, as was seen in this work, perform normally on neuropsychological tests [20, 43]. 

Furthermore, recent functional and structural studies have showed that cognitively healthy people 

with a maternal family history of late onset AD (FHm), have a rCMRglc reductions [35] and less 

gray matter volume [23] in AD-vulnerable brain regions, including the frontal cortex, compared to 

subjects with no parental history of AD. Interestingly, compared to subjects with a negative history 

those with a FHm showed the lowest CMRglc in the right superior frontal gyrus at coordinates (x, 

y, z = 34, 61, 4), similar to those found by us (x, y, z = 38, 62, 6). Moreover, FHm subjects 

compared to subjects with a paternal familial history of late onset AD showed a lower CMRglc in 

the superior frontal gyrus at coordinates (x, y, z = 30, 63, 1). Hypometabolism in FHm is thought to 

be due to a combination of dysfunction of mitochondria [62] (maternally inherited), increased 

oxidative stress, and possible mitochondrial DNA (mtDNA) mutations [29], leading to CMRglc 

changes in vulnerable brain regions [38]. Many of these processes has been proposed as candidate 

mechanism mediating the adverse effects of CHT on brain functions [2]. For example, evidence for 

oxidative DNA damage was found in peripheral blood lymphocytes after CHT for breast cancer [4, 
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40] and a chemotherapy-induced increased number of point mutations in mitochondrial DNA was 

found in patients with various cancer [60]. Oxidative DNA damage, and decreased mitochondrial 

function are moreover well established processes underlying brain aging changes [31], a finding 

leading Maccormick [30] to hypothesize that adverse effects associated with CHT might be related 

to acceleration of the ageing process. Inspired by this hypothesis we performed a post-hoc analysis 

looking for differences in the correlations between age and the rCMRglc of regions showing a 

lower glucose metabolism in the EH<No CHT subgroups comparison. This analysis showed that, 

compared to non treated patients, the CMRglc of the medial posterior cortices showed in the EH 

patients a more significant and negative association with age (Fisher’s z test: p<0.05) (see 

Supplementary Table 6 and Figure 4), meaning that older subjects undergo an higher than expected 

CHT-induced metabolic impairment. The inverse was true at the right cerebellar level were the No 

CHT patients showed a more significant and more negative correlation between rCMRglc and age 

(p<0.05) (Figure 4a, 4c). This latter finding could perhaps be interpreted taking in account the 

significant CMRglc cerebellar decrease even in younger treated patients (Figure 4b, 4d) which 

could prevent or slow further age-related CMRglc decline. Taken together, these findings lead us to 

speculate that CHT induces aging-like and/or potentiates aging-related processes such as oxidative 

stress, and decreased mitochondrial function which could lead to the rCMRglc reduction evidenced, 

in patients having received CHT, by the present study.   

In summary, this study evidenced significant chemotherapy-related changes of glucose metabolism 

in multiple brain regions involving both the cortex and the white matter with a prevailing 

involvement of the frontal lobes. Such metabolic changes appear to be positively related in many of 

these same areas with the time elapsed from the end of the treatment suggesting that they are 

transient and rapidly reversible. A subset of these areas undergoes a metabolic impairment 

proportional to the number of CHT cycles while a subset, including the cerebellum and midline 

cortical regions, present evidences of a partial or delayed metabolic recovery. 

Study limitations  
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Some limits in our study came by its cross-sectional design, as only a longitudinal study could 

definitely demonstrate the relationship between rCMRglc and post-CHT time or number of cycles 

that we observed. Another problem was the heterogeneity of our sample, that was formed by 

different kind of cancer patients who received many kind of different adjuvant CHT protocols. This 

could be a confounding in determining how treatments (radiotherapy, corticosteroids, different 

combination of drugs) can interact and contribute to the brain damaging mechanisms. In animals 

this type of interacting noxious effects was demonstrated [39], but we did not have the possibility of 

explore this topic. 

For the same motivation the non commensurability of the doses of very different treatments 

received by patients prevent us to discriminate between a pure dose dependency, a pure CHT 

duration dependency or a mixed/interaction form of dependency. The number of CHT cycles, in 

fact, could be thought as a mere proxy of either the above aspects, since an higher number of cycles 

could correlate with an higher dose, but also with a longer time of exposition. We cannot exclude, 

however, that the number of cycles represents the number of times that the system came in contact 

with CHT and the complex cascade of events triggered by this exposition. So this repeated 

interaction per se could be a factor that guide the changes and the adaptation mechanisms activated 

as a response by the system.  

Still the heterogeneity of our sample could be interpreted also as a strength of this work, since the 

observed reversibility remains very significant in spite of possible confounding factors underlying 

this heterogeneity. 

Lower RBC and Hb (chemotherapy-induced bone marrow suppression) constituted the main 

differences between the subgroups in our sample, so it could be worthy to better characterize the 

relationship between the brain’s CHT-induced changes and these alterations (or the underlying 

mechanisms). Unfortunately we did not have enough elements to attend to this task, but we can 

suggest that future work should investigate in this direction. We can however affirm that the 

anaemia was not the sole or first causative factor of the metabolic lowering and its subsequent 
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recovery because, excluding from the sample the anaemic patient (Hb<12 g/dL), the correlation 

analysis showed similar results (not shown).  

The subgroups did not statistically differ at  any neuropsychological or psychological test. If it was 

not surprising that the psychological profile of cancer patients could be largely overlapping during 

diagnosis and treatment (with presence of depression, anxiety and stress), it was more concerning 

that, although we found an altered rCMRglc, comparing the subgroup we did not find any 

neuropsychological deficit. This could be due to the successful compensation of the brain that 

maintains its behavioral performance at cost of metabolic adaptation and changes (potentially 

stressfull in the long last period) or at an insufficient sensitivity of the neuropsychological tests 

(respect to our sample’s size and CHT-induced changes). A further element that may have reduced 

the difference between the groups, was the use of the No CHT subgroup as control group, in fact, it 

has been found that the cancer patients also before the adjuvant CHT can show alterations in the 

brain activity and in behavioral tasks compared to healthy subjects [2, 12]. We cannot enrol healthy 

volunteers in our study due the Italian legislation that prohibit the prescription of a PET in persons 

not suffering from any disease.  
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Cerebellum in the No CHT (n=12) and EH (n=10) groups 

 

 
Compared to non treated patients, the rCMRglc of the right cerebellar cortices showed in the EH patients a less 

significant association with age (a, b), but a general lower level of rCMRglc. In blue females, in green males. 
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SUPPLEMENTARY TABLES 

 

Supplementary Table 1. Chemotherapy protocols and drugs 

 
Cycles 

Number 

(patients) 

Protocols Drugs Subgroups 

2 (1) MEC Methotrexate, epirubicin, cisplatin LL 

2 (1) R-CHOP Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone LL 

3 (3) R-CHOP Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone LL 

3 (1) Nigro 5-fluorouracil, mitomycin LL 

4 (2) ABVD Doxorubicin, bleomycin, vinblastine, dacarbazine LL 

4 (3) R-CHOP Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone LL/LH 

4 (1) EPIRUBICIN Epirubicin LL 

6 (1) R-CNOP Rituximab, cyclophosphamide, mitoxantrone, vincristine, prednisone LL/LH 

6 (1) CHOP Cyclophosphamide, doxorubicin, vincristine, prednisone LL 

6 (1) ABVD Doxorubicin, bleomycin, vinblastine, dacarbazine LL/LH 

6 (1) FEC Fluorouracil (5FU), epirubicin, cyclophosphamide LL/LH 

7 (1) TXT/EPI Docetaxel, epirubicin LL/LH 

8 (1) CMF Cyclophosphamide, methotrexate,5-fluorouracil LL/LH 

8 (1) R-CVP Rituximab, cyclophosphamide, vincristine, prednisolone LL/LH 

9 (1) R-FND Fludarabina, mitoxantrone, dexametasone, rituximab LL/LH 

12 (1) 

ABVD+ 

DHAP+ 

EDX+ 

IGEV+ 

BEACOP-R+ 

GITMO GLOBAL 

-Doxorubicin, bleomycin, vinblastine, decarbazine 
-Cisplatin, cytarabine, desametasone 
-Cyclophosphamide 
-Ifosfamide, gemcitabine, vinorelbine 
-Bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine,  
procarbazine, prednisone, rituximab 
-Melphalan, ThioTEPA, Cyclophosphamide 

LL/LH 

6 (1) 
HD-AraC+ 

R-HDS+ 

R-EPOCH 

-Cytarabine 
-Rituximab 
-Rituximab, Cyclophosphamide, etoposide, aletuzumab, doxorubicin, 
vincristine, prednisone 

EH 

6 (1) 
R-CHOP+ 

MAD-R 

-Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone 
-Cytarabine, mitoxantrone, rituximab EH 

7 (1) VACOP Etoposide, adriamycin,, cyclophosphamide, vincristine, prednisone EH 

7 (1) 
VINCRISTINE + 

R-FC+ 

ZEVALIN 

-Vincristine 
-Rituximab, fludarabine, cyclophosphamide 
-Zevalin 

EH 

8 (1) 
R-CHOP+ 

RDHAP+ 

ZBEAM 

-Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone 
-Rituximab, cisplatin, cytarabine, desametasone 
-Zevalin, 

EH 

8 (2) R-CHOP Rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone EH 

10 (1) 
ABVD+ 

BEACOPP 

-Doxorubicin, bleomycin, vinblastine, decarbazine 
-Bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, 
procarbazine, prednisone 

EH 

12 (1) R-VACOPB 
Rituximab, VP16, adriamycin, cyclophosphamide, vincristine, 
prednisone, bleomycin EH 

16 (1) 

ABVD+ 

BEACOPP+ 

IGEV+ 

DHAP 

-Doxorubicin, bleomycin, vinblastine, decarbazine 
-Bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, 
procarbazine, prednisone 

-Ifosfamide, gemcitabine, vinorelbine 

-Cisplatin, cytarabine, desametasone 

EH 

EH = Early High CHT subgroup; LL = Late Low CHT subgroup; LH = Late High CHT subgroup.  
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Supplementary Table 2. Grey matter rCMRglc correlation analysis in CHT subgroup (n=31) 

 

Talairach Coordinates Cerebral Region 

 

BA p corr. Ke Z 

x y z 

Negative correlations with the number of chemotherapy cycles  

(L) Superior Temporal Gyrus 38 0.002 4555 3.66 -46 16 -19 

(R) Middle Frontal Gyrus 9   3.37 48 6 37 

(R) Middle Frontal Gyrus 46   3.32 48 36 28 

(R) Middle Frontal Gyrus 9   3.13 36 29 32 

(L) Middle Frontal Gyrus 11   3.12 -22 32 -12 

(L) Medial Frontal Gyrus 10   3.02 0 50 -7 

(R) Middle Frontal Gyrus 10   2.97 30 63 10 

(R) Superior Frontal Gyrus 10   2.90 34 54 23 

(R) Inferior Frontal Gyrus 44   2.83 53 9 20 

Positive correlations with the post chemotherapy time  

(L)  Subgenual ACC 25 <0.001 9798 4.15 -2 9 -9 

(R) Middle Frontal Gyrus 46   3.50 55 30 24 

(R) Superior Frontal Gyrus 10     3.41 36 61 14 

(R) Medial Frontal Gyrus (SMA) 6     3.37 16 -7 56 

(R) Middle Frontal Gyrus 9     3.34 48 12 36 

(R) Inferior Frontal Gyrus 44     3.33 51 7 20 

(R) Pregenual ACC 32     3.32 2 39 2 

(L) Thalamus AN -     3.28 -6 -5 9 

(R) Precentral Gyrus 9     3.28 38 25 34 

(R) Inferior Frontal Gyrus 9     3.27 51 7 31 

(L) Anterior MCC 32     3.27 -4 17 32 

(R) Thalamus VAN -     3.11 10 -3 8 

(L) Posterior MCC 24   2.99 -14 -3 48 

(L) Pregenual ACC 32     2.98 -6 36 17 

(R) Superior Frontal Gyrus 9   2.81 18 58 27 

Height threshold p = 0.005 uncorrected for multiple correlations; p corr. = p corrected for multiple correlations;          

ACC = Anterior Cingulate Cortex; AN = Anterior Nucleus; BA = Brodmann Area; CHT = chemotherapy;                   

Ke = cluster extent; L = left; R = right; MCC = Middle Cingulate Cortex; 

SMA = Supplementary Motor Area; VAN = Ventral Anterior Nucleus. 
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Supplementary Table 3. White matter rCMRglc correlation analysis in CHT subgroup (n=31) 

 

Talairach Coordinates White Matter Fasciculus 

 

p corr. Ke Z 

x y z 

Negative correlations with the number of chemotherapy cycles 

No suprathreshold cluster       

Positive correlations with the post chemotherapy time 

(L)  Body of Corpus Callosum <0.001 9798 3.67 10 7 27 

(R) Posterior Limb of Internal Capsule   2.93 18 -3 15 

Height threshold p = 0.005 uncorrected for multiple correlations; p corr. = p corrected for multiple correlations;          

BA = Brodmann Area; CHT = chemotherapy; Ke = cluster extent; L = left; R = right.  
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Supplementary Table 4. Grey matter rCMRglc, comparison between subgroups (n=43)  

 

Talairach Coordinates Cerebral Region 

 

BA p corr. Ke Z 

x y z 

No CHT (n=12) > CHT (n=31) 

(L) Parahippocampus (Uncus) 28 0.039 (SVC) 177 3.13 -24 4 -29 

No CHT (n=12) > EH (n=10) 

(R) Middle Frontal Gyrus 10 <0.001 7622 4.42 38 62 6 

(R) Superior Frontal Gyrus 10   3.92 34 57 14 

(R) Medial Frontal Gyrus 10   3.91 22 51 12 

(R) Precentral Gyrus 4   3.74 61 -6 39 

(L) Superior Temporal Gyrus 38   3.26 -24 10 -32 

(L) Precentral Gyrus 4   3.24 40 -13 49 

(L) Cuneus 19 <0.001 3657 4.41 -2 -82 37 

(R) Cuneus 19   4.25 8 -78 33 

(R) Parahippocampal Gyrus 19   3.82 24 -47 -5 

(R) Lingual Gyrus 19   3.68 24 -68 -2 

(R) Dorsal PCC 30   3.49 16 -54 6 

(R) Precuneus 7   3.27 20 -58 49 

(L) Medial Frontal Gyrus (SMA) 6 <0.001 6644 4.15 -6 -7 52 

(L) Middle Frontal  Gyrus 46   3.82 -48 34 26 

(L) Middle Frontal  Gyrus 10   3.37 -32 63 8 

(L) Medial Frontal Gyrus 9   3.27 -8 38 26 

(R) Anterior MCC 32   3.24 12 18 40 

(R) Medial Frontal Gyrus (SMA) 6   3.14 6 5 61 

(L) Middle Frontal  Gyrus 8   3.10 -40 29 43 

(L) Cerebellum Tonsilla - 0.001 2493 3.61 -36 -51 -40 

(L) Cerebellum Tuber -   3.06 -32 -64 -29 

(R) Cerebellum Tonsilla - 0.017 1447 3.50 36 -41 -35 

(R) Cerebellum Culmen -   3.07 42 -42 -23 

No CHT (n=12) > LL (n=21) 

No suprathreshold cluster        

EH  (n=10) < LL (n=21) 

(R) Fusiform Gyrus 19 0.025 2714 3.61 30 -65 -9 

(R) Middle Occipital Gyrus 19   3.29 44 -80 2 

(R) Lingual Gyrus 18   3.23 18 -80 0 

(R) Inferior Temporal Gyrus 37   3.12 51 -55 -6 

(L) Cuneus 19   3.11 -6 -94 23 

(R) Medial Temporal Gyrus 39   3.06 38 -72 27 

(R) Precuneus 7   2.93 16 -78 37 

(R) Cuneus 18   2.87 10 -84 24 

(R) Cuneus 19   2.74 18 -88 21 

(R) Medial Temporal Gyrus 19   2.68 57 -69 14 

(R) Middle Frontal  Gyrus 10 0.001 5263 3.43 42 52 20 

(L) Middle Frontal  Gyrus 11   3.22 -22 30 -13 

(R) Superior Frontal Gyrus 10   3.17 22 56 -6 

(R) Middle Frontal  Gyrus 11   3.17 22 30 -15 
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(R) Superior Frontal Gyrus 11   3.03 34 57 -14 

(R) Middle Frontal  Gyrus 10   2.97 42 54 -4 

(L) Medial Frontal Gyrus 25   2.84 -4 24 -15 

(R) Middle Frontal  Gyrus 47   2.69 44 38 -8 

(R) Superior Temporal Gyrus 38   2.65 30 15 -38 

(R) Medial Frontal Gyrus 10   2.60 16 55 8 

EH  (n=10) < LH (n=9) 

(R) Superior Frontal Gyrus 10 0.012 1074 3.94 40 59 16 

(R) Superior Frontal Gyrus 9    3.24 38 44 29 

(R) Middle Frontal  Gyrus 10    3.07 44 60 -3 

(L) Middle Frontal  Gyrus 10 0.046 1557 3.86 -40 53 18 

(L) Anterior MCC 32     3.02 -6 18 38 

(R) Anterior MCC 32     2.85 10 21 28 

(L) pregenual ACC 32     2.80 -6 34 22 

(L) Superior Frontal Gyrus 10     2.72 -26 59 23 

Height threshold p = 0.005 uncorrected for multiple correlations; p corr. = p corrected for multiple correlations;  

SVC = Small Volume Correction.            

ACC = Anterior Cingulate Cortex; BA = Brodmann Area; CHT = chemotherapy; Ke = cluster extent;  

L = left; R = right; MCC = Middle Cingulate Cortex; PCC = Posterior Cingulate Cortex; SMA = Supplementary Motor Area.   

EH = Early High CHT subgroup; LL = Late Low CHT subgroup; LH = Late High CHT subgroup.  
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Supplementary Table 5. White matter rCMRglc, comparison between subgroups (n=43)  

 

Talairach Coordinates Cerebral Region 

 

p corr. Ke Z 

x y z 

No CHT (n=12) > CHT (n=31) 

No suprathreshold cluster       

No CHT (n=12) > EH (n=10) 

(R) Anterior Corona Radiata <0.001 7622 3.56 12 34 -8 

(L) Anterior Corona Radiata   3.02 -14 32 -12 

(L) Posterior Corona Radiata <0.001 6644 3.21 -24 27 26 

No CHT (n=12) > LL (n=21) 

No suprathreshold cluster       

EH  (n=10) < LL (n=21) 

No suprathreshold cluster       

EH  (n=10) < LH (n=9) 

No suprathreshold cluster       

Height threshold p = 0.005 uncorrected for multiple correlations; p corr. = p corrected for multiple correlations;          

BA = Brodmann Area; CHT = chemotherapy; Ke = cluster extent; L = left; R = right.  

EH = Early High CHT subgroup; LL = Late Low CHT subgroup; LH = Late High CHT subgroup.  

.  
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Supplementary Table 6 Correlations between Age and rCMRglc in No CHT and EH  

 

No CHT (n=12) > EH (n=10) 

Cerebral Region BA No CHT (n=12) EH (n=10) Fisher’s-Z test 

  r p r p Z p 

(R) Middle Frontal Gyrus 10 -0.388 0.213 -0.685 0.029 0.851 NS 

(L) Cuneus 19 -0.181 0.573 -0.814 0.004 2.027 <0.05 

(L) Medial Frontal Gyrus (SMA) 6 -0.297 0.349 -0.707 0.022 1.141 NS 

(L) Cerebellum Tonsilla - -0.514 0.087 0.409 0.240 1.989 <0.05 

(R) Cerebellum Tonsilla - -0.599 0.040 -0.317 0.372 2.024 <0.05 

BA = Brodmann Area; p = Sig. (two-tailed)M; ; r = Pearson’s correlation coefficient; z = Fisher’s Z score.  
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