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Integrative analysis of large-scale 
biological data sets

Enrico Glaab, Jonathan M. Garibaldi, Natalio Krasnogor January 2011
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Overview:

• Introduction: main goals and data sets

• ArrayMining.net: tool set for integrative microarray analysis

• TopoGSA: network topological analysis of genes/proteins

• Conclusions

Outline
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Introduction

Research questions and goals behind the thesis

• Typical problem in biosciences: How to make effective use of multiple, 

large-scale data sources?

• Typical problem in computer science: How to exploit the strengths of 

different algorithms for the same/related purpose?

���� GOAL: Develop new methods combining diverse data

sources and algorithms

Machine learning Network analysis Statistics
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Introduction (2): Our data

Biological data sources used:

• unweighted binary

interactions (MIPS, 

DIP, BIND, HPRD,   

IntAct - only human) 

• 9392 nodes,
38857 edges

• mutated genes in 
different human   

cancer types 

(Breast, Liver,...)

• 30 gene sets of 
size > 10 genes

• obtained from GO, 
BioCarta, Reactome, 

KEGG and InterPro  

• total: approx. 3000 
pathways (size > 10)

• public microarray 

data sets: Huang 

et al., Veer et al.

• pre-processing:

GC-RMA

Breast cancer microarray data: Protein interaction data:

Cellular pathway data: Cancer gene sets:
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Methods overview

Methods overview: ArrayMining & TopoGSA
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Web-tool: ArrayMining.net

What is ArrayMining.net? 

ArrayMinining.net is an online microarray 

analysis tool set integrating multiple data 

sources and algorithms.

6 analysis modules:

1. Gene selection

2. Sample clustering

3. Sample classification

4. Gene Set Analysis

5. Gene Network Analysis

6. Cross-Study Normalization

Goal: A “swiss knife“ for
microarray analysis tasks

classical

new

www.arraymining.net
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Methods overview

Methods overview: ArrayMining & TopoGSA
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ArrayMining.net: QMC dataset

Gene name PC (gene vs. outcome):
Fold 

Change
Q-value 
(Rank)

ESTROGEN RECEPTOR 1 -0.75 0.16 1.6e-20 (1.)

RAS-LIKE, ESTROGEN-REGULATED, 
GROWTH INHIBITOR

-0.66 0.46 5.3e-14 (2.)

WD REPEAT DOMAIN 19 -0.66 0.73 1.2e-13 (3.)

CARBONIC ANHYDRASE XII -0.65 0.28 2.7e-13 (4.)

ARP3 ACTIN-RELATED PROTEIN 3 
HOMOLOG (YEAST)

0.64 1.37 9.6e-13 (5.)

TETRATRICOPEPTIDE REPEAT DOMAIN 
8

-0.63 0.82 2.2e-12 (6.)

BREAST CANCER MEMBRANE PROTEIN 
11

-0.62 0.24 7.1e-12 (7.)

Gene selection: QMC Breast cancer data set

• all top-ranked genes are known or likely to be involved in breast cancer

• the selection is robust with regard to cross-validation cycles and algorithms

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

59
8.

1 
: P

os
te

d 
27

 J
an

 2
01

1



January 2011 Page 9 of 2822

ArrayMining.net: In-house data

Heat map: 50 most significant genes         Box plot: 4 most significant genes

Visualization of results: QMC Breast cancer data

Expression levels across 3 tumour grades:
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Methods overview

Methods overview: ArrayMining & TopoGSA

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

59
8.

1 
: P

os
te

d 
27

 J
an

 2
01

1



January 2011 Page 11 of 2822

ArrayMining.net: Example

ArrayMining - Class Discovery Analysis module:

• Motiviation:

Exploiting the synergies between partition-based and hierarchical clustering 

algorithms

• Approach:

Consensus clustering based on the agreement of clustering results for pairs 

of objects (details on next slide). 

- equivalent to median partition problem (NP-complete)

- Simulated Annealing (SA) has been shown to provide good solutions

• Our solution:

- Compare SA (Aarts et al. cooling scheme) with thermodynamic SA (TSA) 

and fast SA (FSA) � FSA provides fastest convergence

- Initialization: Input clustering with highest agreement to other inputs
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Consensus clustering: example

Example application: QMC breast cancer dataset

• Separate sub-classes in 84 luminal samples with consensus clustering

• Input algorithms: k-Means, SOM, SOTA, PAM, HCL, DIANA, HYBRID-HCL

low confidence

(silhouette width:
compare within-
cluster- vs. between-
cluster-distances)best separation

for two clusters
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Methods overview

Methods overview: ArrayMining & TopoGSA
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ArrayMining.net: Gene set analysis

samples pathways

Gene set analysis – Motivation:

• Measurements for a single gene are often unreliable

• Similar genes might contain complementary information

• We want to integrate functional annotation data

� Gene Set Analysis (GSA):

1) Identify sets of functionally
similar genes (GO, KEGG, etc.)

2) Summarize gene sets to „Meta“-
genes (PCA, MDS, etc.)

3) Apply statistical analysis

(example: Van Andel institute cancer gene sets)
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Consensus clustering: example (2)

Combine consensus clustering with gene set analysis

• Map genes onto Gene Ontology (GO), reduce dimensionality (MDS)

• Apply same consensus clustering as before on GO-based „meta-genes“

~3 times higher 

confidence

better separationN
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Methods overview

Methods overview: ArrayMining & TopoGSA
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TopoGSA

TopoGSA: Network topological analysis of gene sets

What is TopoGSA? 

TopoGSA is a web-application mapping

gene sets onto a comprehensive human

protein interaction network and analysing

their network topological properties. 

Two types of analysis:

1. Compare genes within a gene set:

e.g. up- vs. down-regulated genes

2. Compare a gene set against a

database of known gene sets

(e.g. KEGG, BioCarta, GO)

www.infobiotics.net/TopoGSA

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

11
.5

59
8.

1 
: P

os
te

d 
27

 J
an

 2
01

1



January 2011 Page 18 of 2822

TopoGSA - Methods

• the degree of each node in the gene set

• the local clustering coefficient Ci for each node vi in the gene set:

where ki is the degree of vi and ejk is the edge between vj and vk

• the shortest path length between pairs of nodes vi and vj in the gene set

• the node betweenness B(v) for each node v in the gene set:

here σst(v) is the number of shortest paths from s to t passing through v

• the eigenvector centrality for each node in the gene set

TopoGSA computes the following topological properties for an uploaded 

geneset and matched-size random gene sets:
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KEGG-BRITE pathway colouring

LEGEND:

• Cellular processes

• Environmental information processing

• Genetic information processing

• Human diseases

• Metabolism

• Cancer genes

General results:

• Metabolic pathways 

have high shortest path 

lenghts and low bet-

weenness

• Disease pathways and 

cancer gene sets tend to 

have high betweenness 

and small shortest path 

lenghts

Mean node

betweenness

Mean clustering

coefficient Mean shortest

path lengthN
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ArrayMining � TopoGSA

Send selected genes from ArrayMining to TopoGSA:

• Results of within-gene-set comparison:

Estrogen receptor 1 gene and apoptosis regulator Bcl2, both up-regulated 

in luminal samples, have outstanding network topological properties (higher 

betweenness, higher degree, higher centrality) in comparison to other genes.

• Results of comparison against reference databases:

- Metabolic KEGG pathways are most similar to the uploaded gene set in 

terms of network topological properties.

- Most similar BioCarta pathways: Cytokine, differentiation and inflammatory

pathways. 
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Conclusions / Outlook

• Combining algorithms in a sequential and/or parallel fashion can

provide performance improvements and new biological insights

• Microarray and gene set analysis tasks can be interlinked flexibly

in an (almost) completely automated process

• New analysis types like network-based topology analysis and co-

expression analysis complement existing tools 

• For further details: See our publications in BMC Bioinformatics

(Glaab et al., 2009) and Bioinformatics (Glaab et al., 2010)
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