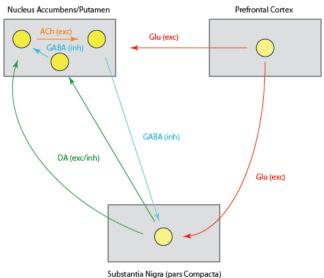
Mathematical Modeling of the Neuronal Processes in Sugar Addiction

Andre Almeida¹, Hamed Celaymanian¹, Natalie Seel¹, Boris Zak¹, Hamid R. Noori²

¹Talent im Land Bayern and Baden-Württemberg, and the Robert-Bosch foundation, Germany ²Interdisciplinary Center for Scientific Computing, University of Heidelberg; Germany


It has already been demonstrates that the body responds to enhanced intake of sugar and is conducive to a natural form of addiction. There are substantial neurochemical changes in the brain (especially dopamine and acetylcholine systems) similar to other addictive drugs. A mathematical model comprised by a system of delayed leaky integrate-and-fire equations is established to simulate the effects sugar on a reward-circuitry. Simulations with Neuron suggest in agreement with the neurobiological hypotheses a hyperactivity of neural systems due to binge sugar intake.

Physiological Hypotheses

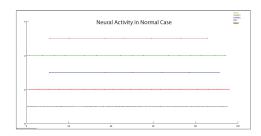
- Neurochemical similarities between drug selfadministration and intermittent sugar intake. [1,2]
- **Dopamine Hypothesis:** Daily intermittent sugar intake repeatedly release dopamine in the accumbens [1,2].
- Acetylcholine Hypothesis: Accumbens acetylcholine release is delayed during sugar binges and eliminated during sham feeding [2].
- In withdrawal, there is an imbalance between acetylcholine and dopamine. Both systems respond in opposite directions.[1]

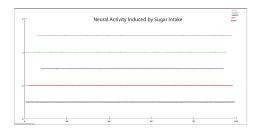
Mathematical model

- A system of delayed leaky integrate-and-fire equations for neural activities coupled with neurochemical dynamics:
- Electorphysiological: Generation of synaptic potentials depending on the dynamics of neurotransmitters;
- Sugar Addiction: It was modeled by including a delay term in the acetylcholine dynamics in the accumbens.

A schematic representation of the neurobiological systems involved in sugar addiction

$$\frac{du_i(t)}{dt} = l_i^{-1} (R_i I_i(t) - u_i(t) + \sum_{j=1}^4 \lambda^j u_j(t - \tau_j)), \ i = 1, \dots, 4, \ i \neq j$$


Simulation


- NEURON's computational engine has been used to describe the neuronal properties in the reward circuit. [3]
- Neurons have been integrated into the simulation software as artificial cells.

Results

- \bullet Neural hyperactivity [46 66] % due to abnormal sugar intake;
- Insignificant alterations in GABAergicinterneurons activity;

Substance	Neural activity in normal case (spiking frequency)	Neural activity in sugar addicition (spiking frequency)	Difference (in %)
Ach	7	18	61,1
GABA-Interneurons	17	18	5,6
GABA-Projection Neurons	7	13	46,1
DA	21	62	66.1

- Qualitative agreement with dopamine hypothesis: The increase in the dopamine release due to intermittent daily sugar intake has been demonstrated;
- The systems quantitative behavior shows strong sensitivity related to the choice of ACh-delays;

Outlook

- Improving the model by extending it with additional substances and brain regions;
- Including the temporal effects of sugar synthesis;
- Understanding the neurobiological effects of sugar addiction on neural activities . . .

Publication

- B.G. Hoebel, N.M. Avena, P. Rada, (2007) Accumbens dopamine-acetylcholine balance in approach and avoidance. Curr. Opin. Pharm. 7: 617-27.
- N.M. Avena, P. Rada, B.G. Hoebel, (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. biobehav. Rev. 32: 20-39.
- 3. NEURON, http://www.neuron.yale.edu/neuron/.