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Abstract 

Genome wide association studies (GWAS) have identified more than 200, mostly novel common low-
penetrance susceptibility loci for a range of different cancer types. The predicted risk associated with 
each locus is generally modest (per allele odds ratios usually ranging from 1.15 to 1.3) and so, 
presumably, are the functional effects of individual genetic variants conferring disease susceptibility. 
Perhaps the greatest challenge in the ‘post-GWAS’ era is to understand the functional consequences 
underlying these loci. In doing so, novel biological insights may be revealed leading to clinical 
benefits, including the development of reliable biomarkers, effective screening and disease prevention 
strategies. The purpose of this article is to propose some principles for the initial functional 
characterization of cancer risk loci, with a focus on non-coding variants, and to define ‘post-GWAS’ 
functional characterisation. 

Introduction 

The last few years have witnessed an explosion in the number of common, low-penetrance 
susceptibility alleles identified for a range of complex diseases and other common traits using 
genome-wide association studies (GWAS)1. In December 2010 there were 1212 published GWAS 
studies reporting associations at p<5x10-8 for 210 traits (Figure 1); and the Catalog of Published 
Genome-Wide Association Studies states that by March 2011, 812 publications reported 3977 SNP 
associations2. It is believed that this represents a small fraction of the common low penetrance 
susceptibility loci that will eventually be identified. Despite these clear successes in identifying risk 
associated loci, the causal variant and/or the molecular basis of risk etiology has been determined for 
only a small fraction of these associations3-5. Plausible candidate genes can clearly be suggested based 
on proximity to risk loci but very few have so far been defined in a more systematic manner 
(Supplementary Table 1).  

A recent Nature Genetics editorial on post-GWAS analyses began to put this problem into sharper 
focus and suggested that there should be a more significant investment in functional characterization 
of risk loci6 across diseases. Similar guidelines have been proposed elsewhere in the context of loci 
that underlie non-neoplastic traits such as cardiovascular disease and diabetes7. Our focus here is 
cancer biology. The particularly complex interplay between genetics and the environment in many 
cancers poses a particularly exciting challenge for those interested in post-GWAS research. The goal 
of this perspective is to build upon this dialogue and to elaborate a systematic strategy for 
understanding how cancer-associated polymorphisms exert their effects. We mostly refer to single 
nucleotide polymorphisms (SNPs) throughout the paper, but recognize that other types of common 
genetic or epigenetic variation (e.g. copy number variants) may influence risk.   

A central objective of human genetic research is to fully elucidate how a risk allele(s) initiates disease 
pathogenesis. Typically, there is progression from statistical association between genetic variation 
and trait/disease variation to functionality and causality. For Mendelian disorders where most of the 
DNA sequence changes occur in protein coding regions, the functional and causal consequences are 
more straightforward because of the knowledge of the genetic code. For non-Mendelian/multifactorial 
traits, most of the common DNA variants discovered to date map to non-protein coding regions 
(http://www.genome.gov/gwastudies/), where our understanding of the functional consequences and 
causality is more rudimentary. Specifically, the hypothesis we address is that the trait-associated 
alleles exert their effects through influencing gene expression levels (or splicing) through multiple 
mechanisms.  

A dominant theme of this paper will be on how polymorphisms can act upon and influence the various 
aspects of the transcriptional machinery resulting in an alteration in transcriptional (or splicing) 
output. We will discuss the importance of developing appropriate assays and models that can be used 
to test the functional effects of both SNPs and genes mapping to cancer predisposition loci.  Although 
much of what is written is applicable to alleles discovered for any trait, the section on modelling gene 
effects will emphasize measuring cancer-related phenotypes. 



It should be recognized that at some loci, multiple, independently associated risk alleles rather than 
single risk alleles may be functionally responsible for the occurrence of the disease. Genotyping 
susceptibility loci (and their correlated variants) in multiple populations with different LD structures 
may prove effective at reducing substantially the number of potentially causative variants (i.e. the 
same causal variant may segregate in multiple populations), as shown by Udler and colleagues for the 
FGFR2 locus in breast cancer8, but for most loci there will remain a set of potentially causative 
variants that cannot be separated at the statistical level from case-control genotype data. 

Thus, follow-up of a susceptibility locus is comprised of re-sequencing the region to ascertain all 
genetic variation, identifying candidate functional/causal polymorphisms and identifying candidate 
causal genes. Ideally, the identification of a causal SNP would be the next step to reveal the molecular 
mechanisms of risk modification. Practically, however, it is unclear what the criteria for causality 
should be, particularly in non-protein coding regions. Thus, while we propose a set of analyses, we 
acknowledge that it is necessarily an operational definition and the techniques and methods will 
continue to evolve with the field. 

Genetic annotation of trait-associated regions 

In the vast majority of cases, any association identified through GWAS would be predicted to be 
between the disease trait and a surrogate maker (i.e., tagSNP) rather than a causal variant, as SNP 
arrays were designed using surrogates chosen to capture LD structure on SNP arrays rather than for 
any functional reasons. Therefore evaluation of all common SNPs across associated regions will be 
desirable to fully characterize the biologic implications of disease associations.   

While the current HapMap information is incomplete with respect to identifying all common variant 
information and may not capture the genetic diversity of the populations being used in association 
studies, this is a rapidly moving field. The ongoing 1000 Genomes Project seeks to address this 
missing data and it is expected that it will eventually capture the majority of common (>5%) and less 
common (1-5%) variants9. However, it remains to be determined whether it yet provides complete 
SNP coverage (>1% MAF) across the entire genome including intergenic regions and gene deserts, 
where the majority of associations have been mapped. That suggests that for at least some loci 
targeted sequencing may remain a necessity. In addition, there is a growing interest in the role of 
multiple rare variants (<1%) in disease risk, which will not be adequately captured by 1000 Genomes 
Project. It is quite likely that in the near future, full genome sequencing on large enough numbers of 
subjects, will have been completed, producing a reasonably complete catalogue of human genetic 
variation.   

When considering targeted sequencing, understanding LD structure in the region across a risk locus 
will be critical to delimit the size of the target region and define the costs of the undertaking. It is still 
unclear which r2 threshold should be set in defining LD structure as the causal SNP potentially could 
be in LD with the associated SNP at an r2 of 0.2 or even less. Ideally, the LD structure should be 
defined using the GWAS population genotyping results used to identify the original association. 
Alternatively LD structure does not necessarily need to be considered and thresholds can be set. 
Power can be defined as a function of 1/r2 but it is presently difficult to be highly prescriptive about 
thresholds and researchers will make decisions based on cost, a priori information, and LD structure 
as described below. Although somewhat arbitrary these approaches represent a workable start point in 
the absence of data precisely defining LD structure as a start point. Additionally depth of coverage 
and the number of subjects to be sequenced are important considerations that are currently severely 
impacted by the cost of sequencing that is expected to rapidly decline in the coming years as newer 
technologies come on line.  

Additional biological data could also be used to define the region for analysis. For example, 
boundaries could be reduced due to a compelling candidate gene/transcript mapping to the region. 
However if any of these a priori hypotheses based on known biological data are used to reduce the 
extent of sequencing it should be recognized that this decision is generally made for cost reduction 
purposes only. Relying on biological assumptions undermines the agnostic approach one of the main 
advantages of GWAS. Finally, the majority of published GWAS data comes from European 



populations, but incorporating GWAS information from other ethnic groups such as African-
Americans could potentially reduce the target region if a similar association was found in this 
population as the African-American population generally has smaller LD block structure than the 
European population, as exemplified by a recent study on cocaine dependence10. Therefore, the extent 
of targeted sequencing will need to be a compromise between the size of the region to be sequenced, 
incorporating information such as LD structure, and the overall sequencing cost. 

 Annotating risk regions as regulatory elements and identifying functional variants 

Characterizing the regulatory landscape of susceptibility regions represents an important step in 
understanding how risk alleles affect function. The most abundant of these regulatory sequences are 
enhancers, but other regulators such as promoters, insulators and silencers may also be susceptibility 
targets. Unlike core promoters (at transcription start sites of genes), distal regulatory sequences such 
as enhancers are often cell-type specific 11 and thus may explain the tissue and disease specific nature 
of common susceptibility alleles. Studying histone modifications or DNase sensitivity (or 
hypersensitivity) has proven to be a powerful approach to annotating tissue specific regulatory 
elements12,13, and is more informative than studying conservation, since regulatory elements may be 
unconstrained across mammalian evolution 14-16. Using chromatin annotations to identify putative 
functional SNPs within regulatory sequences at known susceptibility loci has been proposed 
recently17. More precise demarcation of such regulatory regions may be achieved by assessing the 
association of candidate transcription factors with response elements. Both histone modifications and 
transcription factor occupied regions are currently identified using ChIP-seq methodologies and 
signals yield short DNA stretches (typically <1kb) amenable to detailed analyses. Enhancer activity in 
such regulatory regions can be assayed using reporter genes in vitro5 and/or in vivo12.  

Integrating knowledge of regulatory sequences at risk loci with catalogues of risk associated SNPs at 
these loci may be an efficient approach to prioritizing both candidate regulatory sites and the most 
likely functional variants.   This concept is illustrated by work on 8q24 risk loci. Two functional SNPs 
at chromosome 8q24 respectively have been associated with prostate and colorectal cancer. Several 
transcriptional enhancers were identified at 8q24. Two of them, in a prostate cancer risk region, were 
occupied by the androgen receptor and responded to androgen treatment; with one containing a single 
nucleotide polymorphism within a FoxA1 binding site5. The prostate cancer risk allele facilitated both 
stronger FoxA1 binding and stronger androgen responsiveness. In a separate study an 8q24 SNP in 
colorectal cancer was also found situated within a transcriptional enhancer and the enhancer activity 
was affected by the SNP18. In addition the SNP was shown to physically interact with the MYC proto-
oncogene, with allele-dependent binding of transcription factor 7-like 2 (TCF7L2). More detailed 
functional follow-up of these SNPs can then be performed using biochemical approaches to study 
differential transcription factor binding and activity (e.g., ChIP or EMSA). Regulatory sequences 
containing functional SNPs determined in this way can then be matched to their physiological target 
genes (see below).  
 

After generating data that implicate a functional mechanism, the next challenge will be to identify 
genes that are regulated by these elements. Possible approaches for identifying targets of regulatory 
sequences include: (i) Knocking out regulatory sequences in mouse models followed by genome-wide 
gene expression analyses after knockout to identify candidate targets; (ii) Using the regulatory 
sequences as baits in chromatin conformation capture (3C) based studies19,20, including genome-wide 
3C-based methods; (iii) targeted editing using somatic cell knock-in technology; for example, allelic 
series in isogenic settings may be created and gene expression differences measured, either in 
naturally growing cells or in cells that are perturbed (e.g., by radiation or hormones); (iv) Identifying 
correlations between the different genotypes of trait-associated SNPs and variations in the transcript 
abundance of candidate genes at those loci. Of these, the last approach represents a straightforward 
method to identify putative target genes.  

 



Susceptibility loci and the regulation of gene expression through epigenetic mechanisms  

Promoter methylation, histone tail modifications and altered expression of non-coding RNAs, such as 
the large intergenic noncoding RNAs  (lincRNAs)21,22 which associate with chromatin modifying 
complexes, also contribute to gene regulation and represent obvious candidate targets of functional 
genetic associations23. Epigenetic silencing has been shown to be the predominant mechanism of gene 
silencing during tumor development for a subset of genes 24. For other genes, a combination of genetic 
and epigenetic mechanism can contribute to tumor suppressor gene activation 25. Epigenetic 
mechanisms also play an important role in mediating environmental influences on gene expression 26. 
At susceptibility loci, the key questions are: (1) Do common genetic variants influence the epigenetic 
landscape to increase disease susceptibility? (2) Do susceptibility variants within the epigenetic 
landscape affect the likelihood of gene silencing during tumor development?  

The ability to perform such studies has been made possible through the development of platforms that 
enable high throughput DNA methylation profiling at single CpG resolution 27. Studies of hereditary 
non-polyposis colorectal cancer (Lynch syndrome) suggest that germline genetic variation may affect 
epigenetic marks resulting in cancer predisposition 28,29. Epimutations may be a consequence of cis or 
trans acting genetic variants 30. For example, Kerkel et. al have shown sequence-dependent allele-
specific methylation and demonstrated that cis-regulatory polymorphisms control gene expression and 
affect chromatin states31. Further epigenetic mechanisms that modulate gene expression include 
miRNAs and miRNA binding sites which can be directly affected by SNPs 32, and tandem repeats that 
can impact gene expression e.g. by altering transcription factor binding sites, but also by affecting 
chromatin structure (reviewed in 33).  

Another target of SNP associated regulation is the chromatin network.  Chromatin fibres dynamically 
explore the nuclear space to establish meta-stable, long-range interactions with other chromatin 
fibres34. The functional outcome of such interactions is largely unknown, but it has been demonstrated 
that they are capable of transferring epigenetic marks to modulate transcriptional processes both in cis 
35 and in trans36,37. In this way, chromosome crosstalk sets the stage for the spreading and propagation 
of pleiotropic epigenetic effects in a manner that reflects the topology of the network involved 34. 
Sequence polymorphisms can influence communication between different parts of the genome 38 and 
so SNPs can probably influence chromatin networks in a genotype-specific manner. For example, 
single SNPs or combinations of SNPs may confer disease susceptibility by promoting or antagonizing 
the formation of chromatin networks. The functional annotation of susceptibility loci with respect to 
chromatin/chromosomal networks may therefore provide important insights into the function of 
germline genetic variants.  

Inherited Variation and Gene Expression at Susceptibility Loci 

Both empirical and computational data support the notion that a considerable proportion of trait-
associated loci will harbour variants that influence the abundance of specific transcripts. These 
polymorphisms are often referred to as expression quantitative trait loci (eQTLs)39 40-43. Several 
landmark studies have unequivocally demonstrated that many transcripts in the human genome are 
influenced by inherited variation 44-48. Studying the associations between genetic variation and gene 
expression offers a straightforward way to begin the complicated task of connecting risk variants to 
their putative target genes or transcripts. Significantly, and like GWAS, an agnostic approach can be 
taken to these analyses, which does not require the disease causing allele to be known.  

eQTLs can be located either near the gene they regulate or considerable distances away. The 
distinction between local and distant is often arbitrary; however, for most studies local has often been 
defined as being within 1 megabase of the variant under consideration. ‘Distant’ can involve 
interactions between an eQTL and a gene located on different non-homologous chromosomes. The 
terminology of local and distant in this context, is preferred to cis- and trans-, which connotes 
mechanism 49. It should be noted that not only mRNA transcripts but also micro RNA (miRNA) and 
non-coding RNA (ncRNA) transcripts should be considered as candidates. 



Certain principles have emerged from eQTL studies: i) eQTLs tend to explain a greater proportion of 
trait variance than is typically seen for risk alleles and clinical traits; this observation translates into 
the ability to perform an eQTL study with smaller sample sizes than association studies for clinical 
traits (such as disease risk), ii) local eQTLs tend to have larger effects on gene expression than distant 
eQTLs and are therefore easier to discover, iii) there are likely more distant than local eQTLs 50 

Many of the initial successful eQTL studies relied on lymphoblastoid cell lines largely due to their 
availability51 40. More recently, eQTL studies have been performed in primary human tissues and 
demonstrate that at least some associations are tissue-specific 41,43,52. Reasonably large sample sizes 
(although typically smaller than GWAS to identify risk alleles) are needed in order to achieve 
sufficient power to detect eQTL associations. Consequently, comprehensive bio-banks of normal 
tissues will need to be established to evaluate expression differences between the different alleles of a 
SNP. Establishing such biobanks will be a significant part of the challenge; whereas extensive efforts 
within the cancer research community have established tumor tissue biorepositories, it has been less 
common to do so for normal tissues from the cells representing the origin of cancers. This issue is 
particularly problematic for tumor subtypes in which the cell of origin is still debated. This challenge 
is now being recognized and addressed through funding initiatives such as the ‘Genotype-Tissue 
Expression (GTEx)’ supported by the NIH Common Fund. 

A complementary and powerful approach to defining local eQTLs is to measure allelic imbalance 
(also called allele specific gene expression or ASE) in individuals that are heterozygous for a risk 
allele. Any transcript demonstrating a deviation from a 1:1 ratio (as typically measured by a 
transcribed heterozygous marker) becomes a strong candidate gene. 53-55 It is critical to note that even 
if a transcript is associated with a risk allele, it does not necessarily mean that the gene is definitively 
involved in the trait of interest; functional follow-up with assays relevant to the trait are still needed to 
demonstrate that a gene is directly involved with disease development. 

False negatives (i.e. where the risk associated allele is not associated with an expression trait) can 
occur, because gene expression varies in time and space. Therefore, the developmental time point 
and/or the tissue being studied may not be appropriate. Effects on transcript abundance may be subtle 
and therefore below the sensitivity threshold of a particular platform and/or sample size may not be 
adequate. In addition, transcript abundance is usually evaluated under steady-state conditions. Lastly, 
effects may only be revealed in certain contexts, such as perturbation of a particular pathway and may 
occur through changes in gene transcripts mediated by alterations in microRNAs/non-coding RNAs 
rather than through direct effects on genes.  In these cases, alternative assays will be required to 
implicate these genes. 

Future areas of exploration for the field include: (i) Defining the appropriate target tissues to examine.  
Risk alleles may act in a non-cell or -tissue autonomous fashion and therefore may exert their effect 
through other cell types that act upon the target tissue under consideration; (ii) Defining the 
significance of eQTL analysis in tumour as well as normal tissue. We advocate that both tissue states 
should be studied until a clearer picture of the relationship between the two emerges; (iii) Utilizing 
higher order computational methods, such as network analysis using risk variant and gene expression 
data to dissect the pathways driving disease pathogenesis. This ranges from transcriptomic analysis to 
predict the regulatory influence of transcription factors over gene networks dependency using tools 
such as ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks)56, through to 
Bayesian network approaches to identify predictive relationships between genes from a combination 
of expression and eQTL data57. Whilst these tools are elegant, the ability to translate their outputs into 
biological significance is heavily dependent on the availability of manipulable and relevant model 
systems with which to test the predicted connectivity. These approaches clearly pose validation 
challenges for many diseases, however the computational biology field is a powerful and essential 
catalyst for post-GWAS studies. Extensive discussion of the challenges and opportunities created by 
computational biology lie beyond the scope of this article.   



Complex Disease Modeling to Characterize the Role of Candidate Susceptibility Genes in 
Disease Development 

Once there is sufficient evidence in support of a candidate susceptibility gene, more detailed 
functional studies will be required to characterise the gene’s role in the pathogenesis of the trait under 
consideration. Gaining a better understanding of the biological mechanisms of cancer development 
often relies on the analysis of models that reflect the human disease and the application of 
technologies that facilitate the analysis of these models (Supplementary Table 2). It is likely that 
establishing a functional rationale underlying the significance of allelic variation and candidate genes 
at common low penetrance susceptibility loci in biologically relevant disease models will become a 
major component of following-up the genes emerging from GWAS. Disease models can be based on 
either the in vitro characterization of human tissues (primary tissues or cells in culture) or in vivo 
models of disease development.  

Human cancer in vitro models represent the most accessible way to test the function of candidate 
genes at susceptibility loci in tumour development, but functional effects may be masked by an 
aberrant genetic background. Most GWAS to date have focused on genetic susceptibility to disease 
and so the greatest functional impact may be observed in an essentially healthy, non-aberrant 
tissue/background.  This is perhaps the hardest context to replicate and maintain in a laboratory 
situation meaning that there will be a continuous drive for improvements in the models used. 

Progress in establishing suitable in vitro models of normal tissues has been hampered by difficulties in 
accessing specimens, and the challenges of culturing primary cells. For example prostate epithelial 
cells are dependent on the presence of a co-cultured stromal component for establishing the secretory 
cell phenotype and functional differentiation. For the normal colon, most commercially available 
normal epithelial cell lines are fetal in origin, and differences in fetal and adult cell biology limits the 
translational potential of work using fetal cells to model adult epithelial cancer genesis. There are 
exceptions - in breast, well-characterized commercially available cell lines exist that represent good 
models of normal breast tissue (e.g. MCF10A cells and immortalized HMECs). Three-dimensional 
(3D) cultures of MCF10As form polarized cystic structures that closely reflect the architecture and 
molecular features of breast acini in vivo. Using this system, a link between loss of BRCA1 function 
and impaired luminal differentiation of mammary epithelia was established58; this link has been 
further highlighted in Proia et al.,59. By using such 3D models it is therefore possible to dissect subtle 
phenotypes, such as changes associated with gene dosage. 

As a first step, we recommend measuring cancer related traits in these more ‘traditional’ models.  
Targeting genes under the control of functional SNP-containing regulatory regions may have 
important roles in characteristics of developing cancer phenotypes, such as proliferation, migration 
and apoptosis. Endpoints of the cancer phenotype, such as cell division, migration and apoptosis rates 
and protease secretion may be measured in cultured cells and mouse xenografts after the 
overexpression of the genes of interest, or their selected siRNA/shRNA knockdown. 

Conclusion 

The GWAS community has arrived at an important crossroads. As resources are limited the debate 
revolves around whether enough progress has been made towards identifying the polymorphisms that 
are likely to contribute most to disease causation to invest in functional follow-up.  As sequencing 
technologies become cheaper and more accessible, as datasets expand, we argue that this will evolve 
rapidly and will afford greater certainty in defining both the spectrum of inherited variation and the 
LD structure within the regions in which they lie. This will require a detailed mapping and annotation 
of epigenetic and transcriptomic landscapes within which a major limiting factor may prove to be the 
sample collections themselves.  While this progresses it is vital that proof-of-principle studies develop 
the methodologies and take forward the strongest candidate SNPs identified so far, not necessarily to 
test their causative association with disease but to understand their functional impact. ‘Strong’ 
candidate SNPs are those that demonstrate significant associations with transcript expression (eQTL 
analysis and chromosome conformation capture), tissue specificity and the phenotypic impacts of 
these transcript associations on model systems in downstream experiments. It is therefore far too soon 



in this emerging field, to make definitive recommendations of what unequivocally proves a 
correlation between genotype and phenotype at common low penetrance susceptibility loci. 
Successfully making the transition to progress experimentally through this process will require 
collective thinking at a consortia/multi-group level, just as effective international collaborations led to 
the identification susceptibility loci through GWAS. It is essential for the field that this overrides the 
temptation to publish fragmentary work capturing only sub-steps in this sequence.  Over time, 
integration of the re-sequenced, epigenetic and molecular-epidemiological data within different ethnic 
groups (and thus within different linkage disequilibrium structures) will help localize causal variants. 
If we begin considering how to explore the functional impact of variants now we will, as a 
community, be well positioned to rise to the challenge of testing causation in the future.  

The field is still making the first forays into the functional characterization of SNPs and is many steps 
away from proving causality for the vast majority of risk associated genetic variants that have been 
found. Naturally our ability to get close to this goal will need to be assessed in the context of current 
technologies and knowledge on a disease-by-disease basis. We hope that this article will help to frame 
the developing debate and the emerging research that seeks to rise to this great challenge. 
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Glossary 

3C, 4C, 5C, Hi-C, 3C-seq: chromosome conformation capture (3C) is a technique is used to identify 
interactions between genes and long-range regulatory made possible by chromosome loops that bring 
the two regions to physical proximity. Developments on this method include circularization (4C) of 
the genomic fragments with the use of inverse PCR primers, carbon copy (5C) technology for 
multiplexed ligation-mediated amplification, and high throughput analysis by massively parallel 
sequencing between many baits and targets (Hi-C), or many targets from a single locus (3C-seq). 

Supporting references: 34,60-62 

 

Causal variant: In the context of GWAS it represents the SNP that is mechanistically linked to risk 
enhancement. This is distinct from SNPs that do not have any functional impact but are statistically 
associated with the disease phenotype because it is in linkage disequilibrium with the causal variant. 

Supporting evidence: 63  

 

ChIP-Seq: Chromatin immunoprecipitation (ChIP) is a method to study protein-DNA interactions. It 
identifies genomic regions that are binding sites for a known protein. Analysis of these regions is 
typically performed by PCR, when there is a hypothesized known binding site, or through the use of 
genomic microarrays (ChIP-chip). Alternatively, analysis can be done using next-generation 
sequencing (Seq) technology to analyze DNA fragments. 

Supporting references: 64,65  

 

CNV: Copy number variation is a type of structural variation in which a particular segment of the 
genome, typically larger than 1kb, is found to have a variable copy number from a reference genome. 

Supporting references: 66-68  

 

Deep sequencing: a sequencing strategy used to reveal variations present at extremely low levels in a 
sample. For example, to identify rare somatic mutations found in a small number of cells in a tumor, 
or low abundance transcripts in transcriptome analysis. 

Supporting references: 69  

 

DNA Methylation: A modification of the DNA that involves predominantly the addition of a methyl 
group to the 5 position of the pyrimidine ring of a cytosine found in a CpG dinucleotide sequence. 

Supporting references: 70  

 

EMSA: Electrophoretic Mobility Shift Assays assess the ability of a protein factor (or a complex) to 
bind to a specific DNA sequence  

Supporting references: 71.  



Epigenetic markers: an array of modifications to DNA and histones independent of changes in 
nucleotide sequence but rather the addition of a methyl group to cytosine and a series of post-
translation modifications of histones including methylation, acetylation, and phosphorylation. 

Supporting references: 72 

eQTL: Expression Quantitative Trait Loci refer to regions in the genome that control a quantitative 
trait, in this case mRNA (or protein) expression. These loci can be located close (sometimes referred 
to as “local” or “cis-eQTL”) or far away (sometimes referred to as “distant” or “trans-eQTL”) from a 
target gene.  

Supporting references: 50 

Fine mapping: a strategy to identify other lower frequency variants in a disease-associated region 
(typically spanning a haplotype block) not represented in the initial genotyping platform with the goal 
of uncovering candidate causal variants. It can include data mining of publically available sequencing 
efforts, such as the 1000 Genomes Project and targeted re-sequencing.  

Supporting references: 63,73  

 

Functional variant: a variant that confers a detectable functional impact on the locus. It can represent 
a change in coding region but also changes in regulatory regions that have an impact on function.  

Supporting references:  5 

 

GWAS: genome-wide association study is a case-control study design in which most loci in the 
genome are interrogated for association with a trait (disease) through the use of SNPs by comparing 
allele frequencies in cases and controls. 

Supporting references: 1 

 

Haplotype block: linear segments of the genome comprising coinherited alleles in the same 
chromosome. 

Supporting references: 74,75 

 

Homologous recombination: an error-free recombination mechanism that exchanges genetic 
sequences between homologous loci during meiosis, and utilizes homologous sequences such as the 
sister-chromatid to promote DNA repair during mitosis. 

Supporting references: 75  

  

Linkage disequilibrium: a nonrandom association between two markers (e.g. SNPs), which are 
typically close to one another due to reduced recombination between them. Supporting references: 
74,76-78. 

 



MicroRNAs: endogenous short (~23 nt) RNAs involved in gene regulation by pairing to mRNAs of 
protein coding mRNAs. 

Supporting references: 79 

 

Next gen sequencing: a technology to sequence DNA in a massively parallel fashion, therefore 
sequencing is achieved at a much faster speed and lower cost than traditional methods.  

Supporting references: 72 

 

Non-coding variant: a variant that is located outside of the coding region of a certain locus. 

 

Tagging variant: a variant (SNP) that defines most of the haplotype diversity of a haplotype block. 

Supporting references: 74 

 

Transcriptome: The complete set of transcripts in a cell. In some cases it can also include 
quantitative data about the amount of individual transcripts. 

Supporting references: 69 

 

RNA-Seq: a method to obtain genome-wide transcription map using deep sequencing technologies to 
generate short sequence reads (30-400 bp). It reveals a transcriptional profile and levels of expression 
for each gene. 

Supporting references: 69 

 

SNP: single nucleotide polymorphism 

  

 

 

 

 

 

 

 

 

 



Figure Legend 

Figure 1. The genomic context in which a variant is found can be used as preliminary functional 
analysis. The figure shows the genomic context distribution of disease- and trait-associated SNPs 
annotated in the Catalog of Genome-Wide Association Studies (http://www.genome.gov/gwastudies/) 
as of December 9th, 2010. Most of the SNPs are located in intergenic and intronic positions, but a 
small percentage are located upstream and downstream of genes, as well as in regulatory regions and 
splice sites. SNPs in these locations can be analyzed in more detail using more specific bioinformatics 
tools. 

Supplementary Information 

Supplementary Table 1.  Summary of more than 80 susceptibility loci identified for breast, lung, 
ovarian, colorectal and prostate cancer.The table shows the diversity in genetic architecture of 
these loci with respect to the most significantly associated SNP at each region, the proximity of the 
risk associated SNPs with respect to nearest annotated genes, the known gene content within 1MB 
spanning each region, and details of plausible candidate genes within those regions. 

Supplementary Table 2. Methods for functional validation/enabling technologies 
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