Gas phase enthalpies of formation for aminonitroacetylene, aminonitromethane, and diaminodinitromethane: A Gaussian-4 (G4) theoretical study

Sierra Rayne ${ }^{a}$, Kaya Forest ${ }^{b}$

Gas phase (298.15 K, 1 atm$)$ enthalpies of formation were calculated at the Gaussian-4 (G4) level of theory using the atomization energy approach for the proposed high energy materials aminonitroacetylene (284.0 to $285.7 \mathrm{~kJ} / \mathrm{mol}$), aminonitromethane (-66.4 to $-65.0 \mathrm{~kJ} / \mathrm{mol}$), and diaminodinitromethane (-84.0 to $-81.6 \mathrm{~kJ} / \mathrm{mol})$. The results are in good agreement with prior G2 and G3 level estimates, and should help constrain the actual enthalpies of formation for these potential HEMs.

Keywords: aminonitroacetylene, aminonitromethane, diaminodinitromethane, high energy materials, enthalpy of formation, Gaussian-4 (G4), theoretical study

Aminonitroacetylene (1), aminonitromethane (2), and diaminodinitromethane (3) have been proposed as high energy materials (HEMs; Figure 1) [1-4]. Their gas phase enthalpies of formation $\left(\Delta_{f} \mathrm{H}_{(g)}^{\circ}\right)$ have not been experimentally determined, but previous theoretical estimates have been put forward in the literature at the SCF/6-31G, G2, and G3 levels of theory (Table 1). In the current work, we employ the Gaussian-4 (G4) [5] composite method level of theory within Gaussian 09 (G09) [6] and apply the atomization energy approaches in ref. [7] and ref. [8,9] to provide additional $\Delta_{f} \mathrm{H}_{(g)}^{\circ}$ estimates for these compounds. Three-dimensional visualizations of the G4 optimized geometries are shown in Figure 2, and full G09 archive entries (including geometry coordinates) are provided in the Supporting Information. Excellent agreement was obtained between our G4 $\Delta_{f} \mathrm{H}_{(g)}^{\circ}$ estimates for $\mathbf{1}$ and those previously reported at the G2 and G3 levels [4]. The $\Delta_{f} \mathrm{H}_{(g)}^{\circ}$ estimate of 179.9

[^0]

1

2

3

Figure 1: Structures of aminonitroacetylene (1), aminonitromethane (2), and diaminodinitromethane (3).

Table 1: Estimated gas phase enthalpies of formation $\left(\Delta_{f} \mathrm{H}_{(g)}^{\circ}\right)$ for aminonitroacetylene (1), aminonitromethane (2), and diaminodinitromethane (3) at various levels of theory. Values are in $\mathrm{kJ} / \mathrm{mol}$.

level of theory	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	ref.
SCF/6-31G	n/a	-72.3	-111.3	$[1,2]$
G2	284.0	-73.7	-97.7	$[3,4]$
G3	285.6	-60.2	-72.7	$[3,4]$
G4 a	285.7	-65.0	-81.6	current work
G4 b	284.0	-66.4	-84.0	current work

${ }^{a}$ atomization energy approach as described in ref. [7]. ${ }^{b}$ atomization energy approach as described in ref. $[8,9]$.
$\mathrm{kJ} / \mathrm{mol}$ for $\mathbf{1}$ by Golovin and Takhistov [10] appears to be in error when compared to the current G4 calculations and prior G2 and G3 estimates. G4 $\Delta_{f} \mathrm{H}_{(g)}^{\circ}$ estimates for 2 and $\mathbf{3}$ reside between the prior G2, G3, and SCF/6-31G estimates [1-4]. The findings presented herein will assist in better constraining the actual $\Delta_{f} \mathrm{H}_{(g)}^{\circ}$ for these potential HEMs.

Acknowledgements

This work was made possible by the facilities of the Western Canada Research Grid (WestGrid:www.westgrid.ca; project 100185), the Shared Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca; project sn4612), and Compute/Calcul Canada.

1

3

Figure 2: Visualizations of Gaussian-4 (G4) optimized geometries for aminonitroacetylene (1), aminonitromethane (2), and diaminodinitromethane (3).

References

[1] Sana, G., Leroy, G., Peeters, D., Wilante, C., "The theoretical study of the heats of formation of organic compounds containing the substituents $\mathrm{CH}_{3}, \mathrm{CF}_{3}, \mathrm{NH}_{2}, \mathrm{NF}_{2}, \mathrm{NO}_{2}, \mathrm{OH}$ and F," Journal of Molecular Structure (Theochem), 164, 1988, 249-274.
[2] Leroy, G., Sana, G., Wilante, C., Peeters, D., Bourasseau, S., "Heats of formation of some energetic compounds containing NO_{2} and/or NF_{2} groups," Journal of Molecular Structure (Theochem), 189, 1989, 251-259.
[3] Mathews, K.Y., Ball, D.W., "New potential high energy materials: High-level calculations on the properties of aminonitromethanes," Journal of

Molecular Structure (Theochem), 868, 2008, 7881.
[4] Mathews, K.Y., Ball, D.W., "Calculated thermochemistry of aminonitroacetylene: A new highenergy material?," Journal of Molecular Structure (Theochem), 868, 2008, 78-81.
[5] Curtiss, L.A., Redfern, P.C., Raghavachari, K., "Gaussian-4 theory," Journal of Chemical Physics, 126, 2007, 084108.
[6] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, USA, 2009.
[7] Saeys, M., Reyniers, M.F., Marin,G.B., Van Speybroeck, V., Waroquier, M., "Ab initio calculations for hydrocarbons: Enthalpy of formation, transition state geometry, and activation energy for radical reactions," J. Phys. Chem. A 2003, 107, 9147-9159.
[8] Nicolaides, A., Rauk, A., Glukhovtsev, M.N., Radom, L., "Heats of formation from G2, G2(MP2), and G2(MP2,SVP) total energies," Journal of Physical Chemistry, 100, 1996, 1746017464.
[9] Notario, R., Castano, O., Abboud, J.L.M., Gomperts, R., Frutos, L.M., Palmeiro, R., "Organic thermochemistry at high ab initio levels. 1. A G2(MP2) and G2 study of cyclic saturated and unsaturated hydrocarbons (including
aromatics)," Journal of Organic Chemistry, 64, 1999, 9011-9014.
[10] Golovin, A.V., Takhistov, V.V., "Thermochemistry of organic and heteroorganic species. Part XII. Mono- and disubstituted acetylenes and ethynyl free radicals. New electronegativity scale," Journal of Molecular Structure, 2004, 701, 57-91.

Gas phase enthalpies of formation for aminonitroacetylene, aminonitromethane, and diaminodinitromethane: A Gaussian-4 (G4) theoretical study

```
Sierra Rayne*,\ddagger and Kaya Forest`
Ecologica Research, Kelowna, British Columbia, Canada V1Y 1R9; Department of
Chemistry, Okanagan College, Penticton, British Columbia, Canada V2A 8E1
* Corresponding author. E-mail: rayne.sierra@gmail.com.
* Ecologica Research.
+ Okanagan College.
```


Gaussian 09 archive entries

aminonitroacetylene

Temperature=
$E(Z P E)=$
$\mathrm{E}(\operatorname{CCSD}(\mathrm{T}))=$
DE(Plus) =
E(Delta-G3XP) $=$
G4 (0 K) =
G4 Enthalpy=

298.150000	Pressure $=$	1.000000
0.047377	E(Thermal) $=$	0.053688
-336.284516	E (Empiric) $=$	-0.111152
-0.028017	DE (2DF) $=$	-0.234974
-0.405489	DE (HF) $=$	-0.034161
-337.050933	G4 Energy $=$	-337.044622
-337.043678	G4 Free Energy $=$	-337.080997

1.000000

53688

- 0.11152
-0.034161
22
$\backslash \backslash 0,1 \backslash C, 0,-1.4227070838,0.0420197349,0.0026629758 \backslash C, 0,-0.21$
$48814251,0.0172831883,-0.0074111472 \backslash \mathrm{~N}, 0,-2.7410264433,0.0568737516,-0$. $0222857993 \backslash \mathrm{~N}, 0,1.1628798389,-0.0069916316,-0.0074217272 \backslash \mathrm{H}, 0,-3.2575635$ $994,-0.6905127498,0.4148330501 \backslash H, 0,-3.2288347916,0.9314874423,-0.13873$ $62365 \backslash 0,0,1.7417965374,1.0191123595,-0.3606878927 \backslash 0,0,1.7052869669,-1$. $0526920953,0.3464767769 \backslash$ VVersion=EM64L-G09RevA. $02 \backslash$ State=1-A \backslash MP2 $/$ GTBas 1 $=-336.2397491 \backslash \mathrm{MP} 4 / \mathrm{GTBas} 1=-336.2963669 \backslash \mathrm{CCSD}(\mathrm{T}) / \mathrm{G} 3 \mathrm{Bas} 1=-336.2845161 \backslash \mathrm{MP} 2 /$ GTBas2=-336.2661187\MP4/GTBas2=-336.3243842 $\backslash \mathrm{MP} 2 / \mathrm{GTBas} 3=-336.4612863 \backslash \mathrm{MP}$ $4 /$ GTBas3 $=-336.531341 \backslash \mathrm{HF} / \mathrm{GTLargeXP}=-335.4203134 \backslash \mathrm{MP} 2 / \mathrm{GTLargeXP}=-336.8931$ $453 \backslash \mathrm{HF} / \mathrm{GFHFB} 1=-335.4477981 \backslash \mathrm{HF} / \mathrm{GFHFB} 2=-335.4531662 \backslash \mathrm{G} 4=-337.0509328 \backslash$ Freq Coord=-2.6885267556,0.0794057912,0.005032295,-0.4060670444,0.032660492 $6,-0.0140050385,-5.1797893009,0.1074758147,-0.0421140574,2.197524421,-$ $0.013212269,-0.0140250319,-6.1559030634,-1.3048799883,0.7839208556,-6$. $1016134845,1.7602561623,-0.2621734916,3.291518435,1.9258432581,-0.6816$ 013366,3.2225253454,-1.9892997624,0.6547462198\PG=C01 [X(C2H2N2O2)] \NI $\operatorname{mag}=0 \backslash \backslash 1.53792134,-0.03030562,0.09648692,-0.01425050,-0.00627327,0.078$ $97084,-0.97870851,0.02014989,0.00977365,1.39573015,0.01943547,-0.02682$ $763,-0.00137060,-0.02505299,0.10288732,0.00769846,-0.00133399,-0.02952$ 520,-0.00696436,-0.02217664,0.04467888,-0.45990197,0.00421198,-0.00688 $664,-0.06486458,0.00111039,-0.00017703,0.80167971,0.01334405,-0.083677$ 91, 0.01827388,-0.00148955,0.00232090,0.00259452,-0.03144230,0.70247588 , 0.01985293, 0.01780075,-0.03649105,-0.00778002,0.00272830,0.00900144,-$0.09089184,-0.22362289,0.11828446,-0.04628388,0.00027952,-0.00131340,-$ $0.24573949,0.00346951,-0.00040923,0.02773827,0.00123980,0.00468655,0.7$ $1541003,0.00129276,-0.00600764,-0.00273383,0.00340573,-0.04340831,-0.0$ $0678397,-0.00056496,0.00727425,-0.00062686,0.00171574,0.80900979,0.001$ $66208,-0.00278620,-0.01312986,-0.00059238,-0.00678059,-0.06092734,-0.0$ $0061222,-0.00053354,0.00588295,-0.00351790,-0.19605025,0.30140263,-0.0$ $3447143,-0.02487381,0.01564543,0.00512145,-0.00117776,-0.00003514,-0.1$ $5167052,-0.13985491,0.08962987,-0.00108578,0.00086258,-0.00055736,0.16$ $996940,-0.00875841,0.00785605,-0.00488244,0.00885900,-0.00028991,0.000$ 66004,-0.13243312,-0.27205640, 0.14226957,-0.00378837,0.00047415,0.0002 $1439,0.15123685,0.28052865,-0.00487724,-0.00700612,-0.00160406,-0.0002$ $7875,0.00078557,0.00107039,0.10016001,0.15850781,-0.08562670,-0.000386$ $39,0.00033900,0.00087290,-0.09582287,-0.15066220,0.08846451,-0.0332384$ $7,0.03064279,-0.00327934,0.00487034,0.00073674,-0.00069182,-0.14120183$, 0.15842973,-0.01410265,-0.00100160, -0.00098075,0.00007067,0.01243411, $-0.01697054,0.00131504,0.15851033,0.00536889,0.00897347,-0.00399040,-0$ $.00735692,-0.00027685,0.00048244,0.15881609,-0.35819041,0.06256209,0.0$ $0280321,0.00029943,0.00021274,0.01335286,-0.01596327,-0.00198971,-0.17$ $144365,0.36562586,-0.00959413,-0.00139167,-0.00395420,0.00524742,0.000$ $25658,0.00130866,-0.00175341,0.04591856,-0.00996275,-0.00264102,0.0001$ $3281,0.00096400,-0.00877947,0.01237207,-0.00275023,0.01647163,-0.05730$ $482,0.01482718,0.00750514,-0.00158093,0.00068107,-0.06006990,-0.047648$ $88,0.01681310,-0.00594252,0.00209716,-0.00147111,-0.23032142,-0.188807$ $42,0.06525459,0.00022883,0.00087350,0.00000375,-0.00056076,-0.00085642$, 0.00052660, 0.24217072,0.01063249,0.00152560,0.00072897,-0.05645492,-0
$.01531763,0.01305781,-0.00506840,0.00056083,-0.00151649,-0.14510102,-0$ $.37813692,0.10171640,0.00041895,0.00068564,0.00052349,-0.00008070,-0.0$ $0089843,0.00013240,0.21810948,0.47644188,-0.00393858,0.00054681,0.0027$ $7589,0.01982509,0.01292722,0.01717287,0.00185716,-0.00071217,-0.000124$ $94,0.05036066,0.10198762,-0.11749719,-0.00001591,0.00027689,0.00095160$ $,-0.00002041,-0.00010830,-0.00168045,-0.07563226,-0.15342698,0.0832349$ $7,0.00717779,0.00147619,-0.00037027,-0.05633947,0.04912753,-0.01623397$ $,-0.00583656,-0.00232400,0.00007627,-0.21871613,0.18307631,-0.06170746$, -0.00052606, 0.00098109,-0.00011355,0.00018788,-0.00068406, 0.00052238, $0.04698992,-0.02245586,0.00756426,0.22706263,-0.01100963,0.00167115,0$. $00024767,0.05793977,-0.01908789,0.01349979,0.00537032,0.00129286,0.000$ $40553,0.13938160,-0.38950475,0.10400704,0.00003524,-0.00123491,-0.0004$ $9785,-0.00033361,0.00043020,-0.00011593,0.01781351,-0.08486096,0.03850$ 891,-0. $20919720,0.49129429,0.00344697,0.00044368,0.00295764,-0.0192306$ $5,0.01363016,0.01722029,-0.00169601,-0.00042617,-0.00096342,-0.0467792$ $7,0.10373547,-0.11756810,-0.00006454,-0.00024832,-0.00137841,0.0002368$ $9,0.00013596,0.00124780,-0.00617574,0.03878440,0.01516725,0.07026235,-$ $0.15605516,0.08331696 \backslash \backslash 0.00002815,0.00000578,0.00003996,0.00004702,-0$. $00001332,-0.00003823,-0.00002984,0.00000178,-0.00001923,-0.00001243,0$. $00004852,0.00001269,-0.00000040,-0.00001832,0.00000760,-0.00000160,0.0$ $0001701,-0.00000465,-0.00002530,0.00001089,-0.00000998,-0.00000560,-0$. $00005233,0.00001184 \backslash \backslash \backslash$ @

aminonitromethane

Temperature=
$\mathrm{E}(\mathrm{ZPE})=$
$\mathrm{E}(\operatorname{CCSD}(\mathrm{T}))=$
DE (Plus) =
E(Delta-G3XP) =
G4 (0 K) =
G4 Enthalpy=
1.000000
0.072177
-0.104205
-0.226189
-0.031291
-300.237614
-300.271755
. $2494801867,-0.1135258982,0.0008494259 \backslash \mathrm{~N}, 0,-0.8$
$397611299,-0.132397359,-0.0017266742 \backslash \mathrm{~N}, 0,-2.9002591488,1.304507217,-0$. $0053613886 \backslash \mathrm{H}, 0,-2.6713150962,-0.5807994219,0.8924375796 \backslash \mathrm{H}, 0,-2.6746870$ $501,-0.5902961392,-0.8840729365 \backslash \mathrm{H}, 0,-0.4555373682,0.3324032333,0.81267$ $53636 \backslash \mathrm{H}, 0,-0.4587120969,0.322222567,-0.8232831328 \backslash 0,0,-2.1543501448,2$ $.2684089722,-0.0112447331 \backslash 0,0,-4.1183877784,1.3307671391,-0.0036435039$
Version=EM64L-G09RevA.02\State=1-A\MP2/GTBas1=-299.5229187 \MP4/GTBas $1=-299.5763598 \backslash \operatorname{CCSD}(T) / G 3 B a s 1=-299.5676299 \backslash M P 2 / G T B a s 2=-299.5477924 \backslash \mathrm{MP} 4$ $/$ GTBas2=-299.603013 \MP2/GTBas3=-299.7350713 \MP4/GTBas3=-299.8025488 $/$ GTLargeXP $=-298.8087288 \backslash \mathrm{MP} 2 / \mathrm{GTLargeXP}=-300.1137676 \backslash \mathrm{HF} / \mathrm{GFHFB} 1=-298.8335$ $775 \backslash \mathrm{HF} / \mathrm{GFHFB} 2=-298.8387575 \backslash \mathrm{G} 4=-300.2429454 \backslash$ FreqCoord=-4.2509014943,-0. $2145328567,0.0016051822,-1.5869185526,-0.2501947492,-0.0032629414,-5.4$ $806955055,2.4651613785,-0.0101315562,-5.0480539465,-1.0975518454,1.686$ $4626162,-5.0544260159,-1.1154980404,-1.6706557315,-0.8608408692,0.6281$ $510766,1.5357338722,-0.8668402369,0.6089118191,-1.5557796507,-4.071131$ $768,4.2866717148,-0.0212494661,-7.7826250103,2.5147854395,-0.006885224$ $5 \backslash P G=C 01[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 4 \mathrm{~N} 2 \mathrm{O} 2)] \backslash \mathrm{NImag}=0 \backslash \backslash 0.57173921,0.13845202,0.35594045,-0.00$ $059345,0.00134465,0.64483032,-0.27019951,-0.00869507,0.00032964,0.5474$ $6511,-0.05739198,-0.05564268,-0.00026318,0.17338012,0.26731586,0.00065$ 811,-0.00035770,-0.11654380,-0.00081912,0.00239274,0.71318710,-0.05941 $215,-0.00757732,-0.00003184,-0.03471920,0.02552259,-0.00006292,0.94401$ $915,-0.00505868,-0.07323941,-0.00012785,0.01355575,-0.00890284,0.00005$ $402,0.14535221,0.70717028,-0.00002364,-0.00012862,-0.10137019,-0.00000$ $890,0.00001528,0.00475693,-0.00179534,-0.00258175,0.23328068,-0.083415$ 57,-0.04062719,0.07871101,-0.02011450,-0.01312300,0.03238947,0.0030895 $4,0.00470567,-0.01006570,0.10023493,-0.04436174,-0.09061961,0.09342484$
$, 0.00216023,0.00253094,-0.00277863,-0.00875139,-0.02270096,0.03136873$, $0.04303082,0.10558420,0.08316579,0.09724850,-0.23877540,0.00075521,-0$. $00152530,0.00372958,0.00223790,-0.00057488,0.00229425,-0.09211828,-0.1$ $0401599,0.24821495,-0.08405264,-0.04184408,-0.07886969,-0.02022377,-0$. $01349058,-0.03215032,0.00311891,0.00480984,0.01001305,0.00510189,0.005$ $18298,0.00912429,0.10094022,-0.04560260,-0.09267917,-0.09481973,0.0021$ 5683, 0.00257682,0.00278257,-0.00890248,-0.02300565,-0.03105378, 0.00512 $886,0.00795861,0.01145649,0.04442872,0.10781794,-0.08329114,-0.0986687$ $7,-0.23612341,-0.00067201,0.00158650,0.00380470,-0.00215171,0.00083061$ $, 0.00258635,-0.00926851,-0.01175903,-0.01848993,0.09221375,0.10535646$, $0.24529458,-0.02208681,-0.01950381,-0.03643332,-0.10012027,-0.06885448$, $-0.09498066,-0.00197365,-0.00317060,-0.00147691,0.00111612,0.00008566$, 0.00056865, -0.00608549, 0.00044617,0.00138765,0.11893913,0.00939625, -0 $.00593169,0.00125318,-0.09756153,-0.10373916,-0.16835054,0.00272345,0$. $00378025,0.00246461,-0.00000098,-0.00043175,-0.00066561,-0.00152583,0$. $00166026,0.00002741,0.08142005,0.10197074,-0.00188243,0.00068784,0.002$ $73997,-0.10630404,-0.12880089,-0.30275253,-0.00046384,-0.00198091,-0.0$ $0022703,-0.00002985,0.00058752,0.00081867,0.00137207,-0.00045763,0.002$ $29118,0.11691778,0.14864649,0.32216031,-0.02194190,-0.01906314,0.03676$ 483,-0.09934660,-0.06719348, 0.09507228,-0.00196190,-0.00313995,0.00151 $267,-0.00609397,0.00043416,-0.00135937,0.00111758,0.00007681,-0.000570$ $54,0.00650756,0.00791715,-0.01287690,0.11804619,0.00940758,-0.00595767$, -0.00118358, -0.09559322,-0.10009767,0.16624675,0.00272170,0.00377220, $-0.00252161,-0.00155549,0.00166838,-0.00000985,0.00000363,-0.00043265$, $0.00067897,0.00800378,0.00390519,-0.01846298,0.07940969,0.09833584,0.0$ $0184271,-0.00050204,0.00261567,0.10676337,0.12660156,-0.30727610,0.000$ $44059,0.00193922,-0.00022546,-0.00132341,0.00045981,0.00229826,0.00002$ $648,-0.00057445,0.00082379,0.01265274,0.01807194,-0.02529300,-0.117154$ $40,-0.14622308,0.32679361,0.00021709,-0.00227571,0.00005093,0.00526709$, 0.00980167,-0.00006419,-0.26865225,-0.20894183,0.00133395,0.00005693, $0.00151127,-0.00108837,0.00005828,0.00153597,0.00107078,0.00196813,-0$. $00104763,0.00170185,0.00195223,-0.00106625,-0.00169261,0.34437018,-0.0$ $3403030,-0.03943870,0.00036464,0.00235961,0.00142476,-0.00001485,-0.19$ $820456,-0.44855642,0.00217691,0.00140996,-0.00521222,-0.00127399,0.001$ $41116,-0.00516995,0.00131840,0.00123293,-0.00066241,-0.00003152,0.0012$ $2336,-0.00064974,0.00003329,0.27884568,0.47836844,0.00020401,0.0003221$ $0,0.02411357,-0.00002282,-0.00002794,-0.00095781,0.00127991,0.00219327$ $,-0.06917899,0.00067088,-0.00332518,-0.00067100,-0.00068857,0.00336007$ $,-0.00071825,0.00086847,-0.00100767,0.00020262,-0.00088261,0.00102283$, $0.00020569,-0.00186336,-0.00267395,0.02317074,-0.03084771,0.00113429,0$ $.00007187,-0.00800835,0.01134913,-0.00004264,-0.58350844,0.05188758,0$. $00051081,0.00002465,0.00070802,-0.00128581,0.00002502,0.00073171,0.001$ $28173,0.00173528,-0.00132093,0.00156536,0.00172081,-0.00133141,-0.0015$ 5547, -0.08523766,-0.05424783, 0.00043409, 0.70409640,0.02918945, 0.007568 $49,0.00000703,0.00823728,-0.00546603,0.00002564,0.04711579,-0.13831744$ $, 0.00026023,0.00103135,0.00122241,-0.00063936,0.00102417,0.00127380,0$. $00062945,0.00034030,-0.00055143,-0.00018792,0.00033539,-0.00054388,0.0$ $0019376,-0.07836317,0.01989625,0.00013647,-0.00891057,0.11491783,-0.00$ $007996,0.00005404,0.01851325,-0.00002132,0.00002124,0.00205192,0.00054$ $724,0.00024827,-0.07191654,0.00103439,-0.00396207,0.00058060,-0.001041$ $06,0.00395000,0.00053099,0.00049560,-0.00043980,0.00005982,-0.00050597$, 0.00045255, 0.00005753, 0.00055103, 0.00010107, 0.02383343,-0.00097995,-0 $.00042529,0.02628900 \backslash \backslash 0.00001508,-0.00003066,-0.00000976,-0.00000206,-$ $0.00001271,-0.00001449,0.00000453,0.00004540,0.00000215,0.00000277,0.0$ $0000336,0.00000024,0.00000206,0.00000286,-0.00000309,0.00000722,0.0000$ $1771,0.00001647,-0.00001254,-0.00000504,0.00000577,-0.00001936,-0.0000$ $2600,0.00000115,0.00000231,0.00000507,0.00000156 \backslash \backslash \backslash @$

diaminodinitromethane

Temperature=
$E(Z P E)=$
$\mathrm{E}(\operatorname{CCSD}(\mathrm{T}))=$
DE(Plus) $=$
E(Delta-G3XP) $=$
G4 (0 K) =
G4 Enthalpy=
298.150000 Pressure=
$0.085304 \mathrm{E}($ Thermal $)=$
$-558.787412 \mathrm{E}($ Empiric $)=$
$-0.049166 \mathrm{DE}(2 \mathrm{DF})=$
$-0.643494 \mathrm{DE}(\mathrm{HF})=$
-560.031684 G4 Energy=
-560.021760 G4 Free Energy=
1.000000
0.094283
-0.180622
-0.399500
-0.056795
-560.022705
-560.066065
$26233529,0.7718167347,1.4924757247 \backslash \mathrm{~N}, 0,1.1234972634,-0.5416482523,0.11$ $69403851 \backslash \mathrm{~N}, 0,0.3149177757,1.6032941037,-0.5291834312 \backslash \mathrm{~N}, 0,-1.246761446$, $-0.3676564471,-0.4694786636 \backslash \mathrm{H}, 0,0.185433325,1.2740911148,2.0143637859 \backslash$ H, 0, -0. $79745027,-0.0712748932,1.9833977298 \backslash 0,0,1.5975935883,-0.9182096$ $209,1.1666109997 \backslash 0,0,1.4783762088,-0.846930285,-1.0084812707 \backslash \mathrm{H}, 0,0.618$ $1563512,1.3451535403,-1.461250304 \backslash \mathrm{H}, 0,-0.4238770207,2.2948623103,-0.57$ $28622501 \backslash 0,0,-1.7223737747,0.0637171932,-1.4971387833 \backslash 0,0,-1.567708642$ 9,-1.3805311193,0.1278359827
Version=EM64L-G09RevA.02\State=1-A\MP2/G TBas1=-558.7258963\MP4/GTBas1=-558.8106967\CCSD (T)/G3Bas1=-558.7874119 $\backslash \mathrm{MP} 2 / \mathrm{GTBas} 2=-558.7712374 \backslash \mathrm{MP} 4 / \mathrm{GTBas} 2=-558.8598625 \backslash \mathrm{MP} 2 / \mathrm{GTBas} 3=-559.10108$ $37 \backslash \mathrm{MP} 4 / \mathrm{GTBas} 3=-559.2101967 \backslash \mathrm{HF} / \mathrm{GTLargeXP}=-557.395443 \backslash \mathrm{MP} 2 / \mathrm{GTLargeXP}=-559$ $.7899184 \backslash \mathrm{HF} / \mathrm{GFHFB} 1=-557.4405753 \backslash \mathrm{HF} / \mathrm{GFHFB} 2=-557.4499525 \backslash \mathrm{G} 4=-560.0316843$ \backslash FreqCoord=-0.1621952036,0.9196269473,0.3795327762,-0.9876150077,1.458 5222533,2.8203703796,2.1231021389,-1.0235668572,0.2209853017,0.5951083 $504,3.0297867665,-1.000011759,-2.3560376861,-0.694769996,-0.8871860994$ $, 0.3504182001,2.4076832753,3.8065958873,-1.506962615,-0.1346900283,3.7$ $480785219,3.0190143536,-1.7351647161,2.2045752931,2.793726156,-1.60046$ $62924,-1.9057534117,1.168146211,2.5419717978,-2.7613628862,-0.80101148$ $31,4.3366612791,-1.0825527645,-3.2548147327,0.1204080452,-2.8291822834$ $,-2.9625399912,-2.6088257335,0.2415749972 \backslash \mathrm{PG}=\mathrm{CO1} \quad[\mathrm{X}(\mathrm{C} 1 \mathrm{H} 4 \mathrm{~N} 4 \mathrm{O} 4)] \backslash \mathrm{NImag}=0$ $\backslash \backslash 0.29659884,0.02935674,0.46336787,-0.08151330,-0.09447662,0.65533934$, $-0.08231272,-0.02320352,0.02349996,0.37869997,-0.01797826,-0.10508422$, $-0.02121169,0.27169853,0.55756247,0.07053074,-0.04215726,-0.26135465,0$ $.01965682,-0.01076442,0.64301980,-0.06536973,-0.00877040,0.00057144,-0$ $.01191598,0.01350063,0.00910818,0.45822287,-0.03012095,-0.07064410,0.0$ $0272874,0.01495877,-0.00522530,-0.00607584,-0.18563513,0.37736131,-0.0$ $0306590,0.00191753,-0.05483550,0.02186981,-0.01814305,-0.01891651,0.03$ $369579,-0.02322281,1.02274483,-0.08262564,0.00467361,0.03122116,-0.006$ $99693,-0.01544455,0.01903282,0.00812476,0.02645192,-0.01139502,0.40390$ $738,-0.03118251,-0.21259334,0.06988242,-0.00281974,0.01084165,0.002750$ $18,-0.00473489,-0.03621415,0.01221380,-0.21755489,0.56855119,0.0606605$ $5,0.09279963,-0.15353502,0.02308788,0.04168092,-0.03412199,-0.00390580$, 0.00636095,-0.00033216,-0.17513291,-0.05373325,0.60681792,-0.06713635 $, 0.00579905,0.00679021,0.00873719,0.00732292,0.00175903,-0.03663130,0$. 00215881,-0.01617469,-0.01011587,-0.01568154, -0.00297210, 0.44300919, 0. $02378050,-0.05946479,-0.00769000,-0.01017829,-0.01001045,-0.01557037,0$ $.00647977,0.03006699,0.01004516,-0.02532882,-0.02568763,0.00078789,0.1$ $0703376,0.67153501,0.01886742,-0.00666033,-0.06424234,-0.02491200,-0.0$ $2230353,-0.02715290,-0.01434621,0.00619939,0.01195168,0.00470762,0.013$ $37935,-0.00025267,0.16146012,-0.31238170,0.74378409,0.00589605,0.01214$ $341,0.01237212,-0.22739727,-0.17619380,-0.14881202,0.00084413,-0.00025$ 895,0.00292403,-0.00056301,0.00082329,0.00045782,0.00011762,-0.0013384 $8,0.00187569,0.23026569,-0.00068531,-0.00623028,-0.01220192,-0.1384013$ $5,-0.12178857,-0.07801491,-0.00190622,0.00101543,-0.00345260,-0.000644$ $94,-0.00161637,0.00080358,-0.00246994,-0.00075456,0.00114585,0.1621524$ $0,0.14046192,-0.02978472,-0.02218660,-0.02443709,-0.12672821,-0.096922$ $07,-0.15780775,-0.00048782,0.00028485,-0.00048305,-0.00008806,0.000907$ $31,0.00331966,0.00613830,0.00144150,-0.00506312,0.14018899,0.10620333$,
$0.16988235,-0.01064843,-0.00664814,0.01415063,-0.04475003,-0.08047216$, $0.02991891,0.00213942,-0.00206111,0.00408129,0.00051956,0.00008788,0.0$ $0076782,0.00138036,0.00403291,-0.00137464,-0.00841121,-0.02026517,0.01$ $378809,0.05950163,0.00607292,0.00819650,-0.00235606,-0.11868563,-0.317$ $10673,0.15698832,0.00067842,0.00049812,-0.00143284,0.00028235,0.000340$ $45,-0.00245320,0.00106260,0.00319897,-0.00144361,0.00160102,-0.0136874$ $1,0.01023148,0.10963308,0.32326627,0.00963248,0.03591743,-0.01960099,0$ $.05171298,0.14166029,-0.14943292,-0.00012108,0.00032855,-0.00038230,0$. $00276281,-0.00350779,-0.00647654,0.00050195,0.00531521,-0.00442319,-0$. $00650312,-0.01833840,0.01228259,-0.05741657,-0.15933511,0.16175998,-0$. $00250980,0.01579734,-0.03101471,-0.00164842,0.00027095,0.00025028,-0.1$ $9681656,0.10499179,-0.16820364,-0.00510002,0.00666598,0.00049321,-0.00$ $086140,0.00688751,0.00219619,-0.00101097,0.00025847,0.00011743,0.00029$ 153, 0.00058989,-0.00020453,0.17060165,0.02319975,0.00644258, 0.02520123 $, 0.00027647,-0.00146265,0.00004579,0.10419584,-0.14912070,0.13530130,0$ $.00057611,-0.00157790,-0.00013528,-0.00036154,-0.01273582,-0.00055175$, $0.00016820,0.00055247,0.00023987,0.00061974,-0.00099102,-0.00002382,-0$ $.11860321,0.11902723,-0.01007139,0.00596080,-0.01916108,0.00522873,-0$. $00375117,0.00914612,-0.17311143,0.13707467,-0.45545746,-0.00156467,0.0$ $0217808,0.00189585,0.00146271,0.00700171,-0.00364664,-0.00064068,0.002$ $28559,0.00106820,-0.00263648,-0.00009906,0.00102864,0.20063228,-0.1587$ $7272,0.57619432,0.00616230,0.00647944,0.02809033,-0.00724933,0.0069281$ $2,0.00533486,-0.16242897,0.07895351,0.14161568,-0.00061274,0.00404772$, $-0.00000262,0.00268701,0.00171292,0.00044152,-0.00043121,-0.00037150,-$ $0.00029905,0.00093397,0.00028545,-0.00053402,0.03907614,-0.01287757,-0$ $.01988083,0.12696902,0.01143989,0.00717964,-0.02188146,0.00681589,-0.0$ $0461849,-0.00546903,0.07837720,-0.13315919,-0.11925066,0.00095843,-0.0$ $0219455,0.00013762,-0.00122233,-0.00757261,-0.00141285,0.00027094,0.00$ $055080,0.00039538,-0.00101727,-0.00029152,0.00022589,-0.01285227,0.033$ $47478,0.01490808,-0.08596536,0.10181391,0.00874563,-0.00396764,-0.0193$ $4476,0.00775939,-0.00587496,-0.00140795,0.14053048,-0.11756126,-0.4822$ $3038,-0.00179311,0.00149698,0.00181697,-0.00081581,-0.00343184,-0.0051$ $3002,-0.00076207,0.00221219,0.00053861,-0.00299766,-0.00000651,0.00041$ $868,-0.00027261,-0.00316787,-0.11595518,-0.15397353,0.13276642,0.61059$ $473,-0.01019228,-0.00581851,0.01361081,0.00059158,-0.00037796,0.000374$ $43,0.00159486,-0.00197117,-0.00401366,-0.05246831,0.04064636,0.0873198$ $3,0.00214332,-0.00120187,0.00433827,0.00005975,-0.00001667,0.00077206$, $0.00153095,-0.00004514,0.00022197,0.00007071,0.00079978,0.00110271,-0$. $00283074,0.00093637,0.00201273,0.06749159,-0.01258841,0.01094578,0.032$ 65753,-0.00187664,-0.00599671, 0.00300014,-0.00123675,0.00135924, 0.0069 $0346,0.05353163,-0.08398040,-0.09380065,-0.00031511,-0.00054523,0.0015$ $3260,0.00000367,-0.00006069,0.00000686,-0.00010802,0.00052890,0.001783$ $79,-0.00030364,-0.00023599,-0.00262558,0.00145978,-0.00077115,-0.00410$ $970,-0.04215660,0.08348500,0.00326512,-0.00599812,-0.02280622,0.001635$ $73,0.00413898,-0.00021157,-0.00030881,0.00028703,-0.00279914,0.1287519$ $8,-0.07684506,-0.37483723,-0.00050930,-0.00046111,0.00065741,0.0000874$ $1,-0.00020647,0.00043568,0.00025773,-0.00057227,-0.00072320,0.00059352$ $,-0.00029468,0.00081135,0.00030839,-0.00183549,0.00162932,-0.12692797$, $0.08195069,0.39354997,0.00603570,-0.01589627,0.00042425,-0.00054792,-0$ $.00096084,-0.00014025,0.00008916,-0.00029032,0.00225779,-0.24613251,0$. $22872774,0.01006993,0.00078905,-0.00171978,0.00215350,0.00005457,0.000$ $63760,-0.00040726,0.00007414,-0.00005678,0.00006266,0.00031286,-0.0002$ $9754,-0.00032011,0.00031114,0.00002312,-0.00060350,-0.00911994,0.00364$ 505,-0.00610230,0.24957993,0.02265196,-0.03185089,0.00531526, 0.0004762 $0,0.00157133,-0.00245238,-0.00241702,-0.00163800,0.00229721,0.18648036$, -0. $20783641,0.01649425,0.00176055,-0.00128311,0.00282075,-0.00020096$, $0.00058748,-0.00014380,-0.00051824,0.00005038,-0.00014296,0.00084996$, -
$0.00065886,0.00065747,0.00014731,0.00054467,0.00002964,0.00495650,-0.0$ $0497823,0.00132914,-0.21419700,0.24155598,-0.02162171,0.01364413,0.001$ $04501,0.00048340,-0.00255437,0.00011659,0.00613063,0.00220931,-0.00415$ $204,-0.00089344,0.03569199,-0.05302324,0.00099135,-0.00103452,0.001870$ $47,-0.00077957,0.00126919,-0.00063543,0.00058081,-0.00032544,0.0003100$ $5,-0.00241598,0.00041312,-0.00015430,-0.00108519,-0.00111150,0.0020897$ $0,0.02491194,-0.02591980,0.00428238,-0.00617536,-0.02384724,0.04947214$,-0.00148166, 0.00909289,-0.03303934,-0.00478635,-0.00537274,-0.0042873 $5,-0.00052750,-0.00614442,-0.00293860,-0.00152520,-0.00045454,0.000176$ $73,-0.19342584,0.03602071,-0.19604958,0.00028713,0.00106702,-0.0023034$ $0,0.00011997,-0.00014420,0.00068084,-0.00099574,0.00245193,-0.00039224$, - 0.00153269, 0.00195270, 0.00186790, 0.00029199, -0.00025138, -0.00050527, $-0.00099626,-0.00038017,-0.00013475,0.16704198,-0.01037982,0.00977364$, $0.00079328,0.00041310,0.00088902,-0.00080512,-0.00052564,-0.00549002,-$ $0.00105825,-0.00382646,0.00155725,-0.00717504,0.03995246,-0.15558560,0$ $.13966160,0.00044656,0.00018289,-0.00024945,-0.00125251,-0.00126000,-0$ $.00161421,-0.00164103,0.00283258,-0.00170408,-0.00015917,0.00159208,0$. $00005766,0.00140613,-0.00003985,-0.00104176,0.00017197,0.00205656,0.00$ $070530,-0.04924652,0.17387653,-0.02387564,0.02080741,-0.02352006,-0.00$ $146702,-0.00309850,-0.00088216,0.00186984,-0.00850787,-0.01122559,0.00$ $360038,-0.00316217,0.00600372,-0.19896244,0.13768467,-0.45238275,0.000$ $01327,-0.00038057,-0.00097043,0.00018382,0.00071658,0.00178571,-0.0021$ $4211,0.00257875,0.00182376,0.00001812,0.00229609,0.00538953,-0.0022860$ $6,-0.00107478,0.00007657,-0.00052972,-0.00137003,-0.00045111,0.2303894$ $9,-0.21172713,0.52490102,0.00758371,-0.02300564,0.01483645,-0.00042379$, $-0.00292085,-0.00272644,0.00267483,-0.00103276,-0.00065289,-0.0064114$ $9,-0.00857085,-0.00102035,-0.15069299,-0.14618085,0.04064209,0.0002887$ $1,0.00064560,-0.00090634,-0.00268186,-0.00127397,-0.00079637,-0.001410$ $00,-0.00014796,0.00019141,-0.00105390,0.00028270,0.00030216,0.00083651$ $, 0.00019642,-0.00054622,-0.00044992,0.00039054,0.00000786,0.03753016,0$ $.02464093,-0.00681194,0.11421001,-0.01356650,-0.02003839,0.02323931,0$. $00052620,0.00042865,-0.00147511,0.00199417,-0.00880963,-0.00211827,-0$. $01015475,-0.00958979,-0.00176744,-0.14503969,-0.43116116,0.18001423,0$. $00038269,0.00078688,-0.00020866,-0.00203099,-0.00274290,-0.00226887,-0$ $.00291174,0.00445331,-0.00311380,-0.00064065,0.00345162,0.00155689,0.0$ $0284278,0.00028933,-0.00045088,0.00021304,0.00187911,0.00085983,0.0114$ $0874,-0.03038508,0.06523756,0.15697668,0.49143806,-0.00176928,0.004399$ $64,0.00645336,-0.00182747,-0.00285643,-0.00099410,0.00037478,-0.000105$ $70,-0.00388237,0.00079045,-0.00125183,0.00272472,0.04033065,0.17829341$, -0. $19597000,-0.00042188,-0.00132485,0.00186977,0.00069627,0.00008773$, $0.00345349,-0.00002933,-0.00083395,0.00240642,-0.00003367,0.00023149,0$ $.00159075,-0.00143706,-0.00030457,-0.00006530,-0.00068962,-0.00098730$, $-0.00077023,0.00653558,0.08415717,-0.05054821,-0.04251941,-0.25950480$, $0.23373171 \backslash \backslash-0.00000210,0.00000532,0.00000304,0.00000240,-0.00000336,0$ $.00000319,0.00000458,-0.00000670,-0.00000578,-0.00000148,0.00000019,-0$ $.00000373,0.00000279,-0.00001525,-0.00000447,-0.00000351,-0.00000109,-$ $0.00000813,-0.00000107,0.00000019,-0.00000021,-0.00000544,0.00000378$, -$0.00000102,-0.00000754,0.00000641,0.00000671,0.00000123,0.00000001,0.0$ $0000018,0.00000356,-0.00000608,0.00000491,0.00000178,0.00000443,0.0000$ $0408,0.00000481,0.00001214,0.00000123 \backslash \backslash \backslash @$

END OF SUPPORTING INFORMATION

[^0]: ${ }^{*}$ Corresponding author: Tel/Fax: 1.250.487.0166 Email: rayne.sierra@gmail.com. ${ }^{a}$ Ecologica Research, 301-1965 Pandosy Street, Kelowna, British Columbia, Canada, V1Y 1R9. ${ }^{b}$ Department of Chemistry, Okanagan College, 583 Duncan Ave West, Penticton, British Columbia, Canada, V2A 8E1.

