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Adiabatic ionization energy (AIE) calculations were performed at the AM1, PM3, PM6, PDDG, HF/QZVP, and
B3LYP/QZVP levels of theory on 722 atmospherically relevant organic compounds with available experimental
kOH . From the starting set of molecules, a final suite of 114 mono- and polyfunctionalized compounds provided
converged neutral and cationic geometries without imaginary frequencies for all six levels of theory. NIST evaluated
AIEs were available for 54 compounds, providing mean absolute AIE prediction errors of 0.31 (AM1), 0.28 (PM3),
0.50 (PM6), 0.36 (PDDG), 1.22 (HF/QZVP), and 0.20 eV (B3LYP/QZVP). Modest correlations were found
between the experimental (r=-0.68, SE=0.81) and computationally estimated (r=-0.77 [AM1], -0.75 [PM3], -
0.83 [PM6], -0.79 [PDDG], -0.83 [HF/QZVP], and -0.82 [B3LYP/QZVP]; SE=0.75 [AM1], 0.78 [PM3], 0.66
[PM6], 0.73 [PDDG], 0.67 [HF/QZVP], and 0.68 [B3LYP/QZVP]) AIEs and the corresponding experimental log
kOH . Univariate AIE versus kOH correlations are of lower predictive ability than state-of-the-art multivariate
techniques, and are limited by the inability to calculate reliable AIEs for large numbers of atmospherically relevant
compounds due either to convergence failures at various levels of theory or the presence of imaginary frequencies
for converged cationic geometries.
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The hydroxyl radical (·OH) plays a fundamental role in the abiotic cycling of organic, organometallic, and
inorganic compounds in the troposphere [1–4]. In addition to experimental approaches, theoretical methods
for predicting the rate constants for reaction of organic compounds with the hydroxyl radical (kOH) have been
the focus of a number of studies. In general, these predictive investigations have taken one of three general
tactics [5–24]: (1) rigorous and time-intensive medium- through high-level computational studies (e.g., density
functional theory, composite methods) on all possible mechanistic pathways for the reaction of a particular
compound with the hydroxyl radical (i.e., addition to unsaturated groups, hydrogen abstractions, etc.); (2)
regression based quantitative structure-activity relationship (QSAR) models employing a range of two- and three-
dimensional molecular descriptors; and (3) univariate correlations with physicochemical properties (e.g., ionization
energies [IEs], bond dissociation enthalpies [BDEs]).

In the absence of experimental data, high-level theoretical studies typically offer the most accurate approach.
However, they are not suitable for screening large numbers of potential atmospheric contaminants due to the
computational costs and substantial user-interaction/expert judgement required on an individual compound case-
by-case basis to ensure all relevant mechanistic pathways have been rigorously investigated. Multivariate QSAR
models are amenable to rapid screening techniques, and many offer reasonable accuracy. Because of the often
arbitrary nature of the variables chosen for multivariate QSARs (which also may have little or no physicochemical
relevance towards the process(es) under study), and potential concerns regarding statistical rigor and model under-
/overfitting, the true applicability domain of such models can be the subject of debate. Among the univariate
models, the two most relevant physicochemical descriptors are IEs and BDEs. Such univariate models are not
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subject to the same types of statistical concerns as their multivariate analogs, and it may be reasonable to assume
their applicability domains are much more robust. These two properties often correlate well against each other,
but the IE is the easier to obtain - particularly as molecules become more complex. For example, even a relatively
small semi-volatile organic compound may have >10 different BDEs, but only a single IE value.

For this reason, several studies have investigated univariate correlations between IEs and kOH [5,7,12,15]. Gaffney
and Levin [5] found high correlation coefficients between experimental IEs and log kOH for a small set of 18
alkenes and dienes that react via hydroxyl radical addition (r=0.97, m=-0.61±0.04, b=-4.68±0.37), as well as
a separate minimal set of 4 oxygenated and halogenated alkenes that also react via the addition mechanism
(r=0.95, m=-0.57±0.13, -5.42±1.24). Subsequently, Gusten et al. [7] reported separate aromatic and aliphatic
based correlations between experimental vertical IEs and experimental -log kOH for larger sets of organic com-
pounds: aromatics, n=32, r=0.95, s=0.29, m=1.52±0.10, b=-2.06±0.84; and aliphatics, n=129, r=0.95, s=0.36,
m=0.79±0.02, b=3.06±0.24. More recently, Grosjean and Williams [12] published a correlation between the log
kOH for various unsaturated organic compounds and IE (n=36, r=0.89, m=-0.44±0.04, b=-6.23±0.34), along
with a separate correlation for a small subset of chlorinated olefins (n=7, r=0.81, m=1.44±0.47, b=-25.6±4.6).
For a suite of 13 hydrofluorocarbons (and methane), Percival et al. [15] also reported the following correlation
between the log kOH and IE: n=14, r=0.96, m=-1.12, b=0.85.

With the exception of the work by Gusten et al. [7] on aliphatics (n=129), the datasets to date have been limited
in size and scope, and have not considered in detail the use of theoretical methods for estimating IEs within these
types of models. This latter consideration is critical, as the majority of compounds for which estimated kOH

values are desired have either not been synthesized experimentally, or do not have experimental IEs available in
the open literature. Thus, IE versus kOH correlations for atmospheric persistence screening will generally need
to employ estimated IEs as inputs, whether or not the model was developed and trained with experimental or
theoretical IEs. Furthermore, unless computationally expensive high-level theoretical methods are used, which
are prohibitive for screening large numbers of molecules and/or compounds with >15-20 heavy atoms, there
are known systematic biases between experimental and predicted IEs using many of our current computational
methods [25]. In this context, the most internally consistent path forward appears to be using predicted IEs to
develop and train a univariate kOH prediction model, along with predicted IEs (at the same level of theory) for
subsequent screening efforts.

In addition, separating compounds by class (e.g., unsaturated/aromatic, saturated, halogenated [partially or fully],
heteroatom substituted, caged/cyclic or having low-energy conformations that may provided hitherto unforeseen
kinetic limitations for oxidants reaching the preferred reaction center, etc.) is often difficult for polyfunctionalized
molecules (necessitating time-consuming expert judgement, thereby possibly defeating the purpose of the chosen
modeling approach), or even inaccurate (if property versus kOH model development correlations cross in the
chemical space for different classes of compounds, the correct classification for a new polyfunctional molecule
may be difficult to determine). For these reasons, we investigated the feasibility of developing reliable unclassified
univariate IE versus kOH correlations using estimated IEs obtained at computationally tractable levels of theory
(semiempirical, Hartree-Fock, density functional theory) as could be applied in atmospheric persistence screening
models with a training set of molecules from a large (n>700) experimental kOH database.

Calculations were conducted in Gaussian 09 (G09) [26] using the AM1 [27, 28], PM3 [29, 30], PM6 [31], and
PDDG [32–36] semiempirical methods as reimplemented [37–39] in G09, and the Hartree-Fock (HF) and B3LYP
density functional theory (DFT) [40–42] model chemistries with the QZVP [43] basis set. For developing broad
and robust kOH prediction correlations using theoretical methods, basis sets with the largest practical range
of applicability with reasonable completeness are preferred. The QZVP basis set extends through the sixth
period (H-Rn), beyond that of comparable Pople (e.g., 6-311G level [H-Kr]) or Dunning (e.g., cc-pVQZ [H-Ar,
Ca-Kr]) basis sets. Semiempirical methods are computationally inexpensive, and thus attractive for potential
structure-activity relationships that may comprise large molecules. Conversely, MPn and composite method
calculations are prohibitively expensive for compounds with many heavy atoms. HF and DFT model chemistries
often offer an acceptable compromise between accuracy and cost for larger compounds. The large variety of
density functionals presently available precludes a rigorous examination of all potential methods at this level of
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Table 1: Summary error statistics for AIE estimation accuracy at each of the six levels of theory under study
against 54 compounds with NIST evaluated AIEs.

MSDa MADb RMSDc MAXDd

AM1 -0.21 0.31 0.40 1.30 [difluoromethane]
PM3 -0.04 0.28 0.36 1.11 [chlorodifluoromethane]
PM6 -0.24 0.50 0.66 2.17 [p-dichlorobenzene]
PDDG -0.16 0.36 0.48 1.26 [ethanethiol]
HF/QZVP -1.18 1.22 1.27 1.84 [ethylene oxide]
B3LYP/QZVP -0.15 0.20 0.25 0.61 [hexafluorobenzene]

a mean signed deviation. b mean absolute deviation. c root mean squared deviation. d maximum deviation with
compound name in brackets.

Table 2: Regression statistics for linear correlations between theoretical AIE and the corresponding experimental
kOH at each of the six levels of theory under study for 114 compounds with experimental kOH .

r p CV SE m b
AM1 -0.77 <10−23 -0.07 0.75 -0.90±0.07 -3.01±0.64
PM3 -0.75 <10−21 -0.07 0.78 -0.91±0.07 -2.73±0.70
PM6 -0.83 <10−29 -0.06 0.66 -0.96±0.06 -2.60±0.55
PDDG -0.79 <10−24 -0.07 0.73 -0.86±0.06 -3.28±0.59
HF/QZVP -0.83 <10−28 -0.06 0.67 -0.73±0.05 -5.22±0.39
B3LYP/QZVP -0.82 <10−28 -0.06 0.68 -0.83±0.05 -3.64±0.50

theory. In previous benchmarking efforts on ionization energy prediction ability, the B3LYP functional displayed
above average performance compared to a range of other density functionals [25], and was therefore chosen for
the present task. All enthalpies and free energies include thermal and zero-point corrections; all final geometries
comprise local minima absent any imaginary frequencies.

From a starting suite of 722 organic compounds with experimental kOH in the database from Wang et al. [44], a
set of 114 final compounds provided converged neutral and cationic geometries without imaginary frequencies for
all six levels of theory (Supporting Information Table S1). Of these 114 compounds, 54 have NIST evaluated [45]
adiabatic ionization energies (AIEs) for comparison. Riley et al. [25] reported mean absolute deviations (MAD)
ranging from 0.20 eV (MPWB95) to 0.83 eV (cSVWN5), with an average error of 0.25 eV and a B3LYP MAD of
0.23 eV, using the 6-31+G* basis set on a suite of 37 compounds and across 37 different functionals. Similar errors
were obtained by these authors using the aug-cc-pVDZ basis set. With our 54 compounds, we obtain similar
error metrics with the B3LYP functional (MAD=0.20 eV; Table 1), slightly worse performance for the four
semiempirical methods (AM1 MAD=0.31 eV; PM3 MAD=0.28 eV; PM6 MAD=0.50 eV; and PDDG MAD=0.36
eV), and unacceptable performance with the HF method (MAD=1.22 eV).

For the 54 compounds with NIST evaluated AIEs, we find a relatively low correlation against the correspond-
ing experimental kOH (r=-0.68, p<10−7, CV=-0.07, SE=0.81, m=-0.78±0.12 [±SE], b=-3.89±1.11; Figure 1).
This modest quality correlation demonstrates the inherent difficulty in generating reliable univariate predictive
relationships for kOH based on theoretically obtained physico-chemical property descriptors. Using the various
theoretical methods, we find slightly improved qualities of fit between the estimated AIEs and corresponding
kOH (Figure 2(a)-(f); Table 2). However, with standard errors of about 0.7 log kOH units (about five-fold error
in kOH), these regressions are outside the desired accuracy of 0.3 log kOH units (two-fold error in kOH) that
can be obtained by multivariate approaches and bond additivity methods [9, 10, 13, 16]. Consequently, general
univariate IE versus kOH prediction approaches for organic compounds appear inferior to current start-of-the-art
multivariate approaches. Not only are univariate IE versus kOH correlations of lower predictive ability than the
multivariate techniques (which often offer similar computational expense), but a key limitation is the inability to
calculate reliable IEs for large numbers of atmospherically relevant compounds due either to convergence failures
at various levels of theory or the presence of imaginary frequencies for converged cationic geometries.
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Figure 1: Correlation between NIST evaluated experimental AIE and corresponding experimental kOH . Quoted
errors in the experimental AIE are shown; in most cases, these error bars are smaller than the size of the symbols.
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Figure 2: Correlations between theoretical AIEs obtained at the (a) AM1, (b) PM3, (c) PM6, (d) PDDG, (e)
HF/QZVP, and (f) B3LYP/QZVP levels of theory and corresponding experimental kOH .
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