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Cells comprising a tissue migrate as part of a collective.  In order to coordinate collective multi-

cellular migration, each constituent cell integrates local information including chemical signals 

and mechanical stresses.
1,2

   The boundary between a constituent cell and its immediate 

neighbors comprises cell-cell junctions and cryptic lamellipodia
7
, but the state of local 

mechanical stress exerted at that boundary has not been accessible experimentally.  As such it is 

not clear how collective mechanical processes could be coordinated over length scales spanning 

large multi-cellular assemblies.  We report here maps of the stresses exerted within and between 

cells comprising a monolayer.  Within the cell sheet there arise unanticipated fluctuations of 

mechanical stress that are severe, emerge spontaneously, and ripple across the monolayer.  These 

fluctuations define a rugged stress landscape that becomes increasingly heterogeneous, sluggish, 

and cooperative with increasing system density.  Within that persistently rugged stress 

landscape, local cellular migrations are found to migrate along local orientations of maximal 

principal stress.  Migrations of both endothelial and epithelial monolayers conform to this 

behavior, as do breast cancer cell lines before but not after the epithelial-mesenchymal 

transition.  In these diverse cell types, our data indicate that collective migration is governed by a 

simple but unifying physiological principle: neighboring cells join forces to transmit appreciable 

intercellular normal stress across local cell-cell junctions, but migrate along orientations of 

minimal intercellular shear stress. 

 A variety of fundamental processes in development, health, and disease depend upon the 

coordinated motion of cell groups 
3
.  To describe coordinated cellular motions in these processes, high-
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throughput genomic approaches have identified molecular players and mapped their interaction into 

comprehensive signaling networks 
4
.  But even with detailed signaling and structural information in 

hand, the role of intercellular adhesion in collective migration is disputed 
5
, and our understanding of 

collective cellular migration lacks predictive power and remains largely descriptive.  Central to these 

limitations is the absence of a physical picture that links cell motion to mechanical stresses exerted 

within the cell body and at cell-cell boundaries; these stresses have never been measured.  Here we 

report high resolution maps of these stress components everywhere within an advancing monolayer 

sheet, which serves as a simple experimental model system.  These stress maps reveal that the local 

cellular trajectory follows local stress fields that are severely heterogeneous and dramatically 

cooperative over distances spanning many cell bodies.  Together, these findings reveal an 

unanticipated but unifying physiological principle, namely, that each cell tends to migrate and remodel 

so as to maintain minimal local intercellular shear stress.   Detailed knowledge of the biology of the 

cell-cell junction, the cryptic lamellipodium, or any specific molecular event could never predict such a 

unifying principle because it is an emergent property of a multicellular collective system.   By analogy 

to the well known guidance mechanisms of chemotaxis, durotaxis and haptotaxis, we call this distinct 

but innately collective mechanism plithotaxis, from the Greek “plithos” denoting crowd, swarm, 

multitude, or throng. 

To measure the local state of stress within a monolayer (Fig. 1), we developed Monolayer 

Stress Microscopy, MSM (online supplement 1).  On an inverted optical microscope, we record cell-

generated displacements of fluorescent markers embedded near the surface of a collagen-coated 

polyacrylamide gel substrate on which the cells are adherent.  From those displacements we then 

compute a map of the tractions forces, ,  exerted by the monolayer upon the gel.
6
  Finally, from these 

traction forces measured directly at the interface between the cell and its substrate, a straightforward 

balance of forces as demanded by Newton’s laws is then used to obtain the distribution of the 

mechanical stress everywhere within the cell sheet (Fig. 1 a).  Gradients of these stresses within the 
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cell sheet arise from the pileup of traction forces applied on the underside of the cells.  Measured 

stresses within the monolayer sheet (Fig. 1 b) correspond to mean values over the full thickness 

(height, h) of the cell layer.   At each point within the sheet the local coordinate system (Fig. 1 c) can 

be rotated in the cell plane in order to find those special orientations along which the local normal 

stress is maximal and minimal, respectively, thus defining the two principal stress components (  

and ) and the two corresponding, mutually perpendicular, principal orientations (Fig. 1 d; Online 

Supplement 1).  As such, the associated MSM result displays at high resolution, and maps separately, 

each individual component of the in-plane stress tensor. 

We consider first the average local normal stress, simply defined as , and 

its spatial heterogeneity.  A traditional image of an advancing monolayer of rat pulmonary vascular 

endothelial (RPME) cells is unremarkable (Fig. 2 a).  The underlying distribution of local normal 

stress, by contrast, is severely heterogeneous; normal stresses were found to be mostly positive 

(tensile) with values exceeding 300 Pa in regions spanning tens of cells.  These regions of 

predominantly tensile stresses alternate with regions of weakly negative (compressive) stresses (Fig. 2 

b).  These fluctuations occur steadily over distances spanning multiple cell widths and define a stress 

landscape that is rugged (Figs. 2b, k), by which we mean that the spatial fluctuations over these 

relatively short distances are comparable in magnitude to the spatial mean values.  We consider next 

the distribution of the intercellular shear stress (Fig. S1) which is not to be confused with any 

additional shear stress that might be imposed by flow on the monolayer surface, which in this case is 

everywhere zero.  As in the case of the normal stress, the shear stress at a point within a material varies 

with orientation and attains its maximal value, , at 45
o
 from the principal 

orientations (Fig. 1 d).  The local maximal shear stress was systematically smaller than the local 

normal stress, but was also characterized by a rugged landscape (Fig. 2 c).  As the monolayer 

advances, these respective stress landscapes evolve continuously in time (supplemental movie SM1).   
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Finally, dependence of local stresses upon orientation signifies stress anisotropy.  To visualize this 

anisotropy, we plotted ellipses whose major axis corresponds to the local  and minor axis 

corresponds to the local , each aligned with corresponding principal orientations.  Where 

 the stress field is isotropic, the ellipse becomes a circle,  is zero, and there exists no 

preferred stress orientation.  But where  the local stress field is highly anisotropic, the 

ellipse becomes spindle-like,  is nonzero, and there exists a strongly preferred and well-defined 

stress orientation.  From region-to-region, we found that ellipse size, ellipse shape, and ellipse 

orientation varied extensively, but with strong local correlations (Fig. 2 e). 

As cells extend cryptic lamellipodia
7
 and advance within the monolayer stresses at every point   

and at every instant of time must be in mechanical balance.  Nonetheless, no mechanistic framework or 

physical picture yet exists that might link these stresses to cellular orientation, remodeling, or 

migration.  In the case of the single cell in isolation, by contrast, uniaxial stretch can cause the cell to 

reorient to some defined angle relative to the applied stress, from parallel to perpendicular, depending 

upon the time scale of the mechanical perturbation.  Here we ask in the case of the monolayer, to what 

extent are intercellular stresses are meaningful biologically and useful predictively?  The answer to this 

question is suggested by two pieces of experimental evidence.  First, since phase-contrast images and 

stress maps are mutually independent measurements, the coincidence between orientation of the cell 

body versus orientation of the maximal principal stress is striking (Fig. 2 e).  Further, because the 

maximal principal orientation corresponds to the local axis of highest normal stresses and zero shear 

stress, this result suggests that the cell-cell junction, as well as the cell body, support high normal 

stresses, which are overwhelmingly tensile, but only minimal shear stresses.  One would predict, 

therefore, that local stress fibers might align with maximal principal orientations, and for the spindle-

like RPME cells this is in fact seen to be the case (Fig. 2 e).  Second, cells not only align with the 

maximal principal orientation, but also migrate along that orientation (Fig. 2 e, red arrows; 
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supplemental movie SM2).  Appreciable portions of the stress field are approximately isotropic, 

however, and therefore the local orientation of cell motion would not be expected to correlate with a 

stress field possessing no preferred orientation. 

As such, these observations lead naturally to the following prediction: regions of higher stress 

anisotropy will exhibit stronger alignment between the direction of local maximal principal stress and 

that of local cellular migration velocity.  To test this prediction, we reasoned as follows.  Since the 

maximum local shear stress is given by , we took  as a direct and quantitative 

index of stress anisotropy.  We then rank-ordered this stress anisotropy by quintiles.  For each point 

within the cellular monolayer falling within any given quintile, we measured the alignment angle  

between the orientation of the local maximal principal stress and the orientation of the local cellular 

migration velocity vector (Fig. 2 f, inset).  The greater was the local shear stress, the narrower was the 

distribution of  (Fig. 2 f, g, h).  We then constructed the cumulative probability distribution function, 

, reasoning that if there were perfect alignment between the orientation of local cellular migration 

velocity and that of local maximal principal stress, then all angles  would be  and the cumulative 

probability distribution would be a step function from probability  to probability  occurring at .  

If there were no alignment, however, then all angles between and  would be equally likely, and 

the cumulative probability function would be a straight line from probability at 0
o
 to probability  at 

.  In the regions with lowest stress anisotropy (blue), the angular distribution was broad but not 

uniform.  In regions with highest stress anisotropy (red), the angular distribution was quite narrow; the 

orientation of cellular velocity and the orientation of maximal principal stress were coupled strongly.  

The stronger the stress anisotropy the greater the overall degree of alignment. 

To assess the generality of this finding, we then examined monolayers comprising Madin-

Darby canine kidney (MDCK) cells (Fig. 2 j), which were of particular interest because they are 

epithelial, not endothelial, and because they are rounded in the plane, not spindle-shaped as are RPME 
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cells.  Despite these differences in cell type and cell morphology, the stresses were heterogeneous (Fig. 

2 k, l) and the local orientation of cellular migration was also found to follow the local orientation of 

maximal principal stress (Fig. 2 m, n).  To assess further the generality of this finding, we next 

examined the behavior of monolayers of well-established breast-cancer model systems: MCF10A cells 

(control or vector) (Fig. 3 a), MCF10A cells overexpressing ErbB2/HER-2/neu (Fig. 3 b), and 

MCF10A cells overexpressing 14-3-3! (Fig. 3 c).  We chose these cell lines because each exhibits 

pronounced morphological differences as well as diverse levels of transforming potential, expression 

of cell-cell junction proteins, and cell proliferation.8  For these three monolayers systems the traction 

forces were comparable in magnitude (Fig. 3 d, e, f) but, compared with control cells (Fig. 3 g) and 

ErbB2 cells (Fig. 3 h), the normal intercellular stresses in the 14-3-3! cell sheets (Fig. 3 i) were 

substantially smaller.  Because 14-3-3! cells have decreased expression of cell-cell junctional 

markers
8
, this finding is also consistent with limited transfer of physical forces from cell-to-cell.  Much 

as in the case of endothelial cells and control epithelial cells, ErbB2 cells moved in alignment with the 

direction of maximum principal stress.  By contrast 14-3-3! cells, which have poor cell-cell contacts, 

were seen to move nearly independently of the orientation of the maximum principal stress (Fig. 3 m).  

To assess further the importance of cell-cell adhesion, we weakened cell-cell contacts of MCF10A 

vector cells by calcium chelation.  As expected, weakening of cell-cell junctions (Fig. 4 g, i) caused 

prompt ablation of the rugged stress landscape (Fig. 4 h, j), and simultaneously weakened coordination 

between local stress orientations and local cellular motions (Fig. 4 s, magenta).  Both the ruggedness of 

the stress landscape and the guidance of motion by stress recovered upon returning to normal growth 

medium (Fig. 4 i, s, blue), but this reversibility was blocked in the presence of E-cadherin antibodies 

(Fig. 4 r, s, red).  Together, these observations establish that transmission of stresses across many cells 

is necessary for the cells to follow the local orientation of the maximal principal stress. 



7 

 

For collective migration to be coordinated across many cells, intercellular stresses might be 

expected to be cooperative over comparable distances.  To quantify the spatial extent of any such stress 

cooperativity, we first examined the spatial autocorrelation function of the average normal stress:  

 

where  is the local departure of the average normal stress at position  from its spatial mean 

,  is the variance of those departures, and the notation  means equality within 

a uniform bin width of 5 microns.  Confining attention to regions many cell lengths from the leading 

edge of an MDCK monolayer (Fig. 5 a), fluctuations in normal stress (Fig. 5 c) were found to be 

correlated over a length scale of approximately 10-15 cell diameters (Fig. 5 e, blue).  Cooperativity of 

normal stresses over 10-15 cell diameters can be attributable to alignment of principal stresses end-to-

end, as in a tug-of war, or side-by-side, as police who lock arms during crowd control.  To assess 

whether normal stresses are aligned according to either of these configurations, we decomposed the 

maximum principal stress into end-to-end and side-by-side contributions,  

  

where  denotes L
2
 norm,   is the local maximal principal stress considered as a vector quantity 

(such that the angle between the maximal and minimal principle stress orientations is taken modulo )  

and  is the angle between adjacent vector pairs .  The two components were found to contribute 

almost equally to force cooperativity, thus indicating the coexistence of both end-to-end and side-by-

side force correlations  (Fig. 5 f).  Simply put, in order to move cooperatively neighboring cells join 

forces. 

Cooperative motions emerge naturally in inert particulate systems that exhibit close-packing, 

structural disorder, and glassy dynamics, such as colloidal glasses 
9
.  A central feature that identifies 
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these systems as being glassy is the slowing of internal structural rearrangement as system density is 

increased; with increasing system density, each particle becomes increasingly trapped by its neighbors 

so that, in order to rearrange at all, many neighboring particles must rearrange cooperatively 
10

.  As 

such, the size of cooperative clusters increases as system density increases.  Moreover, as size of the 

cluster grows the number of possible structural rearrangements decreases and, as such, the time needed 

for cooperative rearrangements increases precipitously until, eventually, the system becomes virtually 

frozen, or stuck 
10

.  Might the monolayer cell sheet exhibit such signatures of glassy dynamics?  To 

answer this question we analyzed motion of the MDCK monolayers as cellular density increased with 

the passage of time 
1,6

.  Consistent with an expectation of glassy dynamics, the spatial decay in  

was smaller when the density was greater (Fig. 5 e, red curve with corresponding monolayer and force 

map Fig. 5 b, d), indicating that force cooperativity extended to greater distances.  As a direct measure 

of slowing of structural rearrangements we turned to metrics commonly used in soft condensed matter 

systems.  We consider the average number of cells which change position between two points in time, 

which defines an overlap function :  

 

where the weight function  is equal to 1 if the distance between cell positions at sequential times is 

less than half a cell diameter, and zero otherwise.  The variance of  is then a measure of the rate of 

overall structural rearrangement and is related to the so-called four-point susceptibility  
11

.  The 

peak in occurs at the overall structural relaxation time, and the height of that peak is related to the 

size of rearranging regions 
12

.  If the system is glassy, the peak in  is expected to shift towards 

longer times as system density is increased, and a clear shift of the peak in the more dense system 

confirms this expectation (Fig. 5 g).  The peak height also increases in the more dense system,  

confirming the presence of growing velocity clusters.  Moreover, these density-dependent shifts in the 
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position and the peak height of , which are indicative of slowing of structural rearrangements, 

occur simultaneously with growth of force clusters as indicated by the slowing decay in the force 

autocorrelation function with increasing density (Fig. 5 e, red).  Although a mechanistic link between 

inter-particle forces and spatially heterogeneous dynamics in glassy systems remains unclear 
13

, the 

findings of Fig. 5 are consistent with approach to a glass transition. 

Recent advances have unraveled important features of stress transmission across specific 

molecular constituents of the focal adhesion and of the adherens junction, including vinculin, talin, and  

!-catenin for example 
14

, but the integrative context of these molecular events within integrated stress-

bearing structures comprising highly redundant molecular pathways, or even across multi-cellular 

assemblies at larger scales of organization, have remained largely ambiguous.  Logically, associated 

integrative principles have remained unstudied.  Because distinct stress tensor components between 

contiguous cells in any complex living system have never before been measured, Monolayer Stress 

Microscopy now sets the study of underlying molecular events within an integrative mechanical 

context that is conceptually comprehensive and experimentally rigorous.  The finding that each cell 

comprising a monolayer tends to migrate and remodel so as to maintain minimal local intercellular 

shear stress complements other integrative physiological principles (Online supplement 3). 

A central question in morphogenesis and disease is how differentiated structures emerge from 

homogeneous cell populations 
15

.  Differentiation and pattern formation in multi-cellular systems is 

currently explained by the existence of morphogenetic gradients and by local variations in the 

composition, topology, and stiffness of the extracellular matrix 
16

.  In addition, once transduced by the 

sensory machinery of the individual cell 
17

, the spontaneously emergent rugged stress landscape 

reported here would be expected to trigger non-uniform secretion of soluble or insoluble factors, thus 

altering the local cellular microenviroment, causing cytoskeletal reinforcement 
18

 or cytoskeletal 

fluidization 
19

, as well as activating in a highly non-uniform fashion stress-dependent genetic programs 
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that give rise to differentiated tissues.  These emergent stress heterogeneities are severe and persistent 

but unanticipated.  How they might become harnessed and regulated during morphogenesis or repair 

and, perhaps more importantly, how they might become unharnessed or dysregulated during disease or 

injury, we identify here as major open questions, but ones that are now accessible to direct 

experimental attack. 
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Figure 1 | Monolayer stress microscopy.  (a) Simplified representation of physical relationship between cell-

substrate tractions, , which have been reported previously
6
, and intercellular stresses, , which are reported 

for the first time here.  The intercellular stresses are generated from transfer of local as well as distant 

unbalanced cell-substrate tractions.  At any point within the monolayer (b), the intercellular stresses, defined in 

laboratory frame , (c), have shear ( , and ) and normal ( , and ) components.  This frame 

can be rotated locally to obtain the principal frame , (d), where shear stresses vanish and the resulting 

normal stresses are called principal stresses (  and ). The corresponding axes are called maximum, 

aligned with , and minimum, aligned with , principal orientations.   
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Figure 2 | Intercellular stress maps and mechanical guidance of collectively migrating monolayers.  (a) 

Transmitted light image of rat pulmonary microvascular endothelial (RPME) cell monolayer.  Corresponding to 

this image are the maps of average normal stress (b), which is predominately tensile but forms a rugged stress 

landscape (c), the maximum shear stress (d), principal stress ellipses (blue) and cell velocity vectors (red) (e).  

The alignment angle, , between major axis of the principal stress ellipse and direction of the cellular motion (f, 

inset) shows that the greater the local shear stress the narrower is the distribution of  (f, g, h).  The cumulative 

probability distribution  varied strongly and systematically with stress anisotropy (i); curves from blue, to 

red are in the order of higher quintiles.  Comparable maps are found for the Madin-Darby canine kidney 

(MDCK) monolayer (j-n).  Note that the average tensile stress (k) increased systematically with increasing 

distance from the advancing front thus contributing to the state of global tug-of-war 
6
.  Vertical size of the 

images of monolayer: RPMEC - 545 µm, MDCK - 410 µm.  Each curve in (i) and (n) and distributions in (f), 

(g), and (h) have more than 8,000 observations. 
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Figure 3 | Systematic changes in the stress maps and force motion relationship.  Phase contrast image of 

nontransformed human mammary epithelial cell line, MCF10A, control or vector (a), cells overexpressing 

ErbB2 (b), and 14-3-3! (c).  Maps of cell-substrate tractions, , (d, e, f), normal stress (g, h, i), and maximum 

shear stress (j, k, l) corresponding to each of these three mammary epithelial cell lines.  (m) Cumulative 

probability distribution of  for the regions corresponding to highest quintile of the shear stress for five 

different cell sheets.  Vertical size of the images of monolayer: 410 µm. Each curve in (m) has more than 8,000 

observations.  
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Figure 4 | Local cell guidance requires long-range force transmission.  Time-controls of intercellular stress 

maps of MCF10A-vector cell monolayers (a-f).  The stress patterns do not change appreciably over a period of 

80 minutes. After 10 minutes in presence of the calcium chelator EGTA (4mM), however, cells lose contacts 

with their neighbors (g, i and m, o). These changes lead to attenuation of intercellular average normal stress (h, j 

and n, p).  After returning to normal growth medium for 80 minutes, the stresses and the cell-cell contacts are 

largely restored (k, l), but if the growth medium is supplemented with E-cadherin antibody (7 µg/ml) recovery 

of stresses and cell-cell contact is blocked (q, r).  EGTA treatment widens the distribution of angle ( ) between 

local cellular velocity and local maximum principal orientation (s).  The distribution of  is narrowed if calcium 

is restored (s, blue curve), but widened further if the restoration medium is supplemented with E-cadherin 

antibody (s, red curve).  Together, these data show that local cell guidance requires long-range force 

transmission across cell-cell junctions.  Increased intensity at cell boundaries in phase contrast images (panels i, 

o, and q) reveals disruption of cell-cell junctions.  Vertical size of the images of monlayer: 410 µm. Each curve 

in (s) has more than 1,500 observations. 
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Figure 5 | Signatures of cooperativity and associated glassy dynamics.  Phase contrast images of a 

monolayer of Madin-Darby canine kidney (MDCK) cells well away from the leading edge at early  (a, t=196 

min, density=1681±88 cells/mm
2
) and late (b , t=3196 minutes, density=2487±218 cells/mm

2
) times.  Also 

shown are corresponding maps of average normal stress (c, d).  Note that any contribution to the stress field 

with a wavelength longer than the size of the field of view is not included in the calculation.  Thus a stress build 

up extending over the entire monolayer as previously reported 
6
 is absent from this analysis.  (e) Time averaged 

spatial autocorrelation function, , of average normal stress in low density (1681 cells/mm
2
, blue), and high 

density (2487 cells/mm
2
, red) regions.  (f)  of high density maximal principal stress resolved into 

components representing force chains (circles) and force clusters (squares).  (g) Variance, , of the self-

overlap parameter, , as a function of time, in early, low denisty (t=1-270 minutes, 1699 ±40 cells/mm
2
, blue) 

and late, high density (t= 1800-2070 minutes, 1950±156 cells/mm
2
, red) intervals.  Each curve represents an 

average over three successive 90 minute windows of similar density.  Error bars represent the standard deviation 

over the square root of the number of windows.  Vertical size of the images of monolayer: 480 µm. 
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