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Abstract: It is generally believed that spike timing features (firing rate, ISI) are the main 
characteristics that can be related to neural code. Contrary to this common belief, spike 
directivity, a new measure that quantifies transient charge density dynamics within action 
potentials (APs) provides better results in discriminating different categories of visual object 
recognition. Specifically, intracranial recordings from medial temporal lobe (MTL) of epileptic 
patients have been analyzed using firing rate, interspike intervals and spike directivity. A 
comparative statistical analysis of the same spikes from four selected neurons shows that 
electrical micro-mapped features in neurons display higher separability to input images 
compared to spike timing features. If the observation vector include data from all 4 neurons then 
the comparative analysis shows a highly significant separation between categories for spike 
directivity (p=0.0023) and does not display separability for ISI (p=0.3768) and firing rate 
(p=0.5492). The presence of electrical micro-maps within APs suggests the existence of an 
intrinsic “neural code" where information regarding input images is electrically written/coded 
and read/decoded during AP propagation in the neuron. The occurrence of electrical micro-maps 
within APs reflects information communication and computation in analyzed neuron within a 
millisecond-level time domain of AP occurrence. This existence of a “lower level” of coding 
where information is processed within neurons raises questions regarding the richness and 
reliability of models that constrain neural code to spike timing features. Additionally, this 
phenomenon that occurs within APs may provide a step forward in understanding the 
fundamental gap between molecular description, information processing and neuronal function. 
Importantly, this paper confirms a new paradigm regarding neural code where information 
processing, computation and memory formation in the brain can be explained in terms of 
dynamics and interaction of electric charges. 
 
Key words: neural code, firing rate, interspike interval, spike directivity 

Introduction 
 
One important function of the brain is to represent and transform information received from 
sensory inputs. Large populations of neurons are commonly involved in information processing 
in the nervous system. How this information is processed by every cell in the network and how 
information is then integrated in ensembles of neurons remained unexplained even though there 
is a huge amount of work in collecting and analyzing data. For more than seven decades the 
analysis of neuronal activity has been reduced to firing rate analysis. Temporal modulation, 
changes depending on stimuli inputs have been observed in earlier analyses as alterations of the 
frequency of action potentials occurrences (Adrian, 1928). Therefore, the main idea of 
recordings and current analyses in neuroscience is to analyze temporal patterns. More recently 
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besides firing frequency data, interspike interval (ISI) has been assumed to better characterize 
stimuli inputs and provide an accurate representation of distributed neural code (Gerstner and 
Kistler, 2002). The classic coding model highlights the importance of temporal patterns in large-
scale brain networks (Honey et al., 2007; Felleman and Van Essen, 1991; Softky and Koch, 
1993; Abbott et al., 1997; Shadlen and Newsome, 1998). 
 
Quiroga et al., (Quiroga et al. 2005) showed that single MTL neurons fire selectively in response 
to a particular face, animal, object or scene since single neurons may encode features of 
particular objects. In particular selected neurons show selective, invariant, and explicit responses 
to a set of images of Jennifer Aniston. The neuronal activity in the temporal lobe is related to 
visual recognition of different objects (Liu et al., 2009).  It is already known that hippocampal 
formation encodes episodic memories and is involved on conscious remembering (Shirvalkar, et 
al.,  2009). Almost always these responses in single units outlast stimulus presentation and can 
be associated with conscious recognition (Quiroga et al., 2008). Additionally, Quiroga et al., 
(Quiroga et al., 2009) tried to explain how the brain recognizes highly variable pictures as the 
same percept.  In order to evoke selective responses to presented images attention is required 
(Steinmetz, 2009). We know from Kreiman, et al. that the same neurons are activated during 
vision and visual imagery and that firing rate is supposed to be able to separate between various 
categories (Kreiman et al., 2000). 
 
Based on estimated firing rate all these analyses do not explicitly show any relationship with 
intrinsic cellular processes that may occur during visual information processing and several 
further questions were raised in medical and scientific community. How are categories identified, 
classified and remembered in these neurons? Are there network modules dedicated to face 
perception? What is the relationship between temporal patterns (firing rate, ISI) and memory 
formation?  
In this paper we will try to provide some answers to these important questions using ‘spike 
directivity’ a measure that captures electrical features specific to cell neurophysiology during AP 
propagation. 

Spike Directivity  
 
Contrary to common belief action potentials are not uniform (stereotyped) pulses of electricity. It 
is likely that changes in synaptic and non-synaptic inputs that generate APs occurrence causes 
alterations of intracellular features and determines preferential dynamic activation of ion 
channels, different dendritic currents which provides small changes in the shapes of action 
potentials (Gold et al, 2006, Aur et al., 2005; Aur and Jog, 2006; Aur and Jog, 2010). Since 
intrinsic electrical communication and information processing during AP occurrence is hidden, 
computational techniques can be used to extract information from small changes in the APs 
waveforms. If a reference in space is considered (e.g. one tip of tetrodes) these spatial changes in 
charge density can be approximated with a vector called spike directivity. Spike directivity (SD) 
characterizes the distribution of electric events during AP propagation in an analyzed neuron 
(Aur et al., 2005). Spike directivity is a vector that can be computed for every AP and displays 
the preferred direction of electric propagation. While firing rate and ISI investigations require 
sufficient numbers of spikes and extensive statistical analyses in order to assess neural activity, 
spike directivity can be computed for every recorded spike and provides information regarding 
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electrical processes developed in the neuron. Previous in vivo recordings performed in freely 
behaving rodents during a T-maze procedural learning task and the analysis of spike directivity 
in selected expert neurons demonstrated that neural activity can be directly related with the 
semantics of behavior. Such analyses performed with tetrodes proved that besides temporal 
patterns (spike timing changes) there are other important electric features intrinsic to cell 
neurophysiology which are highly modulated during T-maze procedural learning task (Aur and 
Jog, 2007a; Aur and Jog, 2007b). Relevant changes in spatial distribution of charge density 
within generated action potentials recorded from single neurons make spikes non-stereotype 
events that carry meaningful information regarding behavior not necessarily in a temporal 
domain. 
In this paper we would like to compare different methods of analysis in terms of their relevance 
in separating categories. Therefore in a selected group of cells that responded to presented 
images the analysis of firing rate, interspike interval and spike directivity are compared in order 
to respond to several questions outlined above. 

Methods 
Patients with pharmacologically intractable epilepsy have been implanted as described in 
(Kreiman et al., 2000) with depth electrodes to detect the area of seizure onset. The placement of 
the depth electrodes in the MTL followed limited clinical requirements. Images of faces, 
animals, and landscapes were presented for 1 s in pseudo-random order on a laptop computer in 
multiple recording sessions, six times each. During all sessions patients were asked to indicate 
whether a human face was presented. All patients were able to identify human faces with the 
error rate less than 1%. Majority of these neurons responded to several presented images. Spike 
detection and sorting were performed and applied to recorded data using well established 
algorithms. The raw cross-correlations indicate the presence of similar AP recorded from the 
same set of neurons. Since the same APs were detected in at least four electrodes a ‘tetrode’ 
framework has been used for analysis.  
 First, an automated unsupervised classification of multidimensional data in the tetrode setup was 
used (KlustaKwik (KK), Harris K. D. et al., Rutgers University). The default values of 
KlustaKwik from Mclust along with energy features are used. Pre-clustered spikes with similar 
means were merged together and from 17 clusters only 9 clusters were further considered, about 
2000 spikes. The events/neurons with small amplitudes (max values less than <0.1 mV) were not 
considered and also one cluster with very high amplitudes was not further included. Smaller 
amplitudes of AP are not included since the noise may impact the spike directivity (SD) 
outcome. This procedure was followed by manual selection of spikes. The final result shows four 
well separated clusters with signal amplitudes >0.1 mV which provided four neurons (N1, N2, 
N3 and N4) with their action potentials (APs) that have been further analyzed (Supplementary 
Figure 18). The peristimulus time histogram (PSTH) is represented for each category and all four 
analyzed neurons (see Suplementary Figure 13 to Figure 16) showing the times at which the 
neurons fire. The presence of a refractory period for the single units has been checked (less 1% 
spikes within <3-ms ISI). The maximum values for the means of amplitudes provide the 
difference between four channels in a tetrode like configuration where about 550 spikes are 
generated by 4 neurons, (see Table 2 and Figure 17, Supplementary Material). For each clustered 
spike we computed spike directivity using the algorithm presented in (Aur et al.,2005) (see also 
Appendix1).  
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Hypothesis 1: The firing rate is an accurate measure of information processed by neurons during 
object presentation.  
The set of features if  varies from image to image, however it is expected that objects from a 
certain category share similar features. The set of features refer to relevant attributes of presented 
images that may include semantic aspects or any other characteristics. Usually the neural 
response is measured based on estimated firing rate. Given a set of features Ff i ∈ the neuron 
transforms (maps) this set of features in series of action potentials (APs) in such way that 

Fifiring Hh ∈ represent the image features if : 
 

 
F

T

HF
F

→  ( 1 ) 
TF  is the transformation from image feature to ISI. 
 
Hypothesis 2 The interspike interval distribution is an accurate measure of information processed 
by neurons during object presentation. Probability density of ISI can be considered as a measure 
of neural activity that embeds more information than the firing rate measures (Gerstner and 
Kistler, 2002). Therefore, given the same set of features Ff i ∈ the neuron transforms (maps) 
this set of features in interspike interval data in such a way that ISIiISI Hh ∈ represents image 
features if  
 

ISI

T

HF
ISI

→  ( 2 ) 
TISI  is the transformation from image feature to ISI. 
Hypothesis 3: Spike directivity provides an accurate measure of information processed by 
neurons during object presentation. It is considered that neurons process and extract features 
from presented images, therefore given a set of features Ff i ∈ the neuron transforms (maps) 
these features in electrical patterns in such a way that SDiii Hzyxh ∈),,( represents if  
 

SD

T

HF
SD

→  ( 3 ) 

where ),,( iii zyxh  represents the distribution of electrical charges in Cartesian 
coordinates( iii zyx ,, ) and  TSD  is the transformation from object feature into a distribution of 
electric charges. Since spike directivity characterizes the distribution of electrical charges, here, 
the main hypothesis is that there is a relationship between object presentation and the presence of 
electrical patterns (micro-maps) during action potential propagation. The existence of patterns of 
activation (micro-maps) determined by different spatial charge densities has been recently 
evidenced in APs (Aur and Jog, 2006; Aur and Jog, 2007). 
In order to test above hypotheses, the activity of a relatively small subset of neurons from MTL 
that responded to a series of presented images is analyzed. The main idea is to test statistical 
significance of these hypotheses in providing information regarding object category. Since there 
are only three categories of presented images, their specific characteristics can be formalized 
using a set description which includes all five presented images for faces FACESf , five presented 

images for animals ANIMf and five presented images for landscapes LANDf  (see Appendix 2) 
Specifically the presentation of  each image category  generates in the output space the following 
sets for faces  FACESh , for animals ANIMh and LANDh  for landscapes. This output will be different 
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depending which characteristics (firing rate, ISI or SD) are selected in the analysis. The mean 
firing rate can be obtained by counting spikes spN  that appeared divided by the length of 
observation period, T. 
 
 

T
TN

h sp
firing

)(
=  ( 4 ) 

Since images are repeatedly presented, then an estimation of firing rate can be obtained if this 
value is averaged. The mean firing rate response to a picture is computed as the median number 
of spikes across trials between 200 and 2,000 ms after stimulus onset. The result is a projection 
of input features (image characteristics) in a temporal firing rate domain FACES

FRh  for faces, ANIM
FRh  

for animals and LAND
FRh for landscapes. Similar characteristics are mapped in interspike temporal 

domain. The probability density estimates of interspike interval are obtained using a kernel 
density estimator and generate the following characteristics FACES

ISIh  for faces, ANIM
ISIh  for animals 

and LAND
ISIh for landscapes. 

As presented above the propagation of electric potential and the occurrence of electrical patterns 
during AP propagation can be characterized by spike directivity. The corresponding output 
features SDiSD Hh ∈  can be determined by computing spike directivity and represented as points 
on a sphere :  
 }1||:||{ 32 =∈= rRrS  ( 5 ) 
where spike directivity arrow head points on the 2-sphere surface (Fig 1) . 

 
In order to analyze the distribution the electrical features represented by the head of arrows the 
representation is transformed from three-dimensional Cartesian coordinates (xi,yi,zi) into 
spherical coordinates iθ  and iϕ  where : 
 

)tan(
i

i
i x

y
a=θ  ( 6 ) 

and: 
 
 

22
tan(

ii

i
i

yx

z
a

+
=ϕ  ( 7 ) 

 

ϑ

ϕ

z

x
y

Figure 1: Schematic representation of a 
scaled neuron  included in a unit sphere. 
Spike directivity vector in red color is a 
reflection of spatial distribution of electric 
charges during AP propagation. The spike 
directivity arrow head points on the 2-
sphere surface. In a spherical coordinate 
system the angles θ  and ϕ  characterize 
the orientation of the spike directivity 
vector (θ  values range from 0-2π  
whileϕ  values range from 0-π ). 
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The density of mapped features (only iθ angle is considered) can be estimated using a kernel 
density estimator: 
 
 

))((1)(
1
∑
=

−
=

n

i

i

s
K

ns
h θθθ


 ( 8 ) 

where K  is a Gaussian kernel and s  is the smoothing parameter (Terrell and Scott, 1992). These 
electric characteristics on the sphere are representation of features FACES

SDh  for faces, ANIM
SDh  for 

animals and LAND
SDh for landscapes that occur in these neurons when images from the above 

categories are presented. 

Results: A Comparative Analysis 

The representation of spike directivity displays in an explicit topographic manner the relationship 
with encoded categories (Figure 3). One way ANOVA statistics is used to determine if these 
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Figure 2: Two different spikes from the same neuron recorded from four electrodes (in 
blue, red, green and yellow) display two different spike directivities. Differences in 
recorded voltages within these two spikes represented in a and b are reflected in 
corresponding changes in spike directivity in c and d. The head of the arrow points on a 
sphere with radius one ( 1|||| =r ) 

a, Four recorded waveforms  and their corresponding spike directivity represented in the 
north hemisphere c. 
b, Four recorded waveforms and their corresponding spike directivity represented in the 
south hemisphere d. 
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characteristics of faces FACESh  animals ANIMh  and landscapes LANDh  are well separated. Similar 
analysis is performed for probability distributions of firing rate and ISI and then compared. 

 
The analyzed neurons responded primarily to all different images (see the peristimulus time 
histogram in supplementary Figure 13 to Figure 16). The estimated F-ratio and p-values 
summarize the result of comparative statistical analysis (Table 1). Larger values of F-ratio show 
that the variation among group means is unlikely to occur by chance. In the first two neurons one 
way ANOVA statistics of firing rate characteristics does not provide any separation between 
categories (p-values >0.1) N1: FRp =0.678, N2: FRp =0.248). However, the observed difference is 
significant ( FRp <0.05) in neuron N4: FRp =0.0261 and marginally significant ( FRp <0.1) in 
neuron N3: FRp =0.09 (supplementary Figure 6 to Figure 9). Similar analysis carried on using 
probability density of ISI displays highly significant category separability ( 01.0<ISIp ) in two 
neurons (N2: ISIp =0.0008; N3: ISIp  =9.9749e-007) and does not provide any separation in other 
two neurons (N1: ISIp  =0.3196; N4: ISIp  =0.1723) (supplementary Figure 12). Interestingly the 
neuron where firing rate shows this high separability between ISI characteristics N2: ISIp =0.0008 
is the one where the firing rate does not provide any separation (N2: FRp =0.248). Additionally 
the difference is significant in neuron N4: FRp =0.0261 and does not display separability if ISI is 
analyzed  in N4: ISIp  =0.1723. 

 Firing rate ISI SD 
p F p F p F 

N1 0.678 0.4 0.3196 1.15 0.028 3.62 
N2 0.248 1.57 0.0008 7.3 0.0012 6.87 
N3 0.09 2.95 9.9749e-

007 
14.48 0.065 2.75 

N4 0.0261 5.01 0.1723 1.77 0.011 4.57 
Table 1 
However, one way ANOVA statistics of probability density function of the θ  angle shows that 
electric characteristics generated during AP propagation in these neurons significantly separate 

Figure 3: Representation of  spike directivity characteristics projected on the north 
hemisphere across θ  (abscissa[deg]) and ϕ  angles  displays in a topographic manner the 

relationship with encoded categories (a) for faces, FACES
SDh  (b) for animals ANIM

SDh  and (c) 

for  landscapes LAND
SDh  in  selected neuron (N1) 

 

a b 
c 

a 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.5

34
5.

2 
: P

os
te

d 
13

 D
ec

 2
01

0



these categories with p-values: N1: N
SDp =0.028, N2: N

SDp =0.0012; N4: N
SDp =0.011 and the difference 

is marginally significant in one neuron (N3: N
SDp =0.065<0.1) (supplementary Figure 10 and 

Figure 11). 

 
 If the observation vector include data from all 4 neurons then the comparative analysis shows a 
highly significant separation between categories for spike directivity (F=6.09 p=0.0023) and 
does not display separability for ISI (F=0.98 p=0.3768) and firing rate (F=0.61 p=0.5492) (see 
supplementary Figure 17, a-c). A post-hoc pairwise comparison shows that significant difference 
is relevant between animals and the other groups (faces and landscapes) while firing rate and ISI 
do not provide a significant difference between the groups (Figure 4) 
 

Discussion 
 
Since all four neurons responded to analyzed categories it is likely that information regarding 
presented images is distributed coded/decoded in a large number of neurons. In these four 
selected neurons spike directivity analysis outperforms firing rate and ISI outcome in relating 
neuronal activity with object presentation. Firing rate and ISI do not always display a statistical 
significant relationship with encoded/decoded object categories. Even though spike directivities 
are related to inputs that generate APs onset and temporal variability it is likely that the presence 
of these patterns that reflect different charge densities within spikes is complimentary to APs 
occurrence in time. Therefore, in these patterns additional information is included that cannot be 
extracted from ISI or firing rate analyses. This phenomenon suggests that during AP 
propagation, information regarding presented objects can be carried and embedded in electrical 
patterns within spikes. Clearly, different propagation of action potentials can have implications 
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SD, all  groups have means significantly different from Animals
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ISI, no groups have means significantly different from Animals

6 6.5 7 7.5 8 8.5 9 9.5

Landscapes
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Firing rate, no groups have means significantly different from Animals

Figure 4: A post-hoc pairwise comparison shows 
differences between SD, firing rate and ISI analyses in 
the four selected neurons 

a. Significant differences occur between animals  
ANIM
SDh and the other two categories (faces 
FACES
SDh and landscapes LAND

SDh ) 

b. There is no significant difference between 
categories if firing rate is considered 

c. There is no significant difference between 
categories if ISI is considered.  
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and consequences for synaptic changes and signal processing within the downstream  
cells.  However, the communication of information and information processing can be seen  as 
two distinct phenomena, in general information communication reflects just a start-up part of 
computation. When and where the synaptic communication of information between cells occurs 
is important, however, the synaptic transmission reveals only the modulated transfer of 
information between neurons and does not reflect the entire process of computation which seems 
mainly to take place in the cell. Within every neuron information communication and processing 
are close related. The observed changes of electrical patterns show how information is processed 
and communicated endogenously within the neuron and points to a more complex non-Turing 
model of computation required to describe neuronal activity (Aur and Jog, 2010). 
The observed transient charge density dynamics within action potentials are likely to be 
determined by changes in conformational dynamics in molecular protein assemblies where 
memories are read, written and stored.  Importantly we may understand now how changes and 
computations that occur at molecular level, electrical patterns that occur within spikes are related 
together and generate the representation of presented objects.  Given that all cells respond to all 
stimuli and that the neural code is most likely distributed amongst many cells the statistical 
analysis of electrical patterns in the neuronal ensemble tell more about the whole image class. 
Importantly, a comparative analysis of spike directivity from all four neurons together provides a 
highly significant separation between categories (F=6.09 p=0.0023) while firing rate and 
interspike interval data do not display a statistical significant separability. This result shows that 
information is likely to be electrically inferred by neurons “which behave as weak learners 
attending to preferred spatial directions in the probably approximately correct sense” (Aur and 
Jog, 2007a). Additionally, in order to extract relevant information regarding presented categories 
from ISI and firing rate data an increased number of cells is required (n>4). The above results 
can be summarized in terms of how categories were identified, classified and activated in these 
neurons (Tranel et al. 1997) in a ‘top-down’ - ‘bottom-up’ framework (Figure 5). If only 
temporal characteristics either firing rate or ISI are considered then information regarding input 
categories or objects is highly compressed. Therefore, it is likely that presented images cannot be 
reconstructed/ remembered solely based on an existent temporal code (Figure 5,a). The selective 
occurrence of electrical patterns within analyzed APs demonstrates that information processing 
is preferentially processed and stored at molecular scale, ion channel level in different 
anatomical parts of analyzed neurons. Electrical micro-maps reveal better this information 
regarding input categories and objects. Therefore, it is likely that original images can be better 
reconstructed/remembered based on information embedded in electrical patterns from many 
neurons that respond to presented objects(Figure 5,b). 
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Spike directivities are related to synaptic and non-synaptic inputs that generate AP onset and 
temporal variability of APs occurrence. In order to better characterize the presented objects 
information should be extracted from all features including information from temporal patterns.  
However, these analyses reveal that fundamental aspects of information processing, 
communication and computation can be hidden to temporal analysis (firing rate, ISI) and raises 
questions regarding the richness, reliability and existence of temporal code. Indeed electrical 
patterns occur at a different scale within the neuron where it is likely to be determined by and 
generate significant molecular changes at DNA, gene or  conformational alterations at protein 
level. This fundamental change in perceiving ‘neural code’ may help us to understand memory-
related phenomena and theoretically connect these changes in electrical patterns with molecular 
machinery and complex electrochemical processes.  
 
This new result displays the existence of an important “lower level” of coding where information 
is processed in a distributed parallel manner and can be modeled as a result of electric 
interactions and dynamics of electric charges (Aur and Jog, 2010). Using few experiments and 
extensive computational modeling techniques in developing neuroelectrodynamics we predicted 
that the transient charge density dynamics within a millisecond-level time domain of AP 
provides meaningful information. This result proves that with adequate computational methods 
(e.g. spike directivity) this information can be read from spikes and offers details regarding 
object category representation.  

Figure 5: Schematic representation of a ‘top-down’, ‘bottom-up’ processing system in an 
ensemble of neurons where information is linked together  

 a, The original  image cannot be generated if firing rate/ISI is considered from recorded cells 

b, The original image is generated if electrical patterns from several neurons are considered 
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Additionally, we predicted that information regarding charge density, emerging electric field can 
be dynamically ‘written in memory’ within synthesized proteins and their interactions. Since 
quantum properties of information processing occur almost anywhere at microscopic molecular 
scales it is likely that these phenomena could have an influence and can be exploited in neural 
information processing (Hameroff and Tuszynski, 2004).  
In order to experimentally test this hypothesis, the experiment requires controlling the electric 
field in addition to other characteristics and simultaneously record and analyze the protein 
response and protein–protein interactions. Given technological progress and innovations in wet 
labs (Blanchard, et al., 2004; Aitken and Puglisi, 2010) it has become possible to monitor in real 
time conformational dynamics and we expect any day soon to hear that the problem was 
completely solved. 
The propagation of action potential during a millisecond time, the charge density dynamics is not 
random, it is related to information processed and communicated by the neuron. Since electrical 
micro-maps in APs reflect encoded percepts generated in an explicit topographic manner this 
result demonstrates that APs are not stereotype events and cannot be reduced to binary, all or 
none events without loosing meaningful information. Additionally, several different features of 
presented images are ‘read’ or ‘written’ within these neurons and little information received 
synaptically and non-synaptically about a certain feature can trigger the neuron to fire. If the 
analysis is not restricted to short time periods the neuron will respond to other presented objects. 
Additionally ‘abstract’ information regarding one object is distributed inside several cells. 
Therefore the ‘abstract’ information needed to ‘recreate’ any presented object, category is a 
result of information inference from many electrical patterns that occur in the activity of several 
neurons and it is unlikely that one neuron will always respond only to Jennifer Aniston or Halle 
Berry and the main question remains. Where is the ‘Jennifer Aniston neuron’? 
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Appendix 1 
 
In a biological neuron action potential generation involves selective activities of ion channels. 
The collective properties of large ion channel ensembles can be modeled as spatial changes in 
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the dynamics and distribution of electric charges. Spike directivity approximates with a vector 
this spatial propagation of  electric field in a neuron and the resulting distribution of electric 
charges within a millisecond time frame. If in space the origin of a recording electrode is 
considered the frame of reference, then the spatial distribution of electric charges can be 
characterized globally by their “directivity” over the selected frame of reference. The details for 
computing spike directivity were presented in [15]. In the first step the trajectory z)y,d(x, of 
charge during AP propagation is computed using a Newton-Raphson algorithm:  
 

 N n  ),F(dJ -d  d n
1

n1n ∈= −
+  ( 9 ) 

where the signals s0(k), s1(k), s2(k) and s3(k), k∈N are recorded from the four nearby electrodes: 
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and xi,yi,zi i=0,3 are the positions in the space of the tips of electrodes. Spike directivity is then 
obtained as a linear approximation of the computed trajectory by performing a singular value 
decomposition (SVD) of trajectory coordinates (x(k),y(k),z(k)): 
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where k=1,2…,n.   
 

 T
3x3nx3nxn3tr VSUP =nx    ( 12 ) 

                      
and V is the corresponding “right” singular vector that represents direction cosines of the best 
linear approximation.  
   
Appendix 2: The set description includes all five presented images for faces FACESf  :  
 },,,,{ 21 DrewAnderJenniferFaceFaceFACES ffffff =  ( 13 ) 
five presented images for animals ANIMf : 
 },,,,{ TigerSpiderElephHorseMonkeyANIM ffffff =  ( 14 ) 
and five presented images for landscapes LANDf : 
 },,,,{ 2826201210 OutOutOutOutOutLAND ffffff =  ( 15 ) 
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where FACESFACES Ff ∈ , ANIMANIM Ff ∈ and OUTOUT Ff ∈ .  
The presentation of  each image category  generates in the output space the following sets for 
faces  FACESh   
 },,,,{ 21 DrewAnderJenniferFaceFaceFACES hhhhhh =  ( 16 ) 
for animals ANIMh : 
 },,,,{ TigerSpiderElephHorseMonkeyANIM hhhhhh =  ( 17 ) 
and for  landscapes: 
 },,,,{ 2826201210 OutOutOutOutOutLAND hhhhhh =  ( 18 ) 

where FACESFACES Hh ∈ , ANIMANIM Hh ∈ and OUTOUT Hh ∈ . 
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Supplementary figures 
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Figure 6: Example of a representative neuron where the firing rate analysis does not show 
significant difference between faces in red, animals  in blue and landscape in red  (N1, 

FRp =0.678). The first five bars represent the characteristics of FACESf  and their order is 

specified in Eq.(4) the next five bars represent the characteristics of the five animals ANIMf  and 
their order is specified in Eq.(5) and the last five represent the characteristics of LANDf  in the 
order specified in Eq.(6). The responses are between 200 and 2,000 ms after stimulus onset. 

a Mean instantaneous frequency as the median number of spikes across trials for FACESf , 
ANIMf  and LANDf   

b,  One way ANOVA for the mean instantaneous frequency data ( FRp =0.678) 
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Figure 8: Representation of  firing rate in red  for faces, in blue for animals and in yellow for 
landscapes and corresponding p-values for separating these three categories in the neuron 
(N3 : FRp =0.090) 

a, Mean instantaneous frequency  for FACESf , ANIMf  and LANDf  

b,  One way ANOVA for the mean instantaneous frequency data ( FRp =0.090) 
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Figure 7: Representation of firing rate  in red for faces , in blue for animals and in yellow for 
landscapes and corresponding p-values for separating these three categories in the neuron  
(N2 FRp =0.2480) 

a Mean instantaneous frequency  for FACESf , ANIMf  and LANDf  

b,  One way ANOVA for the mean instantaneous frequency data ( FRp =0.2480) 
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Figure 9: Representation  firing rate  in red for faces, in blue for animals and in yellow for 
landscapes and corresponding p-values for separating these three categories in the neuron (N4:   

FRp =0.0261) 

a, Mean instantaneous frequency  for FACESf , ANIMf  and LANDf  

b,  One way ANOVA for the mean instantaneous frequency data ( FRp =0.0261) 
 

Faces Animals Landscapes

6

8

10

12

14

16

18

Fi
rin

g 
ra

te
 [H

z]

a 
b 

N
at

ur
e 

P
re

ce
di

ng
s 

: d
oi

:1
0.

10
38

/n
pr

e.
20

10
.5

34
5.

2 
: P

os
te

d 
13

 D
ec

 2
01

0



Anim

None 

Land

Face

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Anim

None 

Land

Face

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Anim

None 

Land

Face

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Anim

None 

Land

Face

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.5 0 0.5 1 1.5 2 0 

1 

2 

3 

4 

Theta [rad] 

PDE 

0 0.5 1 1.5 2 0 

2 

4 

6 

8 

Theta [rad] 

PDE 

-0.5 0 0.5 1 1.5 2 2.5 0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

ThetaI [rad] 

PDE 

0 0.5 1 1.5 2 0 
1 
2 
3 
4 
5 
6 
7 

Theta [rad] 

PDE 

Figure 10: Representation of spike directivity features mapped on the north hemisphere in case of 
four analyzed neurons from MTL and the corresponding probability density estimate of the spike 
directivity ( iθ  angles) for faces, animals and landscapes.  

a. The representation of spike directivity features regarding faces in red color, animals in blue color, 
landscape in blue color 
b. Probability density estimate of the spike directivity ( iθ  angles) in selected neurons displays 
clustering effect (faces in red color, animals in blue color, landscape in blue color) 
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Figure 11: One way ANOVA analysis of probability density estimate of spike directivity ( iθ angles)  from 
north hemisphere shows that the difference between categories (face and animal, landscape) is significant in 
three neurons and marginally significant for the fourth neuron.  a, One way ANOVA for the neuron N1 
shows significant difference in case of FACESf ,animals ANIMf and landscapes LANDf  ( N

SDp =0.028); b, One way 

ANOVA for the neuron N2 shows highly significant difference  in case of FACESf ,animals ANIMf and 

landscapes LANDf , N
SDp =0.0012 c, One way ANOVA for the neuron N3 displays marginally significant 

difference in case of FACESf ,animals ANIMf and landscapes LANDf  ( N
SDp =0.065<0.1); d, One way ANOVA for 

the neuron N4 shows significant difference in case of FACESf ,animals ANIMf and landscapes LANDf  

( N
SDp =0.011) 
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Figure 12: One way ANOVA analysis of probability distribution of ISI displays high category 
separability in two neurons N1 and N3 

a, One way ANOVA for the probability distribution of ISI  in N1; ISIp =0.3196 

b, One way ANOVA for the probability distribution of ISI in N2; ISIp =0.0008 

c, One way ANOVA for the probability distribution of ISI in  N3; ISIp = 9.9749e-007 

d, One way ANOVA for the probability distribution of ISI in N4: ISIp = 0.1723 
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Figure 13: Peristimulus time 
histogram  (PSTH) for neuron N1 

 a. PSTH of animals; 

b. PSTH of faces ; 
c.  PSTH landscapes  
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Figure 15: Peristimulus time 
histogram (PSTH) for neuron N3 

 a. PSTH of animals; 
b. PSTH of faces  
c.  PSTH landscapes  
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Figure 14: Peristimulus time 
histogram for neuron N2  

a. PSTH of animals; 
b. PSTH of faces  
c.  PSTH landscapes  
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Figure 16: Peristimulus time histogram 
for neuron N4  

 a. PSTH of animals; 
b. PSTH of faces  
c.  PSTH landscapes  
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Figure 17: The comparative analysis does not 
display separability for  

a,  firing rate (F=0.61 p=0.5492) and b, ISI 
(F=0.98 p=0.3768) ,  however it shows a 
highly significant separation between 
categories for  
c, spike directivity (F=6.09 p=0.0023) 
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 Channel 1 

 
Channel 2 

 
Channel 4 

 
Channel 4 

 

N1 0.1302     0.1250 0.1777   0.1613 
N2 0.1616 0.1228 0.1491   0.1613 
N3 0.1542   0.1407 0.1161 0.1477 
N4 0.1264   0.1437 0.1484 0.1215 

Table 2: The maximum values for the means of amplitudes for all 4  selected neurons 
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Figure 18: The mean amplitudes of waveforms recorded from four neurons a, N1, b. N2, c. 
N3 and d. N4 
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