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Abstract

Transcriptional networks consist of multiple regulatory layers corresponding to the activity of global regulators,

specialized repressers and activators of transcription as well as proteins and enzymes shaping the DNA template.

Such intrinsic multi-dimensionality makes uncovering connectivity patterns difficult and unreliable and it calls for

adoption of methodologies commensurate with the underlying organization of the data source.Here we present

a new computational method that predicts interactions between transcription factors and target genes using a

compendium of microarray gene expression data and the knowledge of known interactions between genes and

transcription factors. The proposed method called Kernel Embedding of REgulatory Networks (KEREN) is based

on the concept of gene-regulon association and it captures hidden geometric patterns of the network via manifold

embedding. We applied KEREN to reconstruct gene regulatory interactions in the model bacteria E.coli on a

genome-wide scale. Our method not only yields accurate prediction of verifiable interactions, which outperforms

on certain metrics comparable methodologies, but also demonstrates the utility of a geometric approach to

the analysis of high-dimensional biological data. We also describe the general application of kernel embedding

techniques to some other function and network discovery algorithms.
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Background

Transcriptional regulation in the cell results from the interactions of transcriptional regulators with their

cognate targets. These interactions are affected by a multitude of factors, including but not limited to: i)

activity of proteins associated with chromosomal DNA (nucleoid associated proteins in bacteria and histones

in eukaria); ii) activity of transcriptional activators and repressors; iii) accessibility of target DNA; iv)

composition and activity of RNA polymerase; v) level of DNA superhelicity; vi) metabolic state of the

cell. Each of these factors can be viewed as one dimension in the intrinsically high-dimensional regulatory

space. Connectivity of transcriptional regulators, commonly defined as sets of genes which transcription

is controlled by a common transcriptional regulator, have been historically inferred without controlling

for any of the aforementioned critical factors, unwittingly resulting in a multi-dimensional description of

transcriptional regulatory units, regulons. A complete set of cellular regulons and associated connections

makes up for a transcriptional regulatory network. Such network is embedded in a metric space where the

probability of connection between two nodes (genes) depends on their distance (similarity in transcriptional

profiles across multiple dimensions of the regulatory space), assuring that the genes of any one regulon are

located in greater proximity to each other than the genes belonging to different regulatory units. Thus the

data points corresponding to individual members of a regulon will be constrained in a well defined sub-

space, indicating that a topological object , also referred to as a manifold, underlies transcriptional data

characterizing any given set of co-regulated genes. On the manifold of gene expression, similar expression

profiles are points in the local neighborhood of the manifold. Since, by definition, any manifold is locally

Euclidian, i.e. nearly flat on a local scale, a transcriptional manifold can be naturally learned by techniques

that explore this manifold property. This should result in the reconstruction of a nearly complete regulatory

network as an ensemble of locally learned regulatory neighborhoods.

In recent years, many highly innovative approaches have been put forward in order to solve the task

of reconstruction of regulatory transcriptional networks on various scales either only from expression data

or from combination of expression data with transcription factor binding and sequence information. The

spectrum of learning philosophies and computational styles can be represented by Bayesian networks [1–3],

relevance networks [4–6], module-inferring algorithms [7–9], as well as techniques based on matrix decom-

position [10, 11]. Despite application successes of these and other approaches, the high-dimensionality and

non-linearity of transcriptional regulatory space along with the pervasiveness of hidden connections in the

network embedded in such a space calls for a more geometric approach that could naturally account for

these intrinsic properties of the data source without compromising computational power of the analysis.

Such approach can be based on manifold learning [12–14] and kernel embedding [15, 16], which provide the

mathematical framework not only for nonlinear dimensionality reduction in the data, but also for capturing

the structure and geometric distribution of the data. These methods have already been successfully ap-
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plied to high-dimensional data such as images and motion pictures. They have also been applied to several

problems in bioinformatics. Kernel approaches were proposed in [17, 18] as a means of integrating different

sources of data for clustering and classification purposes. More recently, the functional distance has been de-

fined via diffusion-type manifold embedding to discover relationship between protein domain functions [19] .

These distances were defined between functions in GO annotations data set to uncover relationships between

proteins’ structure and function.

In this paper we aim to provide a framework for the application of the nonlinear manifold learning

techniques to reconstruct transcription regulatory networks. For this purpose, we consider a transcription

regulatory network as a network which comprises of several connected components (Regulons) with a struc-

ture different from that of a random network. We refer to this specific structure of the network as a geometric

connectivity pattern. We assume that gene expression of the members of different regulons are sampled from

different manifolds which can explain the network connectivity pattern, and use kernel embedding reduction

methods to simultaneously capture the nonlinear correlation and the underlying connectivity pattern in the

gene expression data. We define regulon-based association scores between genes and a transcription factor’s

core regulon to combine uncovered hidden connectivity patterns in gene expression data with the known

connectivity patterns in order to reconstruct the regulatory network of E. coli.

Method

Gene-Regulon Association Score

In traditional network reconstruction methods, the association between genes and regulators have been made

based on different distance or similarity measures between the genes and the genes coding for regulators.

However, a more meaningful association can be made by defining the similarity between the gene expression

profiles and regulator activity profiles. Direct measurement of the activity profiles of regulators, if at all

possible, would require a complicated biological experimental setup. Nonetheless, the relevant information

regarding activity profiles of a regulator can be captured from the expression profiles of the members of its

core regulon [10,20], and this is the motivation for defining the ”Gene-Regulon Association Score”.

The advantage of a gene-regulon score can be explained in the context of mutual information theory.

Transcriptional regulatory networks can be analyzed by computing the mutual information between mRNA

abundance profiles of genes and their regulators [5,6]. However, because the activity profile of a transcription

factor, which determines its propensity to regulate target genes, may not be similar to its mRNA profile, it

is more appropriate to define mutual information between transcriptional activities of individual genes and

regulons to which they belong. Let genes x1, x2, ..., xn co-regulated by the same transcription factor form

the regulon set Ω. Then the activity profile of the transcription factor denoted by latent variable Z, which
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explains this regulation, minimizes the conditional mutual information between the gene variables and is

given by [21]:

Z∗ = arg min
Z
I(x1, x2, ..., xn|Z). (1)

Given a regulon, one can estimate Z, Z∗, which in many cases is different from the gene expression profile of

the transcription factor. Therefore, a more accurate prediction of gene regulatory interactions can be achieved

by assigning genes according to transcription factors’ activity profiles, the Z∗’s. Since the estimation of Z is

not an easy task and requires very large amount of data, the dependency between genes and their regulators

can be approximated by defining the gene-regulon association score as follows.

I(g, Z∗) ∼= S(g,R) =
1

|ΩR − 1|
∑

h∈ΩR g 6=h

I(g;h), (2)

where I(g, Z∗) is the mutual information between gene g expression profile and the estimated activity profile

of its regulator, Z∗. g and h are genes, R is a regulon and ΩR is a set containing members of the regulon.

Then the true regulator for a gene g maximizes S(g,R) among all regulators. The mutual information

captures the nonlinear dependency in the data but it cannot capture the geometric connectivity patterns.

Having conceptually shown that the gene-regulon score is a better measure of association between genes and

transcription factors, in the following we propose a new association measure which simultaneously captures

nonlinear dependencies and geometric connectivity patterns in the gene expression data.

Capturing connectivity patterns in transcriptional regulation through kernel embedding

Given gene expression data across many diverse conditions, it is reasonable to assume that each regulon

is only responsive to a subset of conditions. Therefore, the intuitive and natural approach is to identify

the manifold for each regulon where all the data points belonging to the regulon lie. Then, one can define

a distance between genes and the manifold for each regulon. However, instead of explicitly learning the

manifold from the data, an alternative approach would be to use kernel embedding matrices, which preserve

local similarity, to measure the association between genes and regulons.

Given a transcription factor and its core regulon we define the association score between genes and the

regulon as:

S(g,R) =
1

|ΩR − 1|
∑

h∈ΩR g 6=h

K(g, h), (3)

where ΩR is a core regulon for the regulon R and |ΩR| is the cardinality of ΩR, and K is a kernel

embedding matrix. The choice of the kernel embedding method depends on how well it can capture the

geometric connectivity pattern in the data .
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The locally linear embedding (LLE) algorithm presented in [12] is a nonlinear dimensionality reduction

algorithm, which recovers global nonlinear structure through locally linear fits. It first reconstructs each

data point in the original space from its neighbors and assumes the same reconstruction coefficients are valid

in the embedding space. Let W be a reconstruction weight matrix in LLE, or a normalized local similarity

matrix, whose ith row sums to unity. Then a LLE kernel matrix can be defined as follows [16]. Let e be a

uniform and unity vector of size N (its elements are 1/
√
N), and set

M = (I − eeT )(I −W )T (I −W )(I − eeT ). (4)

Then an LLE kernel can be formed by the following:

K = λmaxI −M, (5)

where λmax is the largest eigenvalues of M . Other forms of the kernel embedding matrices such as ISOMAP

kernel, Laplacian kernels [16] and the diffusion kernel of powers can also be defined [15]. However, we

observed that the LLE kernel from the local similarity matrix constructed using correlation provides better

results.

Results

Genome-wide expression data and information about known interactions between genes and transcription

factors have been used to predict putative targets of transcription factors. We extracted core regulon infor-

mation for each TF from the RegulonDB database [23]. The most recent data set contains known interactions

for 137 transcription factors with at least 3 interactions. The complete set covers 1446 genes with a total

of 3213 interactions. We also used two distinct microarray gene expression data sets. Our first data set is

microarray gene expression data for more than 100 arrays representing 46 biologically distinct conditions.

These conditions covered a spectrum of environmental and genetic perturbations. The environmental per-

turbations, in addition to those described in [22], included different amino acid and nucleotide additions and

limitations [20]. The second data set used in our study has been published in [5] and was obtained from

Many Microbe Microarray database (M3D) web site (http://m3d.bu.edu). This set contained expression

levels of E. coli genes across 524 arrays which resolved into 189 different experimental conditions. It should

be noted here that not only do these two data sets cover very different genetic or environmental perturba-

tions, but they also were collected on two different microarray platforms: cDNA microarrays and Affymatrix

Genechips.

As outlined in the method section, the proposed algorithm involves two steps. In the first step, the

gene expression data is used to construct the kernel matrix. At this stage, there is no need for any regulon
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information. In the second step, the association score between a gene and a regulon is calculated. In this step,

the knowledge of the regulon is used. However, according to equations 2 and 3, if a gene is part of a regulon,

it will be excluded when calculating the association score between the gene and the regulon. Therefore,

the exact leave-one-out cross validation procedure is inherent in the prediction process. To construct kernel

matrices, we first constructed the Pearson linear correlation matrix and pairwise mutual information matrix

for each data set. Then, the local similarity matrices were constructed from these matrices by only keeping

the K nearest neighbors of each gene and putting other elements to zero, while forcing the matrix to remain

symmetric. This guarantees that the resulting matrix has the properties of a similarity matrix. We compared

the prediction accuracy of the proposed method(KEREN) with a Gene-TF methods (relevance network) and

two other Gene-Regulon based approaches using either mutual information or correlation matrices. We used

the set of known interactions and compared different approaches by their ability to recover these interactions.

We assumed that each method should assign at least one regulator to each gene with known interactions. The

assignment of the regulators to genes were made by the following rules. Each method provides the association

score between the genes and regulators. For example, in the case of relevance network (CLR network [5]),

the scores are CLR scores between genes and TFs. For regulon based approaches, the association scores are

the similarity scores between genes and core regulons. For each gene, we ranked regulators based on their

association scores with that gene. A regulator which had the maximum association score with the gene was

assigned to that gene. A second regulator was assigned to the gene if the corresponding association score

was greater than the average of the association scores of the genes assigned to that regulator in the first

round. This procedure was repeated and assignments were made, if warranted by the association score, for

lower ranking regulators as well. Hereafter we refer to the number of rounds of assignments as P .

The recall and precision measures were used to compare different approaches. We define recall as the

fraction of the genes with known interactions for which at least one interaction was recovered. We define

precision as the fraction of the predicted interactions which are among known interactions. The reason for

using a fraction of genes instead of a fraction of all interactions in calculating recall is that we do not expect

that all of the interactions for a gene are being realized in a particular data set. However, we expect that at

least one of the known interactions for each gene can be explained by an expression data set which covers

reasonably large number of experimental conditions. Nonetheless, the values of recall defined as the fraction

of all known interactions recovered correctly were not significantly different from those reported here.

Figure 1 (A & B) depicts recall(blue line) and precision (red line) values with respect to the values of K,

for a fixed parameter P = 10, for two different data sets. Since in E.coli some genes are organized in operons

and are co-transcribed, we also provided the plot of recall and precision (dashed-lines) which accounted

for operon structure. To account for the bias due to operon structure, if a gene belongs to a regulon and

also is part of an operon, the whole operon was excluded from the regulon when calculating gene-regulon
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association score. As it can be seen from the figures, for both cases, the detrimental effect of increasing K

is more pronounced in precision than in recall, which is indicative of increasing the number of predictions

with no or few additional predictions belonging to the set of known interactions. Figure 1 (C & D) shows

the effect of the assignment procedure( parameter P ) on recall and precision for a fixed number of nearest

neighbors K = 5. Again we can see that the proposed assignment procedure is very robust process and has

a positive impact on recovering interactions.

Table (1) shows a comparison between different approaches for the two data sets. A gene-TF based

approach is the CLR version of a relevance network using mutual information. However, unlike in the

original work [5], which used the threshold and therefore gave limited number of predictions, we required all

algorithms to provide at least one prediction for each gene with known interactions. We also present four

different versions of the gene-regulon based approach. These versions are different in how they compute the

similarity between genes and regulons. The first version uses the correlation values, the second uses pairwise

mutual information values, the third and forth are KEREN method and use LLE kernel embedding matrices

constructed from mutual information and correlation matrices, respectively.

As it can be seen from the table and figures, the second data set provided more accurate predictions,

presumably because it sampled more dimensions of the regulatory space by covering many more experimental

conditions. However, for both data sets across different approaches, the gene-regulon based approach using

LLE kernel provided the most accurate predictions. Interestingly, the LLE kernel constructed from the cor-

relation matrix performed better than the LLE kernel constructed from mutual information. We argue that

LLE kernel by itself can capture the nonlinear correlation and therefore the property of mutual information

to capture nonlinear dependency does not provide additional value in this case. On the other hand, since

the estimation of mutual information is more sensitive to sample size than that of correlation, the kernel

matrix constructed from the mutual information matrix is weaker than the kernel matrix constructed from

the correlation matrix. This is more apparent when one compares the performance of the kernel for the data

set with a smaller number of samples. Therefore, we note that the reason for a better performance of kernel

derived form correlation is that the estimation of the correlation from data is more accurate than the esti-

mation of the mutual information form the data and this results in a more accurate local similarity matrix,

which in turn affects the constructed kernel. The performance of the kernel approaches were obtained using

the K = 5, number of neighbors and P = 10, number of rounds of assignments.

Since the KEREN method takes advantage of known interactions, we compared its performance with

that of a recently published supervised learning algorithm (SIRENE) [24]. To be fair in our comparison we

applied KEREN ( with K = 5 and P = 10) to the same gene expression data set and the same interaction

data set used in SIRENE paper [24]. In Table 2, we reported the precision values for different values of

recall for KEREN and SIRENE with and without account for annotated operons. SIRENE is a supervised
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algorithm and uses kernel function for pairs of genes to learn a support vector machine(SVM) classifier for

each TF. Our algorithm based on kernel embedding outperforms SIRENE because it is capable of capturing

connectivity patterns in the data. This results from the fact that, unlike the kernel function used in SIRENE,

the embedding kernel similarity between two genes is influenced by all genes and especially by their neighbors.

As an alternative to LLE kernel embedding technique, figure 2A depicts the recall and precision for

Affymetrix data set when Laplacian kernel is used in KEREN method with P = 10. The Laplacian kernel

[14,16] can be formed from the local similarity matrix W , first by forming the graph Laplacian, L = D−W ,

where D is a diagonal matrix called degree matrix. The diagonal elements of D are sum of the row elements

of W . Then the Laplacian kernel is defined by taking pseudo-inverse of graph Laplacian. Although the LLE

kernel performance is far better than that of Laplacian, the Laplacian shows slightly more robust behavior

with respect to the number of neighbors, which is due to its property to capture longer range interactions

on the graph. However, these longer range interactions derived from local similarity matrix may not be true

interactions, and in turn may affect the overall performance of the Laplacian kernel.

We also carried out the following procedure to determine the false discovery rate (FDR) for our pre-

dictions. To do so, we permuted the gene expression data for each gene across experimental conditions

and applied the algorithm on permuted data. The randomization process and the simulation were repeated

100 times. We only applied this procedure to the data set with the larger sample size and used the LLE

kernel constructed from correlation matrix. We calculated the recall and precision as defined above. Figure

2B shows the recall-precision performance for different values of K for randomized data. Both recall and

precision for randomized data remained significantly low for all values of K. To estimate the FDR, one

can calculate the true positive (TP) value when applying algorithm to real data and calculated the true

positive when applying the algorithm to randomized data and assumed the latter TP to be the false pos-

itive (FP)value. Then one can approximate the false discovery rate as FDR = FP
TP . To be more precise,

considering that the total number of predictions in two cases might be significantly different, we defined

FDR = PrecisionR

Precision where Precision is precision when using real data, and PrecisionR is precision value

when using randomized data. This resulted in the FDR value of less than 10% when averaging over 100

randomized data sets.

Discussion

We have presented a computational method based on kernel embedding for predicting interactions between

transcription factors and their gene targets. Our method captures network geometric patterns and incorpo-

rates them to expand known regulons. We have shown the power of the embedding to accurately reconstruct

gene regulatory networks, and below we discuss other possible applications of this methodology.

Over the course of the past few years, several approaches have been presented in the literature to integrate
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gene expression data with other sources of data, such as genome-wide chromatin-IP data, to identify targets

of transcription factors and to discover network modules. GRAM [7], ReMODiscovery [9] and COGRIM [8],

to name a few, are among those which combine gene expression data, ChIP-chip and motif data to discover

regulatory modules. For example, ReMoDiscovery algorithm first detects large modules which contain tightly

co-expressed genes sharing common regulators and motifs, and then extends the modules by computing mean

seed profile and assigns the remaining genes to modules based on their similarity to seed profiles. On the

other hand, GRAM algorithm detects core modules for a subset of regulators based on binding data and

then extends the modules by adding genes which are at certain distances from the gene expression center

of modules, and at the same time satisfy a relaxed p-value threshold for their binding affinity to modules’

regulators. While these algorithms both have their own advantages and shortcomings and it is not the subject

of our discussion here, they both compute the similarity between genes and modules in the expression domain

using linear correlation. We saw that the linear correlation only captures a fraction of the information in

the data and, therefore, the accuracy and performance of these algorithms are limited. However, one can

expect a big boost in the performance of these algorithm by using the kernel embedding matrices. This is

due to the property of the kernel matrices in reducing the noise and also capturing the connectivity patterns

in data.

In a more recent work [25], with motivation similar to the current work, an attempt has been made

to complete the transcriptional regulatory network of E. coli using gene expression data, motif data and

the knowledge of known interactions. A semi-supervised algorithm was presented to accomplish the task.

The method used information about known interactions and the gene expression data to learn multi-logistic

regression classifiers and rank genes as regulated by a transcription factor based on their probability of

belonging to each class. For each TF, 3 classifiers were learned from the data, which in turn requires the

estimation of 2 ∗M logistics regression coefficients from training data. However, when M (the number of

experimental conditions) is large and the number of training samples is low (which is the case for many TFs)

the estimation of too many parameters is unsound and results in classifiers with low predictive power due to

overfitting. On the other hands, many genes respond to a limited number of conditions and expression values

across many other conditions should account for noise. An alternative approach to address this issue is to use

kernel embedding matrices to embed the data in a low dimensional domain. The coordinates of data on the

embedded domain are the eigenvectors corresponding to the N largest eigenvalues of the kernel matrix. The

data in the embedded space not only has smaller dimensionality, but also captures the connectivity patterns

in gene expression data. One then can use the embedded data instead of original gene expression data in

logistic classifier in [25]. This procedure would increase the prediction accuracy in two different ways. First,

the features in data will be less noisy and more informative and second, the number of parameters to be

estimated for logistic regression problems will become much smaller, 2 ∗N instead of 2 ∗M where N << M .
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Conclusion

Genome-wide transcriptome and interactome data allow for systematic discovery of gene regulatory inter-

actions. Accurate prediction of such interactions, which is essential for understanding phenotypic outcomes

of genetic and environmental perturbations, depends on the quality of models capturing essential regulatory

features and on their underlying assumptions. The geometric connectivity pattern among the members of

the regulon is one of the features hidden in gene expression data that, when captured, can greatly enhance

the prediction accuracy of network reconstruction methods. We introduced an effective approach to pre-

dict interactions between regulators and their target genes using kernel embedding matrices called Kernel

Embedding of Regulatory Network (KEREN). KEREN applies a kernel embedding technique on gene ex-

pression data to simultaneously capture nonlinear dependencies and geometric connectivity patterns in the

data. Then, it takes advantage of available interactome data to discover new interactions between genes and

regulators using a gene-regulon based association method.

We demonstrated that the application of the kernel embedding matrices in combination with gene-regulon

based association strategy results in more reliable identification of many known as well as previously un-

characterized regulatory interactions. We should mention that the power of a regulon-based association

strategy and of any supervised or semi-supervised inference methods relies on the availability of the inter-

actome data, and without such information these supervised algorithms are not applicable. However, with

the help of ChIP-chip and ChIP-sequencing technology, it should be possible to obtain sufficient amount of

interactome data de novo to satisfy the connectivity matrix requirements. We also discussed how several

previously known and established biological discovery algorithms can benefit from kernel embedding matri-

ces constructed from gene expression matrices. Finally we would like to emphasize an important application

of kernel embedding matrices, which is when the gene expression data sets come from different sources and

different platforms. Whereas combining such data sets directly may not be feasible, the kernel matrices from

each data set can be easily combined in an algebraic manner and the resulting matrix can be treated as a

single kernel matrix in any discovery algorithm.
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A B

C D

Figure 1: Performance of KEREN on two data sets of different size: Panel(A) shows the comparison of

recall(blue line) and precision(red line) for cDNA data set versus K, the initial number of selected neighbors,

for fixed value of P = 10. Panel(B) shows the same for Affymatrix data set. Panels C & D show the effect

of the proposed assignment procedure (parameter P ) for cDNA and affymatrix data set respectively. K is

equal to 5 in this case.
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A B

Figure 2: Figure 2 - Performance of KEREN using Laplacian kernel: (A) Shown is the comparison of

recall(blue line) and precision(red line) for KEREN when Laplacian kernel instead of LLE is derived from

the correlation matrix of Affymatrix data set. (B) shown is the comparison of recall and precision for

Affymatrix data when LLE kernel is constructed from correlation matrix of randomized data.
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Tables

Table 1 - Performance Comparison

Recall and precision values in % for two microarray data sets. Methods/Algorithms are: (A) Gene-TF, rele-

vance network, (B)Gene-Regulon using a correlation matrix, (C) Gene-Regulon using a mutual information

matrix, (D) KEREN, Gene-Regulon using an LLE kernel matrix derived from a mutual information matrix,

(E) KEREN, Gene-Regulon using an LLE kernel matrix derived from a correlation matrix,

cDNA Data Set Affymatrix data set

Method/Algorithm Recall Precision Recall Precision

A 13.5 9.5 26.8 17.1

B 31 10 42.6 14.5

C 30 13.6 47.2 25

D 44.7 40 62.3 63.2

E 50.5 46.7 66 68

Table 2 - Comparison of KEREN with SIRENE

Comparison between precisions(%) of KEREN and SIRENE (with operon structure accounted for in the

first two rows and not - ’bias’) at different levels of recall. The values for SIRENE were taken from [24].

Method/Algorithm Recall=80% Recall=75% Recall=70% Recall=65% Recall=60% Recall=50%

KEREN 30 38 44 47 50 54

SIRENE 16 18 23 29 35 50

KEREN-bias 65 75 82 86 88 91

SIRENE-bias 62 70 75 82 86 90
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