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Abstract

As high-throughput transcriptome sequencing provides evidence for novel transcripts
in many species, there is a renewed need for accurate methods to classify small genomic
regions as protein-coding or non-coding. We present PhyloCSF, a novel comparative
genomics method that analyzes a multi-species nucleotide sequence alignment to de-
termine whether it is likely to represent a conserved protein-coding region, based on a
formal statistical comparison of phylogenetic codon models. We show that PhyloCSF’s
classification performance in 12-species Drosophila genome alignments exceeds all other
methods we compared in a previous study, and we provide a software implementation
for use by the community. We anticipate that this method will be widely applicable as
the transcriptomes of many additional species, tissues, and subcellular compartments
are sequenced, particularly in the context of ENCODE and modENCODE.

Preprint as of August 17, 2010

Introduction

High-throughput transcriptome sequencing is yielding precise structures for novel transcripts in
many species, including mammals [1]. Accurate computational methods are needed to classify these
transcripts and the corresponding genomic exons as likely to be protein-coding or non-coding, even
if the transcript models are incomplete or if they only reveal novel exons of already-known genes. In
addition to analyzing novel transcript models, such methods also have applications in evaluating and
revising existing gene annotations [2, 3, 4, 5, 6], and as input features for de novo gene structure
predictors [7, 8]. We have previously [9] compared numerous methods for determining whether
an exon-length nucleotide sequence is likely to be protein-coding or non-coding, including single-
sequence metrics based on the genome of interest only, and also comparative genomics metrics
based on alignments with orthologous regions in the genomes of related species.

Among the comparative methods benchmarked in our previous study, one of our original contri-
butions was Codon Substitution Frequencies (CSF), which assigns a score to each codon substitu-
tion observed in the input alignment based on the relative frequency of that substitution in known
coding and non-coding regions. We showed that CSF is highly effective, performing competitively
with a phylogenetic modeling approach with much less computational expense, and indeed we have
applied it successfully in flies [10, 3], fungi [5], and mammals [4, 11, 1]. However, as discussed
in our previous work, CSF has certain drawbacks arising from its ad hoc scheme for combining
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evidence from multiple species. For example, it makes only partial use of the evidence available
in a multi-species alignment, and it produces a score lacking a precise theoretical interpretation,
meaningful only relative to its empirical distributions in known coding and non-coding regions.

This preprint introduces a rigorous reformulation of CSF, which frames the evaluation of a given
alignment as a statistical model selection problem, choosing between phylogenetic codon models
estimated from known coding and non-coding regions as the best explanation for the alignment.
This new “PhyloCSF” method fully leverages multiple alignments in a phylogenetic framework,
produces meaningful likelihood ratios as its output, and rests upon the sweeping theoretical foun-
dation for statistical model comparison. At the same time, it maintains certain advantages of
CSF compared to existing phylogenetic methods. By reanalyzing the classification datasets from
our original study, we show that PhyloCSF outperforms all of the other methods we previously
benchmarked. Lastly, we briefly describe our software implementation, which we make publicly
available.

Phylogenetic tests for distinguishing coding and non-coding regions

Our new PhyloCSF method builds upon the well-established theoretical framework for statistical
phylogenetic model comparison. In this context, phylogenetic models are generative probabilistic
models that produce alignments of molecular sequences, specifying a prior distribution over a
common ancestral sequence, the topology and branch lengths of a phylogenetic tree relating the
descendants, and a substitution process along each branch giving the rates (per unit branch length)
at which each character changes to any other. In phylogenetic model comparison, we wish to
choose between two competing models as the better explanation for a given alignment. A standard
approach is to decide based on the likelihood ratio between the two models, which quantifies how
much more probable the alignment is under one model than the other. This general approach has
been used to explore many different aspects of the evolution of protein-coding genes, as recently
reviewed in [12] and [13].

For distinguishing coding and non-coding regions, we design one phylogenetic model to rep-
resent the evolution of codons in protein-coding genes, and another to represent the evolution of
nucleotide triplet sites in non-coding regions. These models may have one or more parameters θ
that adjust them to the genomic region of interest, e.g. the background mutation rate or G+C
content. To analyze a given alignment A of extant sequences, we first determine the probability
of the alignment under the maximum likelihood estimate (MLE) of the parameters for the coding
model, pC = maxθC

Pr(A|Coding, θC). Then we do the same for the non-coding model to obtain
pN = maxθN

Pr(A|Noncoding, θN ). Finally, we decide that the alignment is likely to represent a
protein-coding region if the log-likelihood ratio Λ = log pC

pN
is sufficiently high. The precise cutoff

can be chosen to achieve a certain level of statistical significance, based on known asymptotic con-
vergence properties of the log-likelihood ratio statistic [14, 15, 16], or it can be chosen empirically
based on classification performance in a test set; we focus on the latter strategy in this work.

The dN/dS test

A standard method for detecting purifying selection on protein-coding sequences is to test for
evidence that non-synonymous substitutions occur at a slower rate than synonymous substitu-
tions. In the widely used PAML implementation of this test [17, 18], the codon frequencies π
and the ratio of transition to transversion rates κ determine all triplet substitution rates in the
background/non-coding model, while the coding model additionally supposes that non-synonymous
codon substitution rates are reduced relative to synonymous rates by a scale factor ω (also called
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dN/dS). PAML takes the phylogenetic tree topology as input, and estimates the branch lengths, π,
κ, and ω for each alignment. The log-likelihood ratio between the coding and non-coding models
can then be obtained from PAML’s output. (By convention, the log-likelihood ratio is set to zero
if the estimated ω ≥ 1.)

Our previous work [9] showed this to be one of the best comparative methods for distinguishing
coding and non-coding regions, outperforming our CSF method according to standard classification
error measures. Notably however, the dN/dS test performed worse than CSF for short regions
(≤ 180nt). This is not surprising since PAML was designed for evolutionary analysis of complete
open reading frames, not short exon-length regions, which probably provide too little information
to reliably estimate both the branch lengths and codon frequencies in addition to the two rate
parameters.

PhyloCSF

Our new PhyloCSF method differs from the standard dN/dS test in two main ways. First, it
takes advantage of recent advances in phylogenetic codon modeling methods that enable much
more detailed representations of coding and non-coding sequence evolution. Specifically, while the
dN/dS test uses only a few parameters to model the rates of all possible codon substitutions [17],
PhyloCSF uses two empirical codon models (ECMs) based on independent parameters for essentially
all such rates [19], one estimated from alignments of many known coding regions, and the other from
non-coding regions. By comparing these two rich evolutionary models, PhyloCSF can observe many
additional informative features of a given alignment compared to the dN/dS test. For example, the
coding ECM captures not only the decreased overall rate of non-synonymous substitutions, but also
the different rates of specific non-synonymous substitutions reflecting the chemical properties of the
amino acids. (Earlier codon modeling approaches also incorporate amino acid distances, e.g. [20],
but to our knowledge, these are not widely used for discriminating between coding and non-coding
regions.) Also, our ECMs explicitly model the very different rates of substitutions giving rise to
stop codons in coding and non-coding regions.

Second, PhyloCSF also relies on genome-wide training data to provide prior information about
the branch lengths in the phylogenetic tree and the codon frequencies, rather than attempting to
re-estimate these a priori even in very short alignments. PhyloCSF assumes a fixed tree “shape”
based on the genome-wide MLEs of the branch lengths, and estimates only two scale factors ρC and
ρN , applied uniformly to all of the branch lengths in the coding and non-coding models respectively,
for each individual region analyzed. This allows the method to accomodate some region-specific
rate variation and reduces its sensitivity to the absolute degree of conservation, without greatly
increasing the parameterization at the expense of reliability for short regions.

In summary, PhyloCSF relies on two ECMs fit to genome-wide training data (Figure 1A), which
include estimates for the branch lengths, codon frequencies, and codon substitution rates for known
coding and non-coding regions. To evaluate a given nucleotide sequence alignment (Figure 1B,C),
PhyloCSF (1) determines the MLE of the scale factor ρ on the branch lengths for each of these
models, (2) computes the likelihood of each model (the probability of the alignment under the
model) using the MLE of the scale factor, and (3) reports the log-likelihood ratio between the
coding and non-coding models.

PhyloCSF outperforms other methods

To evaluate the discriminatory power of our new method, we applied it to the same datasets used
in our previous study [9], and also benchmarked its performance in the same way. Briefly, the
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ancestor GTG GCG AGT GCA TTT CCC AGA GGA GTT GAT AGG AGT CTG AAA CTA CTG ATA AAT TGC TTT TTA ATT AGC ACA GAG CAG
dmel GTG ACG AAT GCG TTT CCC AGA GGA TCG GAT GGA GGT CTG AAG CTA CTG ATA GAT TGC TTT TTA ATT AGC ACA GCA CAG
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dgri GTG GCG AGT GCA TCT GCG GGA TGT GTT GGT CAG CGA CTG CGT TGG CTG ATA AAT GGT TTT TTA ATT AGC CTA GCG CAG
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Figure 1: PhyloCSF method overview. (A) PhyloCSF uses phylogenetic codon models estimated
from genome-wide training data based on known coding and non-coding regions. These models include
a phylogenetic tree and codon substitution rate matrices QC and QN for coding and non-coding regions,
respectively, shown here for 12 Drosophila species. QC captures the characteristic evolutionary signatures of
codon substitutions in conserved coding regions, while QN captures the typical evolutionary rates of triplet
sites in non-coding regions. (B) PhyloCSF applied to a short region from the first exon of the D. melanogaster
homeobox gene Dfd. The alignment of this region shows only synonymous substitutions compared to the
inferred ancestral sequence (green). Using the maximum likelihood estimate of a scale factor ρ applied to the
assumed branch lengths, the alignment has higher probability under the coding model than the non-coding
model, resulting in a positive log-likelihood ratio Λ. (C) PhyloCSF applied to a conserved region within
a Dfd intron. In contrast to the exonic alignment, this region shows many non-synonymous substitutions
(red), nonsense substitutions (blue, purple), and frameshifts (orange). The alignment has lower probability
under the coding model, resulting in a negative score.
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datasets consist of known protein-coding regions and random non-coding regions (about 50,000
total regions) in the genome of the fruitfly Drosophila melanogaster, aligned with eleven other
Drosophila species using MULTIZ [21, 22, 10]. The lengths of the regions in both the coding and
non-coding sets match the length distribution of fly coding exons. Consistent with our previous
work, we trained and applied PhyloCSF on this dataset using four-fold cross-validation, to ensure
that any observed performance differences are not due to overfitting. We assessed the results
by examining ROC curves and computing the minimum average error (MAE), the average false
positive and false negative rates at the cutoff that minimizes this average. To compare the power
of the methods for short exons specifically, we additionally computed these benchmarks only for
the 37% of examples from 30 to 180 nucleotides in length.

These benchmarks showed that PhyloCSF outperforms the other comparative methods we pre-
viously benchmarked, essentially dominating them at good sensitivity/specificity tradeoffs (Figure
2A). PhyloCSF’s overall MAE was 19% lower than that of the Reading Frame Conservation metric,
15% lower than our older CSF method, and 8% lower than the dN/dS test. PhyloCSF also clearly
outperformed the other methods for short exons (Figure 2B), with an MAE 11% lower than the
dN/dS test. These results show that PhyloCSF provides superior power to distinguish coding and
non-coding regions based on multi-species genome alignments.

Implementation and availability

To facilitate the use of PhyloCSF by the community, we provide an implementation that evaluates
an input sequence alignment in Multi-FASTA format and reports the resulting log-likelihood ratio
in units of decibans. The program supports batch processing of many alignments, and can either
evaluate each alignment as-is or search for high-scoring open reading frames within. We also
provide the ECMs and other parameter settings for several phylogenies, including mammals and
flies. The Objective Caml source code and executables for popular platforms are available at:
http://compbio.mit.edu/PhyloCSF

Discussion

We have introduced PhyloCSF, a comparative genomics method for distinguishing protein-coding
and non-coding regions, and shown that it outperforms other methods. In addition to its superior
discriminatory power, PhyloCSF is far more theoretically attractive than our older CSF method
and other ad hoc metrics, relying on a formal statistical comparison of phylogenetic codon models.
On the other hand, PhyloCSF and CSF produce highly correlated scores (Pearson coefficient 0.95
in our dataset), and the new method is much more computationally demanding. It should also be
noted that CSF and PhyloCSF, unlike many of the other methods compared in our previous study,
require extensive genome-wide training data from known coding and non-coding regions, which can
present an obstacle in genomes outside of well-studied phylogenies such as mammals and flies.

The classification approach described here, in which we are given individual sequence alignments
and must decide whether each one represents a coding or non-coding region, is complementary to
de novo comparative gene predictors that attempt to parse the complete primary genome sequence
into exon-intron structures and intergenic regions. In particular, we suggest that the classification
approach is more naturally applicable to transcript models reconstructed from expression evidence
such as mRNA-Seq, where the exon-intron structure is essentially known. Moreover, the rapidly
decreasing cost of such transcriptome sequencing is arguably reducing the need for de novo gene
predictors, although they will remain useful for predicting possible lowly- or rarely-expressed genes.
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Figure 2: PhyloCSF performance benchmarks. (A) ROC curves and error measures for distinguishing
coding and non-coding regions in a dataset of approximately 50,000 regions from D. melanogaster aligned
to 11 other fly genomes. PhyloCSF clearly outperforms the other methods. (B) As in (A), but only for the
37% of regions in the dataset between 30 and 180 nucleotides in length.
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Methods

PhyloCSF

PhyloCSF’s trained parameters include a phylogenetic tree (with branch lengths) and two 64-
by-64 codon rate matrices QC and QN representing coding and non-coding sequence evolution,
respectively, as reversible, homogeneous, continuous-time Markov processes. To evaluate a given
alignment, we first evaluate the likelihood of the coding model as follows. First, we define an
alignment-specific parameter ρC that operates as a scale factor applied to all of the branch lengths
in the predefined tree. Given a setting of ρC , the substitution probability matrix along any branch
with length t is given by P = exp(tρCQC), and the probability of the full alignment can be
efficiently computed using Felsenstein’s algorithm [23], assuming independence of the codon sites,
using the equilibrium frequencies implicit in QC as the prior distribution over the common ancestral
sequence, and marginalizing out any gapped or ambiguous codons. We numerically maximize this
probability over ρC to obtain the likelihood of the coding model pC . We then evaluate the likelihood
of the non-coding model pN in the same way, using QN and an independent scale factor ρN , and
report the log-likelihood ratio log pC

pN
as the result.

Estimation of empirical codon models

To estimate the phylogenetic tree and the empirical rate matrices QC and QN for the species of
interest, we rely on sequence alignments of many known coding and random non-coding regions.
Given this genome-wide training data, we optimize the parameters for the coding and non-coding
models using an expectation-maximization approach. The E-step is carried out as previously de-
scribed [24, 25]. In each M-step, we update the ECM exchangeability parameters using a spectral
approximation method [26] and the branch lengths by gradient ascent on the expected log-likelihood
function [25]. Meanwhile, the codon/triplet frequencies are fixed to their empirical averages in the
training examples, and we assume a fixed species tree topology.
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