DETECTION OF NONLINEAR EFFECTS IN GENE EXPRESSION PATHWAYS

Andreas Mayr¹, Djork-Arne Clevert^{1,2} and Sepp Hochreiter¹

¹Institute of Bioinformatics, Johannes Kepler University, Linz, Austria

²Department of Nephrology and Internal Intensive Care, Charité University Medicine, Berlin, Germany

Abstract

MOTIVATION

Modelling pathways is a central research field in biology. While pathway genes that are mutually linear dependent in their expression values are easy to identify, genes that are nonlinear dependent are hard to find. The detection of such genes is difficult as nonlinearities must be distinguished from noise. We therefore propose an algorithm based on a new developed nonlinear factor analysis algorithm to infer nonlinear gene network components from microarray data.

RESULTS:

ecedings

We applied our algorithm to the p53 pathway on a number of microarray breast cancer samples and could find some genes that show high nonlinear dependencies across the different datasets.

GOAL

dentification of genes depending nonlinearly on the hidden 28 ;

Assumptions

ក្ក Genes of a pathway are driven by one hidden factor.

£3174.0	<i>w</i> o groups of genes in a pathway: Linear dependence on hidden factor Nonlinear dependence on hidden factor
.2010	Approach
ngre	onlinearities: quadratic hidden factor

doi:10.1038/ -values: probability of a linear gene being detected by chance as nonlinear

MODEL

OUADPATIC FACTOR

	QUADRATIC FACTOR ANALISIS MODEL						
$x = \lambda_0 + \lambda_1 x$ $\boldsymbol{\epsilon} \sim \mathcal{N}\left(0, \boldsymbol{\Psi} ight)$	$z + \lambda_2 z^2 + \epsilon \\ z \sim \mathcal{N}\left(0, \ 1\right)$						
x : Gene expression values z : Hidden factor (scalar) → pathway activation ϵ : Independent noise	$\begin{split} \lambda_0 &: \text{Mean expression values} \\ \lambda_1 &: \text{Linear gene coefficients} \\ \lambda_2 &: \text{Nonlinear (quadratic)} \\ & \text{gene coefficients} \rightarrow \\ & \text{strength of nonlinearity} \\ \Psi &: \text{Diagonal covariance} \end{split}$						
MODEL SELECTION							
Model fitting by Expectation-Maximization	• Estimation of moments of the hidden factor:						
Maximum-a-posteriori	Gaussian approximatio						

maximum a postenom	
solution \rightarrow priors on linear	 New moment-based
and nonlinear coefficients	approximation
	 Importance Sampling
Higher order moments to	 Numeric Integration
identify nonlinearities	

AVAILABILITY

The algorithm is available as a R package.

EXPERIMENT: DETECTION O	F NONLINEAR GEN	ES IN P53 PATHWAY	OF BREAST	CANCER SAMPLES
-------------------------	-----------------	-------------------	-----------	----------------

DATACETC

MOTIVATION

Breast cancer: serious disease affecting a large number of people

p53 pathway: plays an important role in many types of cancers

8 different datasets analyzed

- Preprocessing:
- Quantile normalization
- FARMS with use of
- Brainarray-CDFs
- INI-filtering
- (to remove uninformative probesets)

Ditins	210		
Dataset	Samples	Platform	Goal
GSE2109	354	HG-U133_Plus_2	Profiling of tissue samples under standard conditions for the public domain
GSE11121 Schmidt et al. Cancer Res 2008 Jul 1;68(13):5405-13	200	HG-U133A	Search for new prognostic motives in breast cancer
GSE12276 Bos PD et al. Nature 2009 Jun 18;459(7248):1005-9	204	HG-U133_Plus_2	Identification of genes that mediate breast cancer metastasis to the brain
GSE1456a Pawitan Y et al. Breast Cancer Res 2005;7(6):8953-64	159	HG-U133A	Identification of a signature associated with prognosis and impact of adjuvant therapies
GSE1561 Farmer P et al. Oncogene 2005 all 7;24(29):4660-71	49	HG-U133A	Prediction of markers for the identification of molecular apocrine breast tumours
GSE3494a Miller al. Proc Natl Acad Sci USA 2005 Sep 20;102(58):13550-5	251	HG-U133A	Development of an expression signature for p53 in breast cancer
GSE4922a Ivebina et al. Cancer Res 2006 Nov 1;56(21):10292-301	289	HG-U133A	Prediction of 264 robust morphological grade-associated markers
GSE6883a lika et al. N Engl J Med 2007 lan 18/356(3):217-26	22	HG-U133A	Generation of a 186-gene invasiveness gene signature that is associated with overall survival and metastasis-free survival

Multiple testing: Bonferroni-adjusted

NONLINEAR CALL

P-value: linear gene being wrongly detected as nonlinear

Nonlinear call: adjusted p-value threshold of 0.01

RESULTS

DETECTED NONLINEAR GENES OF THE P53 PATHWAY								
GSE2109	GSE11121	GSE12276	GSE1456a	GSE1561	GSE3494a	GSE4922a	GSE6883a	
CCND1	CCND1	CCND1	CCND1	CCNE1	FAS	FAS	CCND1	
CASP3	CCNE1	CASP3	CCNE1	CDKN2A	CCND1	CCND1	CCNG1	
CCNE1	CDKN2A	CCNB1	CHEK1		CCNE1	CCNB1	GADD45B	
CCNG2	SFN	CCNE1	SERPINB5]	CDKN2A	CCNE1		
CDKN2A	IGFBP3	CDC2	THBS1	1	CHEK1	CHEK1	1	
CHEK1	SERPINB5	CDK6	CCNE2]	SERPINB5	SERPINB5]	
GADD45B	STEAP3	CDKN2A	PERP	1	CCNB2	CCNB2	1	
SERPINB5	PERP	SERPINB5]	STEAP3		1	
THBS1		RRM2	1		PERP	1		
TSC2	7	CCNB2	1			1		
SESN1		CCNE2	1					
RRM2B	1	RRM2B	1					
SHISA5	1	RFWD2	1					
		SESN3	1					

CONCLUSION

Significant overlap of nonlinear genes between different datasets

New insights to biological processes \rightarrow (re)modelling pathway structures