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Lung cancer is the leading cause of cancer deaths, because ~84% of cases are 

diagnosed at an advanced stage1-3. Worldwide in 2008, ~1.5 million people were 

diagnosed and ~1.3 million died4 – a survival rate unchanged since 1960. However, 

patients diagnosed at an early stage and have surgery experience an 86% overall 5-

year survival2,3. New diagnostics are therefore needed to identify lung cancer at this 

stage. Here we present the first large scale clinical use of aptamers to discover blood 

protein biomarkers in disease with our breakthrough proteomic technology5. This 

multi-center case-control study was conducted in archived samples from 1,326 

subjects from four independent studies of non-small cell lung cancer (NSCLC) in 

long-term tobacco-exposed populations. We measured >800 proteins in 15uL of 

serum, identified 44 candidate biomarkers, and developed a 12-protein panel that 

distinguished NSCLC from controls with 91% sensitivity and 84% specificity in a 

training set and 89% sensitivity and 83% specificity in a blinded, independent 

verification set. Performance was similar for early and late stage NSCLC.  This is a 

significant advance in proteomics in an area of high clinical need. 

Over the past decade the clinical utility of low-dose CT has been evaluated6-9  

with the hope that high-resolution imaging can help detect lung cancer earlier and 

improve patient outcomes, much as screening has done for breast and colorectal 

cancers10. Definitive conclusions about CT screening and lung cancer mortality await 

results from randomized trials in the US9 and Europe11-14. CT can detect small, early-

stage lung tumors, but distinguishing rare cancers from common benign conditions is 

difficult and has led to unnecessary procedures, radiation exposure, anxiety, and cost7,15-

17. We (J.M.S., J.L.W., and colleagues) recently reported such conclusions for the 

Pittsburgh Lung Screening Study (PLuSS), the largest single-institution CT screening 

study reported to date6. 

Other types of biomarkers have also been sought18.  Proteins are attractive 

because they are an immediate measure of phenotype, in contrast to DNA which provides 

genotype, largely a measure of disease risk5. However, most efforts fail to identify 

clinically useful biomarkers19 because proteomic technologies have not achieved 

adequate coverage, sensitivity, specificity, throughput, and economy to identify 

biomarkers whose signals rise above the noise of sample variability and patient 
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comorbidities. Our new proteomic technology5 achieves these goals and represents a 

platform with potentially broad application. 

We designed and executed this study to current rigorous clinical biomarker study 

standards20-22 with the following goals: (1) maximize biomarker robustness, validity, and 

reliability at the discovery phase; (2) minimize potential sample bias; (3) validate results 

independently. The clinical question was: “does this at-risk, tobacco-exposed individual 

have lung cancer?” The study was a case-control design that followed the Prospective-

specimen-collection-Retrospective-Blinded-Evaluation (PRoBE) design criteria20,22 

endorsed by the U.S. National Cancer Institute’s Early Detection Research Network 

(EDRN). 

Critical study design features include: (1) clinical question and study design 

defined prospectively, prior to obtaining samples; (2) samples acquired from four 

independent study sites to minimize bias; (3) specimens collected following EDRN 

protocols21 from subjects prior to diagnosis from a cohort that represents the target 

population for the clinical question; (4) an independent verification set as defined by 

current recommendations20; and (5) pre-defined statistical analysis plan and minimally 

acceptable performance criteria for sensitivity and specificity pre-defined per PRoBE 

design criteria20. 

The study analyzed 1,326 serum samples from four independent biorepositories: 

New York University (NYU)23; Roswell Park Cancer Institute (RPCI)24; The University 

of Pittsburgh (PITT)6; and a commercial biorepository (BioServe (BS)) (Supplementary 

Information (SI) and Supplementary Table 1). The study included patients diagnosed 

with pathologic or clinical stage I-III NSCLC and a high-risk control population with a 

history of long-term tobacco use, including active and ex-smokers with ≥10 pack-years of 

cigarette smoking. The control populations were selected randomly within each study to 

represent the patient population at risk for lung cancer that would be candidates for CT 

screening, with a ratio of case:control of 1:3.5. 

Samples were randomly distributed into independent sets for classifier training 

and blinded verification (Fig. 1). Study demographics (Table 1) show no significant 

difference in these two sets. More than 45% of NSCLC cases were pathologically 

confirmed stage IA or IB or clinical stage I with adenocarcinoma representing the major 
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histological diagnosis (Table 2). All lung cancer patients had a biopsy-proven cancer 

diagnosis. 

We measured the quantity of 813 proteins in each of the 1,326 samples with our  

proteomic platform5. We followed a pre-defined two-phase analysis plan to identify 

biomarkers and develop a classifier to distinguish lung cancer subjects from controls 

within the training set (training phase) and to test the classifier performance with the 

blinded independent verification set (verification  phase). The training phase entailed two 

steps – biomarker selection and algorithm training with cross-validation. 

To select biomarkers we performed a systematic analysis that narrowed the 

potential biomarker field for algorithm training to increase the probability of true 

discovery, yet still cast a relatively broad net. We used a Naïve Bayes (NB) method to 

systematically assess potential biomarker performance by preset criteria and we applied 

the method to subsets of the training data to broaden our cast for potential biomarkers 

(details in SI). The results identified a set of 44 potential biomarkers (Supplementary 

Table 2) that distinguish lung cancer from controls across a range of comparisons in the 

training set while minimizing potential “preanalytical variability” – artifacts introduced 

by variations in sample collection and storage25,26. 

Preanalytical variability underlies common failures to translate candidate 

biomarkers into clinically useful tests19,26. We assessed this in the study by measuring 

differences in protein levels within the same disease class (NSCLC or control) between 

different sites and comparing them to differences observed between NSCLC and control 

populations. The results (Fig. 2) show significant preanalytical variability between sites. 

However, proteins most affected by preanalytical variability are distinct from potential 

NSCLC biomarkers. Many proteins that exhibit preanalytical variability (Supplementary 

Table 4) are previously known to be susceptible to variations in sample collection and 

handling25,26. This result confirms that pre-analytical variability exists in our study and 

shows that our study design largely overcomes this variability to maximize the chances of 

discovering true, robust biomarkers of NSCLC. 

To develop a potential diagnostic to distinguish NSCLC from controls, we trained 

NB classifiers starting with the 44 potential biomarkers we identified using a “greedy” 

forward search algorithm and ten-fold stratified cross validation, starting with 
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combinations of two biomarkers and increasing in steps of one. We constructed many 

high-performing eight to twelve-biomarker classifiers from this set of 44 potential 

biomarkers. This suggests that there is significant redundancy in the information 

contained within the set of potential biomarkers. Cross validated classifier performance 

reached a plateau with twelve biomarkers, indicating the optimal number of biomarkers 

for subsequent analyses. From the thousands of resulting 12-biomarker classifiers, we 

selected one based on pre-defined performance criteria (Supplementary Table 3) for 

discrimination of NSCLC from controls, sensitive detection of Stage I disease, and 

maintaining performance in chronic obstructive airways disease (COPD). With the 

training set, the classifier achieved 91% sensitivity, 84% specificity, and an area under 

the curve (AUC) of 0.91 (Fig. 3). The results (Table 3) show that sensitivity is maintained 

for Stage I NSCLC (90% for training set). The classifier performed well on samples from 

all four study sites (Supplementary Fig. 1). 

The 12 biomarkers are shown in Table 4. The estimated serum concentrations for 

these markers span 4 logs (10pM-100nM). About half the control group had benign 

pulmonary nodules detected by CT (Table 1), and the performance of the classifier was 

found to be similar in that subgroup to the whole (Table 3). We also tested the effect of 

other attributes that could affect classifier performance such as age, smoking history, and 

COPD, but found little effect (Supplementary Tables 5 and 6). Age has a moderate effect 

on the shape of the ROC curve because the probability of cancer increases with age 

(Supplementary Fig. 2) but this effect can be controlled by adjusting the prior probability 

of cancer in the Bayes classifier model. 

The classification performance of the fixed algorithm was tested on the blinded 

independent verification set and verified by a third party reader to achieve 89% 

sensitivity and 83% specificity, nearly matching the training set performance. 

The biomarkers identified in this study encompass functions of cell movement, 

inflammation, and immune monitoring that may contribute to cancer development (SI). 

Some of these proteins, such as CD30 ligand, endostatin, HSP90, MIP-4, pleiotrophin, 

PRKCI and YES were up-regulated in lung cancer, consistent with their proposed 

biological roles in proliferation, invasion, or host inflammatory and immune response to 

the tumor (SI).  We observed decreased levels of some proteins in the serum of lung 
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cancer patients compared to controls, including cadherin-1, LRIG3, sL-selectin, SCRsR, 

ERBB1 and RGM-C.  Lower circulating levels of many of these proteins are associated 

with relief of inhibition of growth and invasion (SI).   

Some of the biomarkers described in this study are the soluble domains of 

membrane receptors, and the function of the circulating form of these proteins may 

oppose their membrane-bound counterparts. For example, ERBB1 is often over-

expressed in the membrane of NSCLC cells; yet, we and others have found decreased 

levels of the soluble domain of this protein in patient serum27. 

This study is the first large-scale application of our high-throughput, sensitive, 

highly multiplexed proteomic discovery platform [reported in an accompanying paper5] 

to discover and verify a novel biomarker panel for early detection of disease. The breadth 

of this study and the dynamic range of the proteome interrogated by our proteomic 

platform exceed that of other broad serum profiling platforms, including autoantibody 

arrays28-30. The biomarkers that we discovered have several potential clinical 

applications. 

The first application is early detection of lung cancer in long-term smokers when 

it may be cured by surgery. Our results are a significant improvement on the performance 

of other recently published lung cancer biomarker studies aimed at early diagnosis18 

using mass spectrometry23,31,32 or gene expression33. This performance could allow for 

testing of individuals with increased lung cancer risk, with subsequent CT screening 

based on the blood test result. 

A second potential application is a test for diagnosing lung cancer in subjects with 

suspicious lung nodules identified by CT, which could help mitigate the problem of 

morbidity and cost associated with surgical interventions. CT screening reveals 

suspicious nodules in ~40% of long-term smokers6,34,35, but ~97% are likely benign6,35,36.  

Protocols for managing these patients balance the risk of “watchful waiting” with 

definitive and costly invasive procedures. Watchful waiting monitors nodule growth by 

periodic follow-up CTs, but may miss the opportunity for early cures by removal of 

emergent small malignancies. Invasive procedures incur the risk of complications and 

death that arise from biopsy or futile surgical intervention for the predominant benign 
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lesions. This risk might be reduced by a new strategy to assess nodule volume doubling 

time by CT14. However, CT radiation itself increases cancer risk37. 

Based on the discoveries reported here, we have initiated clinical validation 

studies of populations at risk for lung cancer. Our goal is to develop a clinical blood test 

to enable an earlier diagnosis. This study is the first to be published in a sequence of 

successful biomarker discovery studies that we have already completed in different 

cancers and demonstrates the power of our proteomic technology to discover robust 

biomarkers in important diseases. This general approach can also be applied to discover 

biomarkers for many more conditions including infectious, inherited, neurological and 

metabolic diseases. 

  

METHODS SUMMARY 

We formally designed the study of early detection of NSCLC, including clinical question, 

target populations, and statistical power for sample numbers, prior to knowing what 

samples were available from biorepositories. Next we identified biorepositories and 

obtained pre-specified numbers of case and control serum samples randomly selected 

from those biorepository specimens that met our selection criteria. Serum samples were 

collected following NCI-EDRN clinical protocols. The resulting 1,326 serum samples 

were divided randomly into sets for training (75% of samples) and testing (25% of 

samples). We analyzed the samples with our new aptamer-based proteomic platform to 

measure the quantity of 813 proteins in each sample. We compared the resulting 

measurements for the training set to select potential NSCLC biomarkers, which we used 

to train Naïve Bayes algorithms to differentiate NSCLC from smoker controls. We 

selected an algorithm based on pre-defined criteria and tested its performance with the 

blinded test set. Test results were un-blinded and scored by a third party reader. 

 
Full Methods and any associated references are available in the Supplementary 
Information. 
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Supplementary Information is linked to the online version of the paper at www.nature.com/nature. 
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Tables 

Table 1.  Clinical characteristics of NSCLC cases and control training and verification sets 
 

Training Set (n=985) Verification Set (n=341) 

 
Cases Controls p-value* Cases Controls p-value* 

Individuals,  
no. (%) 

 
213 (21.6) 

 
772 (78.4) 

  
78 (22.9) 

 
263 (77.1) 

 

Sex, (%) 
Male 
Female 

 
51.2 
48.8 

 
47.4 
52.6 

 
 

0.3305 

 
43.6 
56.4 

 
47.9 
52.1 

 
 

0.5015 
Age (yr) 
Mean (SD) 

 
67.6 (9.8) 

 
59.0 (10.2) 

 
<0.0001 

 
68.3 (10.2) 

 
58.8 (9.6) 

 
<0.0001 

Control Nodule 
Status, no. (%) 

Benign nodule 
No nodule 
Unknown 

n/a 

 
 

420 (54.4) 
222 (28.8) 
130 (16.8) 

 n/a 

 
 

145 (55.1) 
75 (28.5) 
43 (16.4) 

 

Smoking Status 
(no.) 

Current 
Ex 
Never 
Unknown 

 
54 
85 
11 
63 

 
421 
310 

6 
35 

<0.0001  

 
25 
31 
7 

15 

 
150 
108 

3 
2 

<0.0001  

Smoking (PKY)** 
Mean (SD) 

 
47.1 

(33.7) 

 
42.3 (24.2) 

 
0.0258 

 
40.9 (30.8) 

 
42.3 (24.6) 

 
0.7003 

*For continuous data the differences were tested using t-tests. For categorical data significant differences 
were tested using the Pearson Chi-Squared Test for independence.  
**Pack-years:  product of the self reported number of packs of cigarettes smoked per day and the number 
of years of smoking. 
 
Table 2.  Clinical characteristics of NSCLC cases in the training and verification sets 
 

Training Cases (n=213) Verification Cases (n=78) 

Stage NSCLC*, no. (%) 
I 
II 
III 
Not reported 

 
99 (46.5) 
32 (15.0) 
82 (38.5) 

- 

 
38 (49) 
11 (14) 
27 (35) 

2 (2) 
Histology, no (%) 

Adenocarcinoma 
Squamous 
Large 
NSCLC 

 
120 (56.3) 
71 (33.3) 
2 (1.0) 
20 (9.4) 

 
49 (62.8) 
18 (23.1) 

2 (2.6) 
9 (11.5) 

*Clinical staging for 17 Stage I, 5 Stage II and 29 Stage III cases. 
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Table 3.  Performance of Bayesian Classifier to distinguish NSCLC cases from controls 
 Sensitivity (%), (95% CI) Specificity (%), (95% CI) 

NSCLC Cases   
Training Stage I-III 91 (87-95)  
Training Stage I 90 (84-96)  
10-fold Cross Validation 91 (87-95)  
Verification Stage I-III 89 (81-96)  
Verification Stage I 87 (78-96)  

   
Controls   

Training All Controls  84 (81-86) 
Training Benign Nodules  82 (78-85) 
10-fold Cross Validation  83 (80-86) 
Verification All Controls  83 (79-88) 
Verification Benign Nodules  85 (79-91) 

 
 
Table 4. Twelve biomarker classifier proteins 
Biomarker UniProt ID Direction* Description 
Cadherin-1 P12830 down cell adhesion, transcription regulation 
CD30 Ligand P32971 up cytokine 
Endostatin P39060 up inhibition of angiogenesis  
HSP 90α P07900 up chaperone 
LRIG3 Q6UXM1 down protein binding, tumor suppressor 
MIP-4 P55774 up monokine 
Pleiotrophin  P21246 up growth factor 
PRKCI P41743 up serine/threonine protein kinase, oncogene 
RGM-C Q6ZVN8 down iron metabolism 
SCF sR P10721 down decoy receptor 
sL-Selectin P14151 down cell adhesion 
YES P07947 up tyrosine kinase, oncogene 

*Up or down regulation in NSCLC cases relative to controls. 
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Figures 
 
Figure 1 

Total n = 1326 
291 Cases

1035 Controls

Biomarker Selection
Algorithm Training & 

Cross Validation
Blinded Algorithm Verification

213 Cases
772 Controls

78 Cases
263 Controls

91% Sensitivity
84% Specificity

AUC = 0.91

89% Sensitivity
83% Specificity

AUC = 0.90

Total n = 1326 
291 Cases

1035 Controls

Biomarker Selection
Algorithm Training & 

Cross Validation
Blinded Algorithm Verification

213 Cases
772 Controls

78 Cases
263 Controls

91% Sensitivity
84% Specificity

AUC = 0.91

89% Sensitivity
83% Specificity

AUC = 0.90
 

 
Figure 2 
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Figure 3 

 
 

Figure Legends 

Figure 1. Study flow for algorithm training and verification. 
 
Figure 2. Heat map of the differences for protein measurements (columns) in lung cancer 

versus control or study site comparisons. Top row: KS distances for NSCLC versus 

control distributions. Bottom row: mean KS distances for all 12 pair-wise comparisons 

between the four sites, case and control samples analyzed separately. Proteins were 

ordered by subtracting the NSCLC KS distance from the mean site KS distance. This 

revealed groups of NSCLC biomarkers (top right) contrasting with preanalytical markers 

(bottom left). 

Figure 3. ROC curve for 12-biomarker naïve Bayes classifier shows the true positive rate 

(sensitivity) and false positive rate (1-specificity) for distinguishing NSCLC cases from 

at-risk tobacco-exposed controls for the training set (blue) and independent verification 

(test) set (red). 
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Supplementary Information 

Unlocking biomarker discovery: Large scale application of aptamer 
proteomic technology for early detection of lung cancer 

1. Sample collection 
All samples were collected from study participants after obtaining informed consent 

under institutionally approved clinical research protocols as described1-3.  Both case and 

control serum samples were collected from four centers.  Three of the centers (NYU, PITT 

and RPMC) collected serum in red top Vacutainer tubes (Becton Dickinson, Raritan, NJ) 

and one center (BS) collected serum in tiger top SST Vacutainer tubes (Becton Dickinson).   

All samples were allowed to clot and serum was recovered by centrifugation within 

2-8 hours of collection and stored at -80°C.  De-identified samples were thawed once for 

aliquoting prior to testing with the aptamer proteomic platform.  Blood samples for cases 

were collected from clinic patients within four weeks of the first biopsy-proven lung cancer 

diagnosis and prior to removal of the tumor by a surgical procedure.  

All cases used in this study were confirmed to be primary lung cancer by pathology 

review. NSCLC staging was assigned by pathological staging for 240 subjects and clinical 

staging for 51 subjects.  Benign nodule controls have at least one year of follow-up data 

and non-malignant diagnosis. Smoker controls were asymptomatic study participants with a 

history of tobacco use.  Smoker controls from NYU and Pitt were nodule free by CT; 

nodule status is unknown for this control group from RP and BS.  Demographic data was 

collected by self-report questionnaires.  Additional data for cases was acquired through 

clinical chart review.  Pulmonary function testing was assessed by spirometry for a subset 

of the study participants. 

 
Table 1.  Number of samples analyzed by site 
 

Site Cases (n=291) 
Nodule Controls 

(n=565) 

Smoker 
Controls 
(n=470) Total/Site 

BS 43 0 63 106 
RPCI 72 66 110 248 
NYU 88 238 172 498 
PITT 88 261 125 474 

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
53

7.
1 

: P
os

te
d 

13
 J

un
 2

01
0



2 

 
 
 
 

2. Biomarker selection 
 We selected 44 robust biomarkers of NSCLC for further classifier development 

with a strategy designed to select analytes with the highest performance in classifying 

NSCLC cases from controls across all study sites and that were least affected by 

preanalytical variables.  

In the first step of this analysis, we eliminated analytes that exhibited unexpected 

variation compared to internal controls, due to, for example, sample instability. In this 

process, we chose a set of analytes that performed well in six parallel naïve Bayes (NB) 

classifier training scenarios using two distinct subsets of the overall population: (1) NSCLC 

vs. controls with benign nodules identified by CT; and (2) NSCLC vs. all other smoker 

controls. We used these subsets to control for possible biological variability between these 

populations. We analyzed each sub-population in three NB training scenarios designed to 

control for potential preanalytical variability between study sites. Each of the three 

scenarios started with a unique set of potential biomarkers selected to meet one of the 

following criteria for a given scenario: (1) NSCLC versus controls KS ≥ 0.3 for all 

comparisons within each of the four study sites; (2) NSCLC versus control KS ≥ 0.3 for 

comparing all sites combined; (3) both criteria one and two were met.  

For each scenario, we used a greedy forward search algorithm to select subsets of 

potential biomarkers, build NB classifiers (SI section 7), and score their performance for 

classifying lung cancer and controls using the training set. In the process, this meta-

heuristic approach efficiently searches classifier space to identify potential biomarkers that 

perform best in classification.  

We used a simple measure of diagnostic performance of classifiers, the numerical 

sum of sensitivity + specificity, and measured the frequency with which potential 

biomarkers were selected by the greedy algorithm for inclusion in classifier panels with 

sensitivity + specificity ≥1.7. This step produced a set of potential biomarkers for each of 

the six parallel analyses. We selected the final set of biomarkers as the union of these six 

sets. The resulting core set of 44 potential biomarkers is shown in Table 2. 
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Table 2. Selected potential NSCLC biomarkers* 

# Protein Name UniProt ID KS q-value NB Freq 

1 BCA-1 O43927 0.34 2.51E-17 1 
2 BMP-1 P13497 0.35 3.49E-18 10 
3 C1s P09871 0.29 3.92E-13 1 
4 C9 P02748 0.41 1.33E-24 6 
5 Cadherin-1 P12830 0.32 1.47E-15 206 
6 Calpain I P07384 P04632 0.40 8.46E-24 72 
7 Catalase P04040 0.32 1.21E-15 2 
8 CD30 Ligand P32971 0.28 1.22E-12 51 
9 CDK5/p35 Q00535 Q15078 0.27 1.34E-11 31 

10 CK-MB P12277 P06732 0.33 2.51E-16 19 
11 Contactin-5 O94779 0.29 1.67E-13 3 
12 Endostatin P39060 0.28 8.48E-13 33 
13 ERBB1 P00533 0.46 6.32E-31 136 
14 FGF-17 O60258 0.31 6.12E-15 6 
15 FYN P06241 0.13 5.19E-04 14 
16 HSP 90α P07900 0.51 7.86E-37 85 
17 HSP 90β P08238 0.39 1.50E-22 7 
18 IGFBP-2 P18065 0.36 1.87E-19 54 
19 IL-15 Rα Q13261 0.29 2.62E-13 4 
20 IL-17B Q9UHF5 0.28 1.07E-12 1 
21 Importin β1 Q14974 0.40 1.31E-23 30 
22 Kallikrein 7 P49862 0.31 1.79E-14 43 
23 LDH-H 1 P07195 0.30 8.64E-14 3 
24 Legumain Q99538 0.28 2.52E-12 1 
25 LRIG3 Q6UXM1 0.34 1.13E-17 25 
26 Macrophage mannose receptor P22897 0.37 6.21E-21 21 
27 MAPK13 O15264 0.34 4.66E-18 1 
28 MEK1 Q02750 0.29 2.62E-13 5 
29 MetAP2 P50579 0.44 3.40E-28 7 
30 Midkine P21741 0.11 1.67E-03 7 
31 MIP-4 P55774 0.29 2.69E-13 43 
32 MIP-5 Q16663 0.31 1.53E-14 27 
33 MMP-7 P09237 0.38 1.67E-21 36 
34 NACα Q13765 0.33 7.57E-17 5 
35 NAGK Q9UJ70 0.37 1.25E-20 5 
36 Pleiotrophin  P21246 0.29 5.02E-13 107 
37 PRKCI P41743 0.41 3.81E-25 97 
38 Renin P00797 0.25 1.69E-10 2 
39 RGM-C Q6ZVN8 0.27 5.43E-12 84 
40 SCF sR P10721 0.35 6.97E-19 107 
41 sL-Selectin P14151 0.29 7.88E-13 57 
42 Ubiquitin+1 P62988 0.33 4.09E-17 1 
43 VEGF P15692 0.29 5.47E-13 1 
44 YES P07947 0.28 1.73E-12 47 

*Measure of the relative importance of potential biomarkers selected with KS distance (KS), KS 
FDR-corrected q-value (q-value), frequency for naïve Bayes (NB Freq),  

 
A NB greedy algorithm containing 12 of these biomarkers was chosen for 

application to the blinded verification set based on the following, pre-defined performance 

criteria for algorithm training and cross-validation (Table 2). 
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Table 3. Criteria for algorithm performance on training and cross-validation 
Criteria Minimum Performance 

Sensitivity (Stage I-III) + Specificity 1.7 
Stage I Sensitivity 0.85 
Cross-validation Sensitivity (Stage I-III)+ Specificity 1.7 
Cross-validation Stage I Sensitivity 0.85 
Severe COPD Specificity 0.65 
Biomarker frequency in greedy algorithm 10 
 
 
 
 

3. Preanalytical variability 
 

Table 4. Top 20 Proteins with Preanalytical Variability 

Protein UniProt ID Avg. KS Distance1 

C3 P01024 0.70 
C3a P01024 0.71 
C3adesArg P01024 0.64 
iC3b P01024 0.66 
C3b P01024 0.59 
LTA-4 hydrolase P09960 0.60 
EPHA3 P29320 0.47 
Apo B P04114 0.46 
TrkA P04629 0.44 
HIPK3 Q9H422 0.41 
Angiopoietin-1 Q15389 0.38 
Coagulation Factor IXab P00740 0.42 
EF-1-γ P26641 0.40 
VEGF-D O43915 0.39 
TGF-β3 P10600 0.38 
Coagulation Factor IX P00740 0.38 
C4 P0C0L4, P0C0L5 0.48 
IGF-I P01343, P05019 0.37 
BMP-14 P43026 0.45 
HTRA2 O43464 0.37 
1Average KS distance for within-site, class-dependent comparisons of 
preanalytical variation as shown in Figure 2 
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4. Classifier performance by site 
  

 
Figure 1. ROC curve performance of the 12-biomarker naïve Bayes NSCLC classifier by 
study site. 
 

 

5. Effect of demographic attributes 
To determine whether our classification results were affected either by age, 

smoking status, or smoking history, which are the demographics with significant 

differences between the case and control populations, we compared the classifier 

performance on subsets of the training set population divided into groups based on the 

median value of these attributes. The results show similar classifier performance for all 

subsets (Figure 2 and Table 5). 
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Figure 2. ROC curves show the performance of the 12-biomarker classifier for subsets of 
the training set population: (A) Age <61  (B) Age >61  (C) Current smokers  (D)  Ex 
smokers  (E)  <40 PKY  (F) >40 PKY 
 
 
Table 5.  Performance of classifier in demographic subsets 
  Cases 

No. 
Controls 

No. 
Sensitivity 

(%) (95%CI)
Specificity 

(%) 
(95%CI) 

Accuracy 
(%) 

(95%CI) 

AUC 

Age 
<61 
>61 

 
57 
156 

 
467 
304 

 
84 (75-94) 
93 (89-97) 

 
89 (86-92) 
76 (71-80) 

 
88 (85-91) 
82 (78-85) 

 
0.91 
0.89 

Smoking Status 
Current 
Ex 

 
54 
85 

 
421 
310 

 
93 (86-100) 
91 (84-97) 

 
86 (83-90) 
85 (80-89) 

 
87 (84-90) 
86 (82-89) 

 
0.91 
0.93 

Pack Years 
<40 
>40 

 
84 
76 

 
381 
347 

 
91 (84-97) 
97 (94-100) 

 
86 (83-90) 
84 (81-88) 

 
87 (84-90) 
87 (84-90) 

 
0.93 
0.94 

A B 

E D 

C 

F 

AUC 0.91 

AUC 0.94 AUC 0.93 AUC 0.93 

AUC 0.91 AUC 0.89 
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To further assess whether our classification results were affected either by age, 

smoking status, or smoking history, we tested for potential correlation of the twelve 

biomarkers with these variables. The results showed no correlations except for endostatin, 

which showed a moderate correlation, increasing with age. This effect can be compensated 

for by adjusting the prior probability of cancer in the Bayes classifier model. 

 We also assessed the specificity of the classifier for the discrimination of controls 

known to have airflow obstruction (measured by GOLD score). The results are shown in 

Table 6. Spirometry data was incomplete for NSCLC cases, and therefore we could not 

calculate sensitivity.  

  
 
Table 6.  Classifier specificity by level of airflow obstruction  
 
Airflow Obstruction* FEV1 % Predicted Number of Patients Specificity (%), (95% 

CI) 
GOLD 0/I >80% 411 89 (86-92) 
GOLD II 50-80% 167 84 (78-89) 
GOLD III/IV <50% 32 72 (56-87) 
*Spirometric classification of airflow obstruction based on GOLD staging 4 
 

6. Relationship of biomarkers to tumorigenic pathways 
The identified biomarkers in this study encompass functions of cell movement, 

inflammation, and immune monitoring that may contribute to cancer development. Some of 

these proteins, such as CD30 ligand, endostatin, HSP90, MIP-4, pleiotrophin, PRKCI and 

YES were up-regulated in lung cancer, consistent with their proposed biological roles in 

proliferation, invasion, or host inflammatory and immune response to the tumor.  For 

example, CD30 ligand is a member of the TNF ligand superfamily, which stimulates T-cell 

growth.  Up-regulation of this protein correlates with proliferation in hematological 

malignancies5. Endostatin, best known as an inhibitor of angiogenesis, has elevated serum 

levels in several cancers6. Overexpression of endostatin and its parent extracellular matrix 

protein, collagen XVIII have been associated with poor prognosis in NSCLC5. The 

chaperone HSP90 is important for the stability of and function of a wide range of 

oncoproteins, including BCR-ABL, ERBB2, EGFR, BRAF and AKT among others, and 

inhibitors of this protein are now in oncology clinical trials, including NSCLC7.  HSP90 
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may also play a role in tumor cell resistance to complement mediated cytotoxicity8. MIP-4 

is over-expressed in ovarian and gastric cancers, and may have a role in 

immunosuppression of the host tumor response9. Pleiotrophin is a growth factor with both 

mitogenic and angiogenic properties and levels in the serum of NSCLC patients have been 

reported to correlate with disease stage and prognosis10. PRKCI is an oncogene that is often 

amplified in NSCLC and over-expressed in lung tumors correlates with poor prognosis11.  

YES, another protein kinase and member of the src-family of tyrosine kinases, has a role in 

malignant transformation and increased protein levels have been reported in early stages of 

hepatocarcinoma12.  

We observed decreased levels of some proteins in the serum of lung cancer patients 

compared to controls, including cadherin-1, LRIG3, sL-selectin, SCRsR, ERBB1 and 

RGM-C.  Lower circulating levels of many of these proteins are associated with relief of 

inhibition of growth and invasion.  For example, cadherin-1 is critical for cell adhesion and 

indirectly affects transcriptional regulation circuits through β-catenin13.  Consistent with 

our results, reduced expression has been reported in lung cancer, and loss of cadherin-1 is a 

key event leading to loss of adherence, tumorgenicity and metastasis14. The LRIG family 

consists of membrane proteins with soluble leucine rich repeat domains and 

immunoglobulin-like domains.  Down-regulation of expression of  this protein in 

glioblastoma cell lines resulted in increased proliferation and invasion, decreased apoptosis 

and increased EGFR expression, leading to the hypothesis that LRIG is a tumor 

suppressor15. L-selectin plays a role in activation of naïve lymphocytes that participate in 

immune surveillance and antitumor immunity.  It also mediates the adherence of 

lymphocytes to endothelial cells. Lower expression of L-selectin may be a component of 

the immune suppression observed in many cancer patients16. 

Some of the biomarkers described in this study are the soluble domains of 

membrane receptors, and the function of the circulating form of these proteins may oppose 

their membrane-bound counterparts.  Turner et al.17 proposed that soluble SCF-receptors 

regulate kit activation. Our results suggest that a low level of SCF-sR fails to titrate SCF, 

which makes more SCF available for binding cancer cells. Unlike the membrane bound 

form, soluble RGM-C inhibits hepcidin expression18,19.  We find that RGM-C is down 
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regulated in NSCLC serum, consistent with increased intracellular iron and proliferative 

cell growth20.   

7. Statistical Methods 
Naïve Bayes. The naive Bayes classifier assumes independence between the 

samples, and models the distributions of the training classes to make predictions21. We used 

normal distributions to model out data, however the features in our data often contain 

distributions with heavy tails so maximum likelihood estimation of the distribution 

parameters performs poorly. We therefore modeled our distributions as log-normal 

distributions and used the Gauss-Newton algorithm to fit the data. 

Kolmogorov-Smirnoff (KS) statistic. The KS statistic is a non-parametric measure 

of the difference between two distributions.  The two-sample KS Statistic is 

, where and  are empirical cumulative distributions for 

two populations of values. 

Constructing Bayesian Classifiers. We constructed Bayesian classifiers using sets 

of potential biomarkers identified as described above.  We used a parametric model to 

capture the underlying protein distribution for a given state.  The simplest parametric 

model for the probability density function (pdf) for a single protein is a normal distribution, 

completely described by a mean u and variance 2  (Eq. 1). 
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Many protein distributions were observed to be normal with respect to the 

logarithm of the concentration.  Figure 6 displays the numeric cdfs and their fit to a normal 

distribution in log concentrations x (Eq. 2).  





x

dyypdfxcdf )()(     (2) 

 
The models fit the data well.  More complex models of the probability distribution 

functions may be used when warranted but the simple model gives a good description of 

the data here. 
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Figure 6. Curve fits of empirical cdfs of example protein (Factor H) with normal probability 
distribution functions for log transformed concentrations.  The parameter fit was obtained through 
nonlinear least-squares analysis of the numeric cdfs to the normal distribution model, yielding  of 
3.3 and  of 0.27 for the control distribution and 3.7 and 0.24 for  and  for the diseased 
distribution.  The simple model fits the data extremely well. 

 
To combine multiple markers, a multivariate normal distribution was used to model 

the probability density function (pdf) for each class.  For n markers, the multivariate pdf is 

given by the following equation (Eq. 3). 

 

 
   



   μxΣμx

Σ

x 1

2

1

2
2

1
exp

||2

1
)( t

n
pdf


   (3) 

 
where x is an n-component vector of protein levels,  is an n-component vector of mean 

protein levels,  is the n x n covariance matrix and |and  are its determinant and 

inverse.  In its simplest form, we can assume a diagonal representation for .  Such an 

approximation leads to a naïve Bayes model, which assumes independence between the 

markers.  In this work, we exclusively use the naïve Bayes model for constructing 

classifiers. The parameter values for  and used in the naïve Bayes classification were 

obtained from nonlinear regression analysis as described above. 
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 Greedy Algorithm for Classifier Generation. The addition of subsequent markers 

with good KS distances will, in general, improve the classification performance if the 

subsequently added markers are independent of the first marker.  Using the 

sensitivity (fraction of true positives) plus specificity (fraction of true negatives) as a 

classifier score, it is straightforward to generate many high scoring classifiers with a 

variation of a greedy algorithm. A greedy algorithm is any algorithm that follows the 

problem solving meta-heuristic of making the locally optimal choice at each stage with the 

hope of finding the global optimum. 

The algorithm approach used here is described as follows. All single analyte 

classifiers are generated from a table of potential biomarkers and added to a list.  Next, all 

possible additions of a second analyte to each of the stored single analyte classifiers is then 

performed, saving a predetermined number of the best scoring pairs, say, for example, a 

thousand, on a new list.  All possible three marker classifiers are explored using this new 

list of the best two-marker classifiers, again saving the best thousand of these.  This process 

continues until the score either plateaus or begins to deteriorate as additional markers are 

added. 
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