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Introduction:
Growth experiments are routinely used to analyze basic properties of a given organism or cellular model. Similarly, within 
the TRANSLUCENT project the characterization of cellular growth and particularly under conditions of high extra cellular 
potassium or sodium is an important task. Any growth analysis should ideally reveal a relationship between the 
concentration of a compound/substrate  and its effect on a particular growth parameter. In view of the quite labor intensive 
analysis of hundreds of growth curves - sometimes not revealing ideal relationships - the Grofit-software was developed to 
support biologists and such approaches. Within the software package, specifically tailored regression and bootstrapping 
techniques are utilized to statistically estimate the effect of different growth conditions. Grofit was implemented in R, an 
open source statistical software environment. 
A complete description of the Grofit software and information about the implemented methods is given in a manuscript 
submitted to the Journal of Statistical Software. The software can also be obtained from our homepage:  
http://www.rheinahrcampus.de/Research-Group-of-Maik-Kschisc.2452.0.html 

Characteristic growth parameters:
To investigate the specific effect of a given experimental set up or condition, characteristic parameters (= lag 
phase,  = slope and A = maximum growth) of the growth curves are determined (Figure 1). Such parameter 
values are used to summarize a growth curve for a given condition.
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Figure 1: Characteristic growth parameters derived by Grofit: lag 
phase  , maximal growth rate  (maximum slope), maximal growth A 
and the area under the growth curve. 

Fitting strategies:
Grofit applies two different strategies for fitting any given growth 
curve: Model-based fits and model-free spline fits. The former 
requires a mathematical model for the description of cellular 
growth. To this end, four different known models were 
implemented in Grofit: 1. Logistic growth, 2. Gompertz growth,  3. 
modified Gompertz growth and 4. Richards growth. Such 
parametric growth curves are indeed useful and straight forward 
to interpret when accurately fitting the data. However, quite often 
the real data cannot sufficiently be described by a parametric 
model. As an alternative we implemented a model-free method 
that applies a smoothed cubic spline that does not assume a 
functional relationship between time and growth data.
Figure 2 shows the main difference between the two 
approaches. According to the Akaike criterion, the best fitting 
parametric model was the logistic equation. In this example, the 
maximum slope  (see Figure 1) was regarded as the 
characteristic growth parameter. It it obvious that the smoothed 
spline provides a more accurate estimate of . We therefore 
conclude that the derivation of descriptive characteristics from 
parametric fits may potentially lead to unreliable predictions. A 
spline fit offers more accurate estimates of the characteristic 
growth parameters.

Figure 2: Comparison of parametric and model free spline fits. The growth data 
(circles) were fitted by a spline fit (solid line). The maximum slope of the spline fit 
was used as an estimate for the growth rate . This estimate is more accurate 
than the best fitting parametric model (logistic equation, dashed lines), as can be 
seen from the difference in the slopes of the tangents (straight lines). 

Dose response curves:
Upon availability of a statistical relevant 
number of growth curves corresponding 
dose response plots can be computed that 
enable the determination of characteristic 
descriptive values such as EC50.
Figure 4 demonstrates how a dose response 
curve is derived from growth experiments: 
Yeast cells were treated with different 
concentrations of a compound (here 
Hygromycin B). Growth was measured as 
optical density (Hasenbrink et al., 2006) at 
different time points. From the fitted growth 
curves the maximum growth rate  (see 
Figure 1) was derived. This response  was 
then plotted versus the dose in Figure 4(b). 
In a subsequent step a dose response curve 
was fitted and  the EC50 value determined.

Figure 3: Deriving dose response curves from grwoth experiments: (a) Several fitted growth curves obtained under different concentrations (in M) of Hygromycin B. 
(b) The maximum slope corresponding to the growth rate  of each curve in (a) is calculated and plotted vs. the corresponding concentration. From these data points a dose response curve is 
estimated by fitting a smoothed spline. Consequently, the EC50 value 6.92 M can be estimated. (c) In order to obtain a more uniform distribution of the data points a logarithmic transformation to 
the concentration axis can be applied.
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Figure 3: Bootstrap and cross-validation techniques are used for 
estimating confidence intervals of all derived parameters.
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