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ABSTRACT

Background: The extent to which common genetic variation can assist in breast cancer (BCa) risk 

assessment is unclear.  We assessed the addition of risk information from a panel of BCa-

associated single nucleotide polymorphisms (SNPs) on risk stratification offered by the Gail 

Model.

Methods: We selected 7 validated SNPs from the literature and genotyped them among white 

women in a nested case-control study within the Women’s Health Initiative Clinical Trial.  To 

model SNP risk, previously published odds ratios were combined multiplicatively.  To produce a 

combined clinical/genetic risk, Gail Model risk estimates were multiplied by combined SNP odds 

ratios.  We assessed classification performance using reclassification tables and receiver 

operating characteristic (ROC) curves. 

Results: The SNP risk score was well calibrated and nearly independent of Gail risk, and the 

combined predictor was more predictive than either Gail risk or SNP risk alone.  In ROC curve 

analysis, the combined score had an area under the curve (AUC) of 0.594 compared to 0.557 for 

Gail risk alone.  For reclassification with 5-year risk thresholds at 1.5% and 2%, the net 

reclassification index (NRI) was 0.085 (Z = 4.3, P = 1.0×10-5).  Focusing on women with Gail 5-

year risk of 1.5-2% results in an NRI of 0.195 (Z = 3.8, P = 8.6×10 5− ).

Conclusions: Combining clinical risk factors and validated common genetic risk factors results in 

improvement in classification of BCa risks in white, postmenopausal women.  This may have 
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implications for informing primary prevention and/or screening strategies.  Future research should 

assess the clinical utility of such strategies.
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INTRODUCTION

Breast cancer (BCa) risk has both genetic and environmental influences.  Although the 

discovery of the BRCA1 and BRCA2 genes and a decade of subsequent clinical research has led 

to substantial positive impact on the health of women affected with the Mendelian cancer 

predisposition syndromes conferred by mutations in these genes (1-3), the vast majority of BCa 

genetic risk remains unaccounted for.  Building on work suggesting the existence of significant 

polygenic influences on breast cancer risk (4), recent genome-wide association studies (GWAS) 

(5-10) and a candidate gene association study (11) have demonstrated that an expanding set of 

single nucleotide polymorphisms (SNPs) are reproducibly associated with BCa risk in Caucasians 

and, in some cases, in individuals from other racial/ethnic backgrounds.

As with other complex disorders (12-15), the discovery and validation of these risk SNPs 

has created an opportunity to explore whether a panel of SNPs can be used to predict disease 

risk and to assess the clinical relevance of such a panel.  In the context of breast cancer, the 

assessment of disease risk has important clinical implications that can impact decisions about 

appropriate counseling, screening regimens, and risk reduction strategies (3,16-20).  Thus, 

improvements in risk prediction have the potential to impact clinical care if they are demonstrated 

to have clinical validity and utility.  

For sporadic breast cancer, the Gail Model has been commonly used to produce individual 

risk estimates.  It incorporates individual risk factors including family history (BCa among first-

degree relatives), personal reproductive history (age at menarche and at first live birth), and 
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personal medical history (number of previous breast biopsy examinations and presence of biopsy-

confirmed atypical hyperplasia) to estimate personal 5-year and lifetime BCa risk (21).  A 

projected Gail 5-year risk score (e.g. >1.66%) has implications for BCa primary prevention in the 

context of identifying a group of women who may benefit from risk reduction with a selective 

estrogen receptor modulator (SERM) (19,20).  However, both the discriminatory accuracy of the 

Gail Model and its calibration in certain populations has been challenged, and uptake of primary 

prevention strategies amongst physicians caring for women at increased risk for sporadic breast 

cancer has been modest (22-24).  

Two recent papers have evaluated the potential impact of adding genetic information from 

a panel of 7 breast cancer-associated SNPs to the Gail risk model (25,26).  The first analysis 

predicted, using receiver operating characteristic curves, that area under the curve (AUC) would 

improve from 0.607 for the Gail model alone to 0.632 with SNP information added to the Gail 

model (25).  In an accompanying editorial, Pepe and Janes suggested that ROC curve analysis 

might not be particularly useful or relevant in this case and that the use of a reclassification table-

based approach could allow the assessment of the fraction of individuals whose risk levels can be 

meaningfully reclassified (27).  The second study showed that real gains—albeit modest—could 

be realized in reclassification of risk, under the assumption that the combined model was well 

calibrated (26).  

Although several papers have began to set expectations for potential clinical gains from 

adding a multi-SNP panel to Gail Model risk assessment, they have all been theoretical in nature 
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(25, 26, 28).  Here we show, in a nested case-control study from the Women’s Health Initiative 

(WHI) Clinical Trial (29), that genetic information from a panel of SNPs can be combined with 

clinical information (i.e., Gail risk) to modestly improve BCa risk estimates in a clinically valid 

manner in postmenopausal, white women.  

 

METHODS

Description of Case and Control Ascertainment and Sample Handling

We identified all invasive BCa cases that developed between randomization and the 

originally planned end of the intervention phase of the WHI Clinical Trial (29) that had adequate 

DNA available for genotyping.  We selected one control without a cancer diagnosis for each case, 

matching on baseline age, self-reported ethnicity, clinical trial participation, years since 

randomization, and hysterectomy status.  Written informed consent was obtained from each 

woman for her WHI participation.  Human investigations were performed after approval by the 

Fred Hutchinson Cancer Research Center Institutional Review Board.  Research subjects had an 

opportunity to opt in or out of any collaborations involving commercial entities.  We restricted our 

analyses to the subset of these individuals that had consented for commercial use.  Of the 

individuals in the trial, 84 percent provided such consent.  The interventions used in the WHI 

clinical trial are independent of baseline genetic and clinical risk factors by study design, so 

analyses presented here were not stratified by trial intervention.  Due to availability of accurate 

SNP odds ratios and also Gail model validity, we focused our analyses in this work on non-
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Hispanic white women in this nested case-control study, representing 87% of the matched cases 

and controls.  Clinical characteristics of these subjects are summarized in Table 1.  

Gail Model and SNP Selection

We used the Gail Model to estimate 5-year risk of BCa based on age, ethnicity, age at 

menarche, age at first live birth, number of first degree relatives with BCa, and number of previous 

breast biopsies.  We did not have information on biopsy histopathology (i.e., whether atypical 

hyperplasia was present), so this was coded as “unknown.”  We scored the subjects using a re-

implementation of the current Breast Cancer Risk Assessment Tool (BCRAT) risk calculator from 

source code downloaded from the National Cancer Institute website (07-Aug-2008). 

We selected SNPs to include in the risk classifier that had discovery P values < 5×10-7 for 

SNPs with demonstrated association in genome-wide association studies, to account for multiple 

hypothesis testing and replication in an independent population.  Seven SNPs were found to meet 

these criteria at the time that the study was initiated (5-8).  The 7 SNPs selected from peer-

reviewed GWAS results have also been reported to be associated with breast cancer with high 

statistical significance across multiple large sample sets (Table 2).

The Composite SNP Risk Score

SNPs were genotyped via a custom chip and/or on the Sequenom platform (Supplemental 

Methods).  To model SNP risk using the 7 selected breast cancer-associated SNPs, we used the 
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estimates of per-allele odds ratios previously reported, as shown in Table 2.  We used a 

multiplicative model for odds ratio across SNPs, where risk values for each SNP were scaled to 

have a population average of 1 based on the expected frequencies of the three possible diploid 

genotypes.  Missing genotypes were also assigned a relative risk of 1.  None of the model 

parameters were estimated using data derived from the WHI cohort.  

Statistical Analysis

We used logistic regression to estimate odds ratios associated with log-transformed Gail 

model score and the composite SNP score, separately and combined. The intercept term in the 

logistic regression was unrestricted, and allows the analysis to adapt to case-control sampling. 

The Hosmer-Lemeshow test (30) is typically used to assess model calibration in cohort data.  To 

generate expected numbers of cases and controls, we used logistic regression to refit the 

intercept for each risk model, holding the coefficient of the log transformed risk score fixed at 1. 

This rescales the risk scores to match the actual numbers of cases and controls.

We assessed classification performance using receiver operating characteristic (ROC) 

curves.  We used bootstrap resampling (1000 replicates) to estimate confidence intervals for area 

under the curve (AUC) as well as differences in AUC.  We also evaluated classification accuracy 

using reclassification tables (31,32) and quantified differences in classification by “net 

reclassification improvement” (NRI) (33).  NRI is the sum of proportions of cases moving to a 

higher risk category minus cases moving to a lower risk category, and proportions of controls 
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moving to a lower risk category minus controls moving to a higher risk category (33).  We again 

used bootstrap resampling to evaluate confidence intervals for NRI and to determine empirical P 

values for differences in NRI. We used the same bootstrap samples for each classifier and used 

paired tests to compare classification performance, to preserve the correlation structure of the 

classifiers and obtain the most powerful tests.

RESULTS

Characteristics of the Women in the Nested Case-Control Cohort

Table 1 presents the summary characteristics of the case and control groups.  As 

expected, several known BCa clinical risk factors had a differential representation in the two 

groups: age at menarche (Ptrend = 0.02), age at birth of first child (Ptrend = 0.004), first degree 

relatives with BCa (Ptrend = 0.0001), and number of previous breast biopsies (Ptrend = 1×10-5).  

Individual SNP Associations with Breast Cancer 

Six of the seven SNPs tested were included on the custom SNP array for the parent 

research project. As detailed elsewhere (Y. Huang, D.G. Ballinger, U. Peters, D.A. Hinds, D.R. 

Cox, E. Beilharz et al., submitted), all six gave per allele odds ratios in the project dataset that 

were consistent with those used here from the literature (Table 2). The association was 

significant, with P < 0.05, for five of the six, while the sixth (rs13281615) yielded P = 0.06. The 

seventh SNP, rs13387042 was genotyped specifically for this report. The per allele odds ratio 
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estimate for this SNP was 1.16, with 95% confidence interval from 1.05 to 1.29 (P = 0.003). 

Hence, there is agreement between SNP associations observed in this cohort and those based on 

studies in other populations.  We did not detect any significant pairwise interactions among the 7 

SNPs (21 distinct tests yielded one test with P < 0.05 and none with P < 0.01).  However, this 

study was only powered to detect relatively strong effects.

Independence and Calibration of the SNP Risk Score

We separately tested Gail 5-year absolute risk and the 7-SNP odds ratio estimate for 

association with BCa incidence by logistic regression with log-transformed predictors.  Both were 

strongly associated (Table 3).  A two-fold increase in Gail risk yields a less-than-two-fold increase 

in cancer incidence in this cohort, suggesting that Gail risk is not so well calibrated in this dataset, 

which is consistent with a previous cohort study report from the WHI observational study (23). 

The multiplicative model for SNP risk gives relative risk estimates roughly proportional to 

observed disease rates.  Gail risk and SNP risk were weakly but significantly correlated (r = 0.042, 

P = 0.02).  A combined predictor formed by multiplying the Gail absolute risk by the SNP relative 

risk was more strongly associated with BCa risk than either component alone. Including log-

transformed Gail risk and SNP risk in the model as separate terms in the logistic regression 

further improves the fit (P = 2.3×10 5− ), by accommodating the difference in calibration of the two 

terms.  However, in a model with these separate terms, an interaction term did not further improve 

prediction of breast cancer status (P = 0.5).
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To visualize the effect of SNP risk for different Gail risk categories in a more clinically 

intuitive way, we binned the scores into quintiles and evaluated the relationship between SNP risk 

and BCa odds within each Gail risk stratum (Figure 1).  SNP risk is consistently associated with 

BCa within each stratum.  This provides additional evidence that the scores are providing 

essentially independent information about risk.  

To assess calibration of our risk scores, we used the Hosmer-Lemeshow test (30), which 

compares expected and observed counts of cases and controls in deciles of risk (Supplemental 

Table 2).  As shown in Figure 2, our SNP risk scores appear to be well calibrated (P = 0.12).  Gail 

risk, however, was not well calibrated (P = 6×10 7− ), and this lack of calibration carries over to the 

combined risk score to an intermediate extent (P = 0.001).  These results are consistent with our 

logistic regression results. We did not observe an improvement in calibration in the subset of 

women with no missing observations for Gail risk factors.

We used linear regression to test whether the log-transformed SNP risk score was 

predictive of any of the clinical risk factors contributing to the Gail model, while adjusting for 

case/control status.  SNP risk was not significantly correlated with age at menarche (P = 0.96) or 

age at menopause (P = 0.78), number of first degree relatives with BCa (P = 0.20) or number of 

previous breast biopsies (P = 0.41).  The SNP risk score was most associated with age at first 

birth (P = 0.10), and this association appeared to be specifically mediated by rs2981582 in 

FGFR2.  This SNP alone gave a stronger signal (P = 0.008) and was the only SNP associated 

with any Gail clinical component at better than nominal P < 0.05.  Considering only controls, age 
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at first birth gave P = 0.03 for association with SNP risk and P = 0.002 for association with 

rs2981582, and there were no other associations with nominal P < 0.05. Given the modest P 

values, these results will require replication and validation in other datasets.  

Classification Performance of the Combined Risk Score

We assessed classification performance using receiver operating characteristic (ROC) 

curves.  We compared classification using 5-year Gail absolute risk, SNP risk, and the combined 

SNP×Gail risk score (Figure 3).  The combination of Gail and SNP risk had an AUC of 0.594 (95% 

CI: 0.575 – 0.612), compared to 0.557 (95% CI: 0.537 – 0.575) for Gail risk alone and 0.587 

(0.567 – 0.607) for SNP risk alone.  The difference in AUC for the combined risk score versus Gail 

alone was statistically significant (95% CI: 0.025 – 0.051, empirical P < 0.001). 

We also evaluated classification accuracy using reclassification tables (30,31) and 

quantified differences in classification by “net reclassification improvement” (NRI) (32).  While 

reclassification tables are most clinically intuitive in the context of population-based cohort studies, 

they still provide useful information here.  Specifically, the NRI metric is unaffected by case control 

sampling.  We chose 5-year risk thresholds of 1.5% (for below-average risk) and 2% (for elevated 

risk) and evaluated reclassification for the combined SNP×Gail score versus Gail risk alone (Table 

4).  The combined risk score tends to push individual risks towards the tails of the risk distribution: 

it places 22% fewer cases and 29% fewer controls in the intermediate 1.5-2.0% bin compared to 

the Gail score alone.  The NRI for this table is 0.085 (Z = 4.3, P = 1.0×10-5), indicating that these 
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changes also tend to be in the right direction.  Classification improved for 5.6% of cases (P = 

4.8×10-5) and 2.9% of controls (P = 0.018).

Reclassification performance is related to the number of clinically meaningful risk 

categories, because binning of risk scores conceals improvements in risk estimates that do not 

cross the prespecified thresholds.  If risk thresholds are chosen to split women into quintiles of 

Gail risk (breaks at 1.2%, 1.5%, 1.8%, and 2.4%), then NRI increases to 0.141 (Z = 5.63, P = 

9.0×10-9).  For deciles of Gail risk, NRI is 0.182 (Z = 6.2, P = 2.1×10-10).

The cost effectiveness of a genetic test can be improved by avoiding testing individuals 

whose status is unlikely to change as a result of the test.  Individuals who are far from the 

classification cut points are unlikely to be reclassified as a result of the test, and as a result, it is 

less efficient to test them.  This effect should be reflected in NRI, because excluding the tails of 

the risk distribution should result in reclassification of a higher proportion of tested individuals.  We 

evaluated NRI across a grid of possible lower and upper bounds of Gail risk.  Excluding women in 

the tails of the risk distribution resulted in higher NRI (Supplemental Figure 2).  If all women with 

Gail risk < 1.5% or >2.0% are excluded, then NRI improves to 0.195 (Z = 3.8, P = 8.6×10-5).

Performance in Women with Previous Breast Biopsies

Because women with previous breast biopsies are a group at intermediately elevated risk 

of BCa in particular need of risk stratification to guide future screening and preventative strategies, 

we also assessed the impact of the SNP risk score in this subset.  Not surprisingly given the loss 
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of an important risk stratifier, the Gail model had an AUC of only 0.514 (95% CI: 0.471  0.561) in−  

this subset.  The combined model had an AUC of 0.571 (95% CI: 0.526  0.614).  We also−  

computed reclassification metrics in the biopsy subset (Supplemental Table 3).  In this subset, the 

NRI is 0.175, which is significant despite the smaller number of events (Z = 3.9, P = 4.9×10 5− ). 

Here, classification improved for 14.8% of controls (P = 1.5×10 5− ) but only 2.8% of cases (P = 

0.16).  We used bootstrap resampling to evaluate whether the difference in NRI between the full 

cohort and the biopsy subset was statistically significant.  Based on 1000 bootstrap replicates, a 

95% confidence interval for the improvement in NRI in the biopsy subset extended from 0.02 to 

0.16, with empirical P = 0.03.  This increase in NRI is not simply a consequence of conditioning on 

an important Gail risk factor: in the subset of individuals without a previous breast biopsy, NRI is 

reduced to 0.065.

DISCUSSION

Recently, several GWAS have demonstrated a number of distinct loci and SNPs that are 

convincingly associated with risk for sporadic breast cancer.  Clinical experience with highly 

penetrant Mendelian breast cancer risk syndromes and trials of breast cancer risk reduction in 

individuals at modestly elevated risk, suggest that better risk assessment lays the groundwork for 

clinical improvements in surveillance and risk reduction strategies (3,17).  Thus, there has been 

substantial interest in assessing the potential impact of combined BCa SNP risk panels on BCa 

risk assessment (25-28).
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Here we have assessed the risk prediction performance of a panel of 7 validated breast 

cancer risk SNPs in the context of a nested case-control study from the WHI Clinical Trial. 

Although there was a statistically significant weak correlation between the Gail risk score and SNP 

risk, the two are essentially independent for practical purposes in risk prediction.  We also 

assessed calibration of SNP and Gail risks in this cohort.  Notably, SNP risk score calibration, as 

measured by the Hosmer-Lemeshow test, was good.  Thus, our results support a simple 

multiplicative model for combining SNP risks.  

The calibration and discrimination of the Gail model in the WHI cohort is known to be 

somewhat worse than has been seen in other large studies (23).  This is likely due to a 

combination of factors, including higher mammography rates, differences in age distributions, and 

changes in breast biopsy procedures, with more common use of image-guided percutaneous core 

biopsy procedures which have a lower threshold for use than open biopsy (23).  The lack of data 

on atypical hyperplasia may have also contributed somewhat.  Additionally, as the WHI clinical 

trial tested the impact of hormone replacement therapy (HRT) on breast cancer risk, a higher 

percentage of women in our case-control cohort may have received HRT than in the studies in 

which the Gail model was previously validated.  Lastly, the age matching in our nested case-

control study is likely also contributing significantly.  This does not directly impact our assessment 

of independence and calibration of the SNP risk scores, but may affect the quantitative metrics of 

improvement in risk assessment in the combined model.  Reclassification performance is 
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sensitive to model calibration as well as discrimination, and will need to be further characterized in 

population based cohorts.

When we assessed the performance of a combined risk predictor incorporating both the 

Gail risk and SNP risk, the combined risk predictor performed better in predicting BCa risk than 

either Gail risk or SNP risk alone.  By ROC curve analysis, the AUC for Gail plus SNP risk was 

0.594 (95% CI: 0.575  0.612) as compared to 0.557 (95% CI: 0.537  0.575) for Gail risk alone.− −  

Although this statistically significant improvement is modest, in this dataset the Gail model itself 

had an AUC that was only 5.7% greater than that expected by chance.  

Although ROC curves are useful in some contexts, they have been criticized for several 

reasons: (1) they summarize classification information across the full range of sensitivities and 

specificities (in most clinical contexts, only a subset of these sensitivities and specificities are 

relevant); (2) they do not provide information about the actual risks predicted by the model; (3) 

they do not provide information about the proportion of individuals with particularly high or low risk 

values; and (4) the area under the ROC curve, which is the probability that a predicted risk for an 

individual with an event is higher than for an individual without an event, has minimal direct clinical 

relevance (34).  Therefore, we utilized reclassification tables (30,31) to calculate a net 

reclassification improvement (32) which is a more helpful measure of the potential impact of the 

combined Gail plus SNP test (27,31-32,34).  NRI is a relatively new statistic, but has gained 

increasing acceptance as an important part of the evaluation of new biomarkers and risk stratifiers 

(34, 35).  This analysis demonstrated a statistically significant improvement in classification (NRI = 
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0.085; P = 1.0×10-5).  Importantly, NRI can be substantially improved by focusing SNP genotyping 

on those individuals who are predicted to be at intermediate risk by the Gail score, as women at 

intermediate risk are most likely to be reclassified after the addition of SNP risk.  For example, 

limiting SNP testing to women with Gail 5-year risks between 1.5 and 2.0 percent results in an 

NRI of 0.195.  Taking this information into account, future efforts should rigorously evaluate the 

clinical utility of targeted strategies to incorporate the combined risk score into the clinical 

decision-making process in the context of both BCa primary prevention and screening (17-20).

We also evaluated whether it might be possible to obtain better test performance by 

focusing on a subset of women at particularly high risk—those with previous breast biopsies 

(36,37).  Although this analysis was limited by the lack of pathology results to allow identification 

of those with more serious histopathologies such as atypical hyperplasia, we pursued similar ROC 

curve and reclassification table based analyses.  Here, classification improved for 14.8% of 

controls (P = 4.4×10-5) but only 2.8% of cases.  Although this suggests that the combined SNP 

plus Gail test might assist in identifying a subset of women with prior biopsies who might not need 

as aggressive risk reduction and surveillance efforts as their biopsy history suggests, these results 

should be interpreted with caution and will require further study in other datasets with available 

histopathology from the previous biopsies.

This study has several strengths.  First, we have taken a rigorous approach to identifying 

the SNPs to include in the panel, only including those that have been reproducibly associated and 

for which consistent risk estimates have been reported in the literature.  Second, we have 
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genotyped individuals from a large prospectively recruited cohort with meticulous data collection 

and rigorous ascertainment of relevant BCa outcomes.  Third, we have used literature based 

genetic risk estimates and have combined them in a straightforward fashion to form risk 

predictors.  Importantly, we did not train our predictors on the WHI data and only used WHI 

samples to assess their performance   

 Limitations to this study include the composition of the WHI cohort — which limits 

inferential scope to white, postmenopausal women — and the clinical characteristics of the 

women therein.  For example, individuals within WHI received HRT at a higher frequency than 

women currently do at present.  Importantly, the age matching design inherent to this study does 

remove one of the Gail model variables and contributes both to the relatively low AUC seen for 

the Gail model in our analysis and to its poor calibration.  In addition, the absence of pathology 

records for previous breast biopsies in WHI required us to estimate individual Gail risks by coding 

atypical hyperplasia status as unknown for women with prior breast biopsies.  Although the 

frequency of atypical hyperplasia-containing biopsies is low enough that this seems unlikely to 

have affected the analyses of the entire nested case-control study, it is unclear to what extent this 

may have impacted the analyses focusing on the subset of women with one or more previous 

biopsies.  Finally, case control sampling means we cannot evaluate calibration of absolute event 

rates; we can effectively only test the slope of the relationship between expected and observed 

risk, and not the intercept.  Therefore, while the WHI cohort is sufficient to support the validity of 

the SNP and combined risk models in predicting BCa risk, there is a need for further assessment 
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of the clinical validity of the combined Gail model and SNP panel, especially in population-based 

cohorts.  

The major finding from this study is the demonstration that genetic risk information may be 

combined multiplicatively with Gail risk scores to improve BCa risk estimation in postmenopausal 

white women.  This finding is based both on the observation that patient BCa risk may be 

accurately estimated by combining published SNP risk estimates, and also the observation that 

correlation between SNP risk scores and Gail scores for individuals is weak, allowing patient BCa 

risk to be more accurately estimated by combining SNP and Gail risks multiplicatively.  Thus, the 

present study supports the claim that the combined risk estimation model approach has clinical 

validity in the broad sense in postmenopausal, white women.  

Our analysis has not addressed clinical utility.  The use of improved risk models, such as 

the one described here, may benefit the public health if shown to have clinical utility when 

combined with optimal individualized screening and risk reduction strategies.  A previous 

evaluation of utility considered an unselective “all comers” strategy for SNP testing (26).  The 

results of our analysis suggest that, as utility is sensitive to how a test is targeted, it may be wise 

to focus the application of SNP genotyping for breast cancer risk on women at intermediate risk as 

measured by the Gail model.  Such a strategy clearly boosts reclassification performance in this 

study.  Future research should assess performance in population-based cohorts and ultimately 

take the next step and address whether reclassification improvement can be translated into 

improved prevention and/or screening outcomes in the clinic. 
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Table 1.  Clinical characteristics of the study participants.

Controls Cases

N % N % Ptrend

Participants 1636 100.0 166

4

100.0

Estrogen receptor (ER) status

ER-positive tumor 121

8

73.2

ER-negative tumor 208 12.5

Unknown/missing 238 14.3

Age at screening 0.84*

50-59 510 31.2 510 30.6

60-69 767 46.9 789 47.4

70-79 359 21.9 365 21.9

Missing 0 0.0 0 0.0

Age at menarche 0.02

< 12 349 21.3 379 22.8

12 407 24.9 441 26.5

13 481 29.4 497 29.9

 14≥ 395 24.1 338 20.3

Missing 4 0.2 9 0.5

Age at birth of first child 0.004

< 20 214 13.1 182 10.9

20-24 665 40.6 625 37.6

25-29 349 21.3 370 22.2

 30≥ 117 7.2 151 9.1

No term pregnancy 166 10.1 200 12.0

Missing 125 7.6 136 8.2

Age at menopause 0.52

< 45 294 18.0 300 18.0

45-49 390 23.8 355 21.3

50-54 596 36.4 646 38.8

> 54 237 14.5 238 14.3

Missing 119 7.3 125 7.5

First degree relatives with breast cancer 0.0001

0 1319 80.6 125

3

75.3

1+ 226 13.8 309 18.6
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Missing 91 5.6 102 6.1

Number of previous breast biopsies 1×10 5−

0 1148 70.2 105

6

63.5

1 188 11.5 298 17.9

2+ 83 5.1 102 6.1

Missing 217 13.3 208 12.5

* Cases and controls were age-matched.
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Table 2.  Replicated loci associated with invasive breast cancer.

dbSNP rsID Gene Location Freq* OR (95% CI)† Reference

rs2981582 FGFR2 10q 0.38 1.26 (1.23 – 1.30) Easton et al., 2007

rs3803662 TNRC9 16q 0.25 1.20 (1.16 – 1.24) Easton et al., 2007

rs889312 MAP3K1 5q 0.28 1.13 (1.10 – 1.16) Easton et al., 2007

rs13387042 (none) 2q35 0.50 1.20 (1.14 – 1.26) Stacey et al., 2007

rs13281615 (none) 8q24 0.40 1.08 (1.05 – 1.11) Easton et al., 2007

rs4415084 FGF10 5p 0.44 1.16 (1.10 – 1.21) Stacey et al., 2008

rs3817198 LSP1 11p 0.30 1.07 (1.04 – 1.11) Easton et al., 2007

* Frequency of the high risk allele, in the cited study.
† Odds ratio (and confidence interval) per copy of the high risk allele, in the cited study.
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Table 3.  Logistic regression tests of association with invasive breast cancer.

Predictor  (95% CI)* OR per 2× risk (95% CI)† P

log(Gail 5-year risk) 0.46 (0.30  0.63)− 1.38 (1.23  1.54)− 1.8×10 8−

log(SNP risk) 1.11 (0.86  1.36)− 2.16 (1.82  2.57)− 6.4×10 19−

log(SNP × Gail risk) 0.65 (0.51  0.78)− 1.57 (1.42  1.72)− 3.3×10 21−

* Logistic regression coefficient for the risk score.
† Odds ratio corresponding to a 2-fold increase in the risk score, equal to 2 .
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Table 4.  Reclassification table for SNP×Gail risk versus Gail risk.

SNP risk × Gail 5year risk

Gail 5year risk < 1.5% 1.5%  2.0% > 2.0% Total

< 1.5%
Wo men 1060 241 64 1365
Events 455 133 41 629
Nonevents 605 108 23 736
Proportion 0.429 0.552 0.641 0.461

1.5%  2.0%
Wo men 351 342 263 956
Events 155 172 157 484
Nonevents 196 170 106 472
Proportion 0.442 0.503 0.597 0.506

> 2.0%
Wo men 43 129 807 979
Events 19 64 468 551
Nonevents 24 65 339 428
Proportion 0.442 0.496 0.580 0.563

Total
Wo men 1454 712 1134 3300
Events 629 369 666 1664
Nonevents 825 343 468 1636
Proportion 0.433 0.518 0.587 0.504
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Figure Legends

Figure 1. Relationship between odds of breast cancer in the study data, and single nucleotide 

polymorphism (SNP) risk quintile, stratified by Gail risk quintile. SNP risk is consistently related to 

breast cancer odds across Gail risk strata.

Figure 2. Observed versus expected event rates, for deciles of (A) the single nucleotide 

polymorphism (SNP) risk score, (B) Gail 5-year risk, and (C) the combined risk score. If the risk 

scores are calibrated, then the points should fall along the dashed line with a slope of 1.

Figure 3. Receiver operating characteristic (ROC) curves for Gail 5-year risk, single nucleotide 

polymorphism (SNP) risk, and combined risk.
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Figure 1.
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Figure 2.
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Figure 3.

1 - Specificity
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 Supplemental Methods and Data

Supplemental Methods

Genotyping

The samples were genotyped on custom oligonucleotide arrays across 9039 SNPs 

selected from previous genome-wide association studies, including 6 of the 7 replicated breast 

cancer association loci.  Pair-wise identity-by-state analysis identified three apparent sibling pairs, 

and we excluded one member of each pair from analyses.  The average concordance across 

duplicate samples included for quality control was 99.8%, and the breast cancer loci all had call 

rates above 99%.  We used principal components analysis to model population structure, and 

results were generally consistent with self-reported ethnicity.

Separately, samples with sufficient available DNA were genotyped across all 7 breast 

cancer loci by Sequenom on the MassArray platform, along with 16 additional SNPs for quality 

control that had also been genotyped on the arrays.  We designed two assays in opposing 

orientations for each of the breast cancer SNPs, and these were carried out in separate 

multiplexes.  We used whole genome amplification (WGA) for roughly 70% of the samples and 

observed a reduction in genotyping quality for the WGA samples as compared to the genomic 

DNA samples.  While most WGA samples had satisfactory performance, a subset showed a 

combination of elevated missing data rates, reduced heterozygosity, and inconsistencies with the 

array-based genotype data.  As a result, we excluded Sequenom data for any sample that had 
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more than one inconsistency with a corresponding array-based genotype.  This led to exclusion of 

Sequenom genotype data for 121 samples, which were almost equally distributed across cases 

and controls.  

We scored consensus genotypes for rs13387042 by combining calls from the two 

Sequenom assays, scoring conflicting genotypes as missing.  Concordance across the two 

assays was 97%, and the resulting call rate for the consensus genotypes was 96.8% across 

samples that had not been excluded for lack of DNA or poor data quality. While these assays 

performed relatively poorly, the consensus of the two assays should still be very accurate, and 

missing consensus calls were not differentially distributed across cases and controls (P = 0.27, χ2 

test).

The Composite SNP Risk Score

Based on a log-additive risk model, the three genotypes AA, AB, and BB for a single SNP 

have relative risk values of 1, OR, and OR2, under a rare disease model where OR is the odds 

ratio for the high risk B allele. If the B allele has frequency p, then these genotypes have 

population frequencies of (1-p)2, 2p(1-p) and p2, assuming Hardy Weinberg equilibrium. We 

scaled the genotype relative risk values for each SNP so that based on these frequencies, the 

average relative risk in the population is 1.

We considered two approaches for combining SNP risk with Gail risk estimates.  The Gail 

model consists of a relative risk estimate based on clinical risk factors, projected to absolute risk 
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based on demographic tables of breast cancer incidence and competing mortality rates.  The 

most accurate method for incorporating SNP risk is to use SNP risk to adjust the Gail relative risk, 

and then apply the Gail method to derive absolute risk.  A more convenient approach in some 

cases may be to use the Gail model unchanged and then multiply the final absolute risk by the 

SNP relative risk; this is an appropriate approximation when the absolute disease risk is small. 

The two approaches give similar results when absolute risk is estimated over short time intervals 

(such as 5 years) and differences become apparent only at high risk levels (Supplemental Figure 

1).  For this study, we used the second estimation approach.  Thus, the formula for our combined 

SNP×Gail absolute risk score is:

SNP×Gail = Gail  SNP1  SNP2  SNP3  SNP4  SNP5  SNP6  SNP7

where Gail is the Gail absolute risk score, and SNP1..7 are relative risk scores for the individual 

SNPs, each scaled to have a population average of 1.

Supplemental Data

Genotyping Performance Summary

Supplemental Table 1 summarizes genotyping results for the 7 BCa associated SNPs. 

We excluded from analyses 27 samples that had more than 2 missing genotypes out of these 8 

SNPs; for the remaining samples included in our analyses, 90% had complete data for the 8 

SNPs.  The lower call rate for rs13387042 is primarily a result of the samples that could not be 
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genotyped due to insufficient DNA.  There were no apparent deviations from Hardy-Weinberg 

equilibrium.  

Estrogen Receptor Focused Analysis

A previous study had shown that the Gail model is more effective at predicting estrogen 

receptor positive (ER+) than ER negative (ER-) tumors in the WHI cohort (S1), and most of the 

individual SNPs have shown stronger associations with ER+ than ER- tumors (S2).  We used 

logistic regression to measure association for the risk scores by tumor subtype (Supplemental 

Table 3).  Results for ER+ tumors were similar to results for all invasive breast cancers.  Gail risk 

and the combined risk score were not predictive for ER- tumors; SNP risk by itself still had 

evidence for association (P = 0.04), but the effect size was poorly defined due to the smaller 

sample size.  We used bootstrap resampling to assess significance of differences in AUC for risk 

scores as a function of tumor receptor status (Supplemental Table 4).  Gail and combined risk 

scores had substantially larger AUC for ER+ than ER- tumors (empirical P < 0.001 in both cases). 

For SNP risk, the difference in AUC for ER+ versus ER- tumors was borderline significant (95% 

CI: 0.01  0.10, two-sided − P = 0.02).  AUC for ER+ tumors was also significantly larger than for all 

invasive cancers for both Gail score (empirical P = 0.02) and the combined score (empirical P = 

0.02), though these differences were small.

We investigated using ER-specific odds ratios to form separate ER-positive and ER-

negative versions of the SNP risk score.  We compared performance of these scores to the 

41

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
29

5.
1 

: P
os

te
d 

19
 M

ar
 2

01
0



general SNP risk score by AUC.  Bootstrap confidence intervals for the difference in AUC crossed 

zero for both receptor status subtypes (Supplemental Table 5).  While we were unable to 

conclusively demonstrate improved classification with the available sample sizes, prediction of 

ER- cancers appeared most likely to improve (one-sided P = 0.05).
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Supplemental Table 1. Genotyping performance of the breast cancer loci

dbSNP rsID Platform Call rate Freq* PHWE
†

rs2981582 Array 1.000 0.406 0.29

rs3803662 Array 1.000 0.288 0.85

rs889312 Array 0.996 0.285 0.64

rs13387042 Sequenom 0.910 0.512 0.58

rs13281615 Array 1.000 0.420 0.43

rs4415084 Array 0.997 0.401 0.07

rs3817198 Array 1.000 0.322 0.60

* Frequency of the previously-reported high risk allele.

† P value for Hardy-Weinberg equilibrium, from a likelihood ratio test.
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Supplemental Table 2. Expected and observed counts of cases and controls for deciles of risk 

scores.

Expected Observed

Risk Decile Control Case Control Case

SNP risk

[0.454,0.687] 209.3 132.7 207 135

(0.687,0.772] 191.4 144.6 201 135

(0.772,0.848] 170.2 141.8 161 151

(0.848,0.921] 184.8 168.2 177 176

(0.921,0.991] 163.6 161.4 178 147

(0.991,1.06] 151.8 160.2 170 142

(1.06,1.14] 157.1 177.9 153 182

(1.14,1.25] 146.1 179.9 143 183

(1.25,1.43] 140.7 193.3 139 195

(1.43,2.65] 121.0 204.0 107 218

Gail risk

[0.0066,0.011] 212.6 118.4 194 137

(0.011,0.012] 195.4 132.6 175 153

(0.012,0.014] 190.7 144.3 176 159

(0.014,0.015] 178.7 149.3 167 161

(0.015,0.016] 174.9 160.1 183 152

(0.016,0.018] 161.7 163.3 155 170

(0.018,0.02] 154.9 174.1 156 173

(0.02,0.024] 143.8 185.2 150 179

(0.024,0.032] 126.8 203.2 142 188

(0.032,0.12] 9 6 .7 233.3 138 192

SNP×Gail risk

[0.0045,0.0092] 226.9 103.1 217 113

(0.0092,0.011] 204.9 125.1 185 145

(0.011,0.013] 192.5 137.5 189 141

(0.013,0.014] 182.5 147.5 169 161

(0.014,0.016] 172.5 157.5 161 169

(0.016,0.018] 161.9 168.1 166 164

(0.018,0.022] 150.3 179.7 153 177

(0.022,0.026] 136.4 193.6 145 185

(0.026,0.033] 119.6 210.4 142 188

(0.033,0.23] 8 8 .4 241.6 109 221

45

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
29

5.
1 

: P
os

te
d 

19
 M

ar
 2

01
0



Supplemental Table 3.  Reclassification table for SNP×Gail risk versus Gail risk in women with a 

previous breast biopsy.

SNP risk × Gail 5-Year risk

Gail 5-Year risk < 1.5% 1.5% - 2.0% > 2.0% Total

< 1.5%

Women 71 23 5 99

Events 39 15 4 58

Nonevents 32 8 1 41

Proportion 0.549 0.652 0.800 0.586

1.5% - 2.0%

Women 58 65 65 188

Events 29 38 48 115

Nonevents 29 27 17 73

Proportion 0.500 0.585 0.738 0.612

> 2.0%

Women 18 46 320 384

Events 7 20 200 227

Nonevents 11 26 120 157

Proportion 0.389 0.435 0.625 0.591

Total

Women 147 134 390 671

Events 75 73 252 400

Nonevents 72 61 138 271

Proportion 0.510 0.545 0.646 0.596
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Supplemental Table 4.  Logistic regression tests of association with estrogen receptor subtypes.

ER-positive tumors ER-negative tumors

Predictor  (95% CI) P  (95% CI) P

log(Gail 5-year risk) 0.55 (0.37  0.72)− 1.1×10 9− -0.03 (-0.37  0.32)− 0.89

log(SNP risk) 1.20 (0.92  1.47)− 1.7×10 18− 0.56 (0.03  1.09)− 0.04

log(SNP × Gail risk) 0.72 (0.57  0.87)− 2.4×10 22− 0.14 (-0.14  0.43)− 0.32

Supplemental Table 5.  AUC and bootstrap 95% confidence intervals for risk scores versus tumor 

receptor status.

Predictor All tumors ER-positive ER-negative

log(Gail 5-year risk) 0.557 (0.537  0.575)− 0.568 (0.547  0.587)− 0.486 (0.445  0.532)−
log(SNP risk) 0.587 (0.567  0.607)− 0.593 (0.572  0.614)− 0.541 (0.496  0.583)−
log(SNP × Gail risk) 0.594 (0.575  0.612)− 0.605 (0.583  0.625)− 0.521 (0.478  0.567)−

Supplemental Table 6.  AUC and bootstrap 95% confidence intervals for receptor-specific risk 

scores.

Tumor type General score ER-specific score Difference in AUC

ER-positive 0.593 (0.572  0.614)− 0.591 (0.570  0.613)− -0.002 (-0.005    0.001)−
ER-negative 0.541 (0.496  0.583)− 0.564 (0.522  0.602)− 0.022 (-0.005    0.050)−
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Supplemental Figure 1. Comparison of approaches for combining Gail and single nucleotide 

polymorphism (SNP) risk. The X axes show risk estimates obtained by multiplying Gail relative 

risk by SNP relative risk, and then converting to absolute risk. The Y axes show corresponding 

estimates obtained by multiplying Gail absolute risk by SNP relative risk. The results are generally 

similar, though the second method tends to slightly overestimate very high risk values. For the 5-

year risk estimates, r2 = 0.9995, and for lifetime risk, r2 = 0.9972.
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Supplemental Figure 2.  Net reclassification improvement (NRI) excluding the upper and lower 

tails of the distribution of Gail absolute risk. The lower and upper bounds represent quantiles of 

Gail risk in the full cohort.  The upper left corner represents NRI for the entire cohort, and the 

lower right represents the most restrictive subset with a lower bound near 1.5% and an upper 

bound near 2.0%.
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