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Abstract

Motivation: High throughput nucleotide sequenc-
ing provides quantitative readouts in assays for RNA
expression (RNA-Seq), protein-DNA binding (ChIP-
Seq), cell counting. Statistical inference of differ-
ential signal in these data needs to take into ac-
count their natural variability throughout the dynamic
range. When the number of replicates is small, error
modeling is needed to achieve statistical power.
Results: We propose an error model that uses
the negative binomial distribution, with variance and
mean linked by local regression, to model the null
distribution of the count data. The method controls
type I error and provides good detection power.
Availability: A free open-source R software pack-
age, called DESeq, is available from http://www-
huber.embl.de/users/anders/DESeq (and will be avail-
able from the Bioconductor project).
Contact: sanders@fs.tum.de

1 Introduction

High-throughput sequencing of DNA fragments of-
fers unprecedented opportunities for the monitoring
of RNA abundance and of protein-DNA binding, in-
cluding the possibility to discover novel sequence vari-
ants and to dissect allele-specific effects and genetic
variation. There is a range of technologies; a com-
mon feature between them is that they produce large
amounts of sequence reads sampled from a prepara-
tion of DNA fragments that reflects, e.g., a biological
system’s repertoire of RNA molecules (RNA-Seq, Na-
galakshmi et al. (2008); Mortazavi et al. (2008)) or the
DNA or RNA interaction regions of nucleotide binding
molecules (ChIP-Seq, Robertson et al. (2007); HITS-
CLIP, Licatalosi et al. (2008)). Typically, these reads
are classified based on their mapping to a common
region of the target genome, where each class repre-
sents a target transcript, in the case of RNA-Seq, or
a binding region, in the case of ChIP-Seq. An im-

∗sanders@fs.tum.de

portant summary statistic is the number of reads in
a class; for RNA-Seq, this read count has been found
to be (to good approximation) linearly related to the
abundance of the target transcript (Mortazavi et al.,
2008). Interest lies in comparing read counts between
different biological conditions or between different ge-
netic variants. In the simplest case, the comparison is
done separately, class by class. We will use the term
gene synonymously to class, even though a class may
also refer to, e.g., a transcription factor binding site,
or even a barcode (Smith et al., 2009).

We would like to use statistical testing to decide
whether, for a given gene, an observed difference in
read counts is significant, i.e., whether it is greater
than what would be expected just due to natural ran-
dom variation.

If reads are independently sampled from a popu-
lation with given, fixed fractions of genes, the read
counts follow a multinomial distribution, which can be
approximated by Poisson distributions. Consequently,
Poisson distributions have been used to test for dif-
ferential expression (Marioni et al., 2008; Wang et al.,
2010). The single parameter of a Poisson distribu-
tion is determined by its mean, and its variance and
all other properties follow from that; especially, the
variance is equal to the mean. However, it has been
noted (Robinson and Smyth, 2007; Nagalakshmi et al.,
2008) that the assumption of Poisson distribution for
the read counts is too tight, i. e., it predicts smaller
variations than what is seen in the data. The resulting
statistical test does therefore not control the type I er-
ror (the probability of false discoveries) as advertised.
We show instances for that in Section 5.1.

To address this so-called overdispersion problem, it
has been proposed to model count data with neg-
ative binomial (NB) distributions (Whitaker, 1914),
and this approach is used in the edgeR package for
analysis of SAGE and RNA-Seq (Robinson and Smyth,
2007; Robinson et al., 2010). The NB distributions
are a family with two parameters, which are uniquely
determined by mean µ and variance v. However, the
number of replicates in datasets of interest is often too
small to estimate both of those two parameters, mean
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and variance, reliably for each gene. For edgeR, Robin-
son and Smyth (2008) proposed to assume that mean
and variance are related by v = µ+αµ2, with a single
proportionality constant α that is the same through-
out the experiment and that can be readily estimated
from the data. Hence, only one parameter needs to be
estimated for each gene, allowing application to exper-
iments with small numbers of replicates.

In this paper, we extend this model by allowing
more general, data-driven relationships of variance and
mean, provide an effective algorithm for fitting the
model to data, and show that it provides better fits.
As a result, more balanced selection of differentially
expressed genes throughout the dynamic range of the
data and higher power for the detection of differential
abundance can be obtained. The method is applicable
to a wide range of experimental designs and questions.

We will first specify our model and explain how to fit
its parameters (Section 2) and then how to test for dif-
ferential expression (Section 3). We demonstrate the
method by applying it to three data sets (Section 4)
and discuss how it compares to alternative approaches
(Section 5). Finally, we present the R implementation
of the method, called DESeq (Section 6).

2 Model

2.1 Description

We assume that the number of reads in sample j that
are assigned to gene i can be modeled by a negative
binomial (NB) distribution,

Kij ∼ NB(µij , σ2
ij), (1)

which has two parameters, the mean µij and the vari-
ance σ2

ij . The read counts Kij are non-negative inte-
gers. The probabilities of the distribution are given in
Supplementary Note A. This family of distributions is
commonly used to model count data when overdisper-
sion is present (Cameron and Trivedi, 1998).

In practice, we do not know the parameters µij and
σ2
ij , and we need to fit them from the data. Typically,

the number of replicates is small, and further modeling
assumptions need to be made in order to obtain useful
estimates. In this paper, we develop a method that is
based on the following three assumptions:

First, the mean parameter µij , that is, the expecta-
tion value of the observed counts for gene i in sample
j, is the product of a condition-dependent per-gene
value qi,ρ(j) (where ρ(j) is the experimental condition
of sample j) and a library size parameter sj ,

µij = qi,ρ(j) sj . (2)

qi,ρ(j) is proportional to the expectation value of the
true (but unknown) concentration of fragments from
gene i under condition ρ(j). The library size param-
eter sj is proportional to the coverage, or sampling
depth, of library j, and we will use the term common
scale for quantities, such as qi,ρ(j), that are adjusted
for coverage by dividing by sj .

Second, the variance σ2
ij is the sum of a shot noise

term and a raw variance term,

σ2
ij = µij︸︷︷︸

shot noise

+ s2jvi,ρ(j)︸ ︷︷ ︸
raw variance

(3)

Third, the per-gene raw variance parameter vi,ρ(j) is
a smooth function vρ of the per-gene abundance qi,ρ(j),

vi,ρ(j) = vρ(qi,ρ(j)). (4)

The decomposition of the variance in Equation (3) is
motivated by the following hierarchical model. We as-
sume that the actual concentration of fragments from
gene i in sample j is proportional to a random vari-
able Rij , such that the rate that fragments from gene
i are actually sequenced is sjrij . For each gene i and
all samples j of condition ρ, the Rij are i.i.d. with
mean qiρ and variance viρ. Thus, the count value Kij ,
conditioned on Rij = rij , is Poisson distributed with
rate sjrij . If the higher moments of the distribution
of Rij are modeled according to a gamma distribu-
tion, the marginal distribution of Kij is NB (see e.g.
Cameron and Trivedi (1998, Sec. 4.2.2)) with mean
µij and variance as given in Equation (3).

The model could be refined by adding further pa-
rameters. For example, when the experimental pro-
tocols involves DNA fragmentation, one may want to
divide the mean qiρ in Equation (4) by the feature
length.

2.2 Fitting

We now describe how the model can be fit to data.
The data are an n×m table of counts, kij , where i =
1, . . . , n indexes the genes, and j = 1, . . . ,m indexes
the samples. The model has three sets of parameters:

1. m library size parameters sj ; the expectation val-
ues of all counts from sample j are proportional
to sj .

2. for each experimental condition ρ, n gene abun-
dance parameters qiρ; they reflect the expected
abundance of fragments from gene i under condi-
tion ρ, i.e., expectation values of counts for gene
i are proportional to qiρ.

3. The smooth functions vρ : R+ → R+; they model
the dependence of the raw variance viρ on the ex-
pected mean qiρ.
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To estimate the size parameters, we use

ŝj = median
i

kij

(Πm
ν=1kiν)1/m

. (5)

The denominator of this expression can be interpreted
as a pseudo-reference sample obtained by taking the
geometric mean across samples. Each library size pa-
rameter estimate ŝj is then computed as the median of
the ratios of the j-th sample’s counts to those of the
pseudo-reference. In many cases, the values ŝj will
be proportional to, and thus equivalent to, the sums∑
i kij . However, it is not uncommon for the sums to

be dominated by the counts for a few, highly abundant
genes. In such cases, the estimator (5) will be more ro-
bust, and will produce a better library size adjustment
for the majority of genes.

To estimate qiρ, we use the average of the counts
from the samples j corresponding to condition ρ,
transformed to the common scale:

q̂iρ =
1
mρ

∑
j: ρj=ρ

kij
ŝj
, (6)

where mρ is the number of replicates of condition ρ
and the sum runs over these replicates.

To estimate the functions vρ, we first calculate sam-
ple variances on the common scale

wiρ =
1

mρ − 1

∑
j: ρ(j)=ρ

(
kij
ŝj
− q̂iρ

)2

(7)

and define
ziρ =

q̂iρ
mρ

∑
j: ρ(j)=ρ

1
ŝj
. (8)

In Supplementary Note B, we show that wiρ − ziρ is
an unbiased estimator for the raw variance parameter
viρ of Equation (3).

However, for small numbers of replicates, mρ, as is
typically the case in applications, the values wiρ are
highly variable, and wiρ − ziρ would not be a useful
variance estimator for statistical inference. Instead,
we use local regression (Loader, 1999) on the graph
(q̂iρ, wiρ) to obtain a smooth function wρ(q), with

v̂ρ(q̂iρ) = wρ(q̂iρ)− ziρ (9)

as our estimate for the raw variance.
Some attention is needed to avoid estimation biases

in the local regression. wiρ is a sum of squared random
variables, and the residuals wiρ−w(q̂iρ) do not follow a
normal distribution. Following McCullagh and Nelder
(1989, Ch. 8) and Loader (1999, Section 9.1.2), we use
a generalised linear model of the gamma family for the
local regression, using the implementation in the locfit
package (Loader, 2007).

3 Testing for differential expres-
sion

Suppose that we have mA replicate samples for bio-
logical condition A and mB samples for condition B.
For each gene i, we would like to weigh the evidence in
the data for or against differential abundance of that
gene between the two conditions. In particular, we
would like to test the null hypothesis qiA = qiB, where
qiA is the gene abundance parameter for the samples
of condition A, and qiB for condition B. To this end,
we define, as test statistic, the total counts in each
condition,

KiA =
∑

j:ρ(j)=A

Kij KiB =
∑

j:ρ(j)=B

Kij , (10)

and their overall sum KiS = KiA + KiB. From the
error model of Section 2, we show below that we can
compute the probabilities of the events KiA = a and
KiB = b for any pair of numbers a and b. We denote
this probability by p(a, b). The p-value of a pair of
observed count sums (kiA, kiB) is then the sum of all
probabilities less or equal to p(kiA, kiB), given that the
overall sum is kiS :

pi =

∑
a+b=kiS

p(a,b)≤p(kiA, kiB)

p(a, b)

∑
a+b=kiS

p(a, b)
(11)

The variables a and b in the above sums take the values
0, . . . , kiS. The approach presented so far follows that
of Robinson and Smyth (2008) and is analogous to
that taken by other conditioned tests, such as Fisher’s
exact test. (See Agresti (2002, Ch. 2) for a discussion
of the merits of conditioning in tests.)

Computation of p(a, b). First, assume that,
under the null hypothesis, counts from differ-
ent samples are independent. Then, p(a, b) =
Pr (KiA = a) Pr (KiB = b). The problem thus is com-
puting the probability of the event KiA = a, and, anal-
ogously, of KiB = b. The random variable KiA is the
sum of mA NB-distributed random variables. We ap-
proximate its distribution by a NB distribution whose
parameters we obtain from those of the Kij . To this
end, we first compute the pooled mean estimate from
the counts of both conditions,

q̂i0 =
∑

j:ρ(j)∈{A,B}

kij/sj , (12)

which accounts for the fact that the null hypothesis
stipulates that qiA = qiB. The summed mean and
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variance for condition A is

µ̂iA =
∑
j∈A

sj q̂i0, (13)

σ̂2
iA =

∑
j∈A

ŝj q̂i0 + ŝ2j v̂A(q̂i0), (14)

Supplementary Note C describes how the distribution
parameters of the NB for KiA can be determined from
µ̂iA and σ̂2

iA. (We do not use the moments directly but
instead perform an additional bias-correcting step.)
The parameters of KiB are estimated analogously.
Supplementary Note D explains how we evaluate the
sums in Equation (11).

4 Applications

4.1 Data sets

We demonstrate the application of our method, which
we call DESeq, on the following data sets.

Tag-Seq of neural stem cells. Engström et al.
(2010) performed Tag-Seq (Morrissy et al., 2009)
for tissue cultures of neural cells, including two
from glioblastoma-derived neural stem-cells (condi-
tion GNS ; samples G144, G166) and two from non-
cancerous neural stem cells (condition NS ; samples
NS123, NS345). The number of reads obtained from
each library varied from 7.6 millions to 13.6 millions. A
good fraction of these (depending on the sample, from
32% to 53%) could be unambiguously assigned to an-
notated genes, and Engström et al. (2010) et al. sum-
marised the data in a table of counts with six columns
for the six samples and 18,760 rows, one for each gene.

RNA-Seq of yeast. Nagalakshmi et al. (2008) per-
formed RNA-Seq on replicates of yeast cultures. They
tested two library preparation protocols, dT and RH,
and obtained three sequencing runs for each protocol,
such that for the first run of each protocol, they had
one further technical replicate (same culture, repli-
cated library preparation) and one further biological
replicate (different culture).

ChIP-Seq in humans. This dataset contains four
replicates each from a ChIP-Seq experiment studying
polymerase-II occupancy in two different human indi-
viduals.

4.2 Variance estimation

We start by demonstrating the variance estimation.
Figure 1a shows the sample variances wiρ (Equa-
tion (7)) plotted against the means q̂iρ (Equation (6))
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Figure 3: Type-I error control. The histograms show p val-
ues from a comparison of one GNS replicate with another one.
Between replicates, no genes are truly differentially expressed,
and the distribution of p-values is expected to be uniform in
the interval [0, 1]. Top row shows results for edgeR, lower row
for DESeq. Left and middle column show the distributions sepa-
rately for genes below and above the median mean, right column
for all genes. DESeq’s more flexible variance estimation leads to
approximately uniform p value distributions independent of the
mean level, whereas those obtained with edgeR show intensity
dependent trends.

for the condition ρ = GNS in the neural stem cells
data. Also shown is the local regression fit wρ(q) and
the shot noise ŝj q̂iρ. In Figure 1b, we plotted the
squared coefficient of variation (SCV), i.e. the ratio
of the variance to the mean squared. In this plot, the
distance between the orange and the purple line is the
SCV of the noise due to biological sampling (cf. Equa-
tion (3)).

The many points in Figure 1a that lie far above the
fitted orange curve may let the fit of the local regres-
sion appear poor. However, a strong skew of the resid-
ual distribution is to be expected. See Supplementary
Note E for details and a discussion of diagnostics suit-
able to verify the fit.

4.3 Testing

In order to verify control of type-I error, we contrasted
one GNS replicate against another replicate of the
same condition, using for both samples the variance
function estimated for condition GNS. In this case, we
expect to find uniformly distributed p values. Figure 3
(lower row) shows this to be the case.

Next, we contrasted the two GNS samples against
the two NS samples. Using the procedure described
in Section 3, we computed a p value for each gene.
Figure 2 shows the obtained fold changes and p val-
ues. 10% of the p values are below 5%. Adjust-
ment for multiple-testing with the false discovery
rate (FDR) controlling procedure of Benjamini and
Hochberg (1995) yielded significant differential expres-
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Figure 1: Dependence of the variance on the mean for the two GNS samples from the neural stem cells data. (a) The scatter plot
shows the common-scale sample variances (Equation (7)) plotted against the common-scale means (Equation (6)). The orange line is
the fit w(q). The purple lines show the variance implied by the Poisson distribution for each of the two GNS samples, i.e., ŝj q̂i,GNS.
The dashed orange line is the variance estimate used by edgeR. (b) Same data as in (a), with the y-axis rescaled to show the squared
coefficient of variation (SCV), i.e. all quantities are divided by the square of the mean. The solid orange line is computed using the
bias correction described in Supplementary Note C.
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Figure 4: The density of common-scale mean values qi for all
genes (grey line, scaled down by a factor of 7, for the hits re-
ported by DESeq (red line) and by edgeR with four different
settings (light blue, using read count sum for library size ad-
justment; dark blue, using Equation (5); solid, with common
dispersion; dashed, with tagwise dispersion.)

sion at a 10% FDR level for a set of 680 genes (of
18,323). These are marked in red in the figure.

Figure 2 demonstrates that the power to detect dif-
ferential expression depends on overall counts: below
a common scale mean of ∼ 10, no detection is possible,
and as the mean grows, smaller fold changes become
detectable.

4.4 Comparison with edgeR

We also compared the three GB samples with the two
NS samples using edgeR (version 1.5.4; Robinson and
Smyth (2007, 2008); Robinson et al. (2010)). While
DESeq reports 680 genes at Benjamini-Hochberg ad-
justed FDR of 10%, edgeR finds 452 genes when used
in common dispersion mode and 256 in the tagwise dis-
persion mode. These numbers for edgeR were obtained
when supplying it with total read counts as library
size parameters, as recommended in the documenta-
tion; when DESeq ’s estimates, as in Equation (5), were
used, we obtained 525 and 316 genes, respectively.
84% to 96% of edgeR’s genes were also reported by
DESeq, which is consistent with an FDR of 10%.

The difference between the results of edgeR and DE-
Seq does not merely lie in the number of genes, but
also in their properties. As can be seen from Fig-
ure 4, the gene lists have different distributions along
the abundance scale. While –for these data– edgeR’s
hits tend to concentrate at lower abundance, the hits
from DESeq are more evenly distributed along the dy-

69

418

202

15,529

Figure 5: Calling differential expression without replicates:
The red set in this Venn diagram represents the genes that were
found to show differential expression significant at 10% FDR
when comparing three GNS samples with the two NS samples.
When using only one sample of each type, the genes represented
by the blue set are found.

namic range, once the mean is above ∼ 10. edgeR’s
bias towards lower abundance genes is likely not a re-
flection of biology, but rather an artifact of its error
model: edgeR estimates a common dispersion of 0.56
(0.60 with read count sum). The dashed orange line in
Figure 1a and b shows the variance implied by a raw
SCV of this value. As one can see, it is lower than DE-
Seq ’s estimate (solid orange line) for the lower part of
the the dynamic range, and higher in the upper range.
Hence, edgeR calls more hits among genes with low
counts and is conservative for genes with high counts.
This matches the observation from Figure 4. On av-
erage, over the whole dynamic range, FDR control is
of course maintained, albeit at the cost of detection
power.

A similar effect can be observed in the comparison
of the two GNS replicates against each other. As can
be seen in Figure 3, there are either too many high
or too many low p values, depending on the range of
mean values.

4.5 Working without replicates

DESeq allows analysis of experiments with no biologi-
cal replicates in one or even in both of the conditions.
While one may not want to draw strong conclusions
from such an analysis, it may still be useful for explo-
ration and hypothesis generation.

If replicates are available only for one of the condi-
tions, one may assume that the variance-mean depen-
dence estimated from the data for that condition holds
as well for the unreplicated one.

If neither condition has replicates, one can still per-
form an analysis based on the assumption that for
most genes, there is no true differential abundance,
and that a valid mean-variance relationship can be es-
timated from treating the two samples as if they were
replicates. A minority of differentially abundant genes
will act as outliers, however, they will not have a se-
vere impact on the gamma-family GLM fit, as the
gamma distribution for low values of the shape pa-

6

N
at

ur
e 

P
re

ce
di

ng
s 

: h
dl

:1
01

01
/n

pr
e.

20
10

.4
28

2.
2 

: P
os

te
d 

30
 A

pr
 2

01
0



G
liN

S
1

G
14

4

C
B

66
0

C
B

54
1

G
16

6

G
17

9

GNS (L)

GNS

NS

NS

GNS (*)

GNS (*)

0 50 150 250
Value

Color Key

Figure 6: Sample clustering for the data of Engström et al.
(2010). A common variance function was estimated for all sam-
ples and used to apply a variance-stabilizing transformation.
The heatmap shows a false colour representation of the Eu-
clidean distance matrix, and the dendrogram represents a hi-
erarchical clustering. The two GNS samples derived from the
same patient (marked with “(*)”) show the highest degree of
similarity. The two other GNS samples (including the one with
atypically large cells, marked “(L)”) are as dissimilar from the
former as the two NS samples.

rameter (m− 1)/2 has a heavy right-hand tail. Some
overestimation of the variance may be expected, which
will make that approach conservative.

We performed such an analysis by restricting the
neural stem cells data to only two samples, one from
the GNS and one from the NS condition. The esti-
mated variance function is, as expected, above the two
functions estimated from the GNS and NS replicates.
Using it to test for differential abundance still finds a
number of hits at 10% FDR, as can be seen from the
Venn diagram in Figure 5, and these hits have good
overlap with those found from the more reliable anal-
ysis with all available samples.

4.6 Variance-stabilizing transforma-
tion

Given a variance-mean dependence, a variance-
stabilizing transformation (VST) is a bijection such
that for the transformed values, the variance is (ap-
proximately) independent of the mean. Using the
variance-mean dependence estimated by DESeq, the
function v(q), a VST is given by

τ(κ) =
∫ κ dq√

v(q)
. (15)

Using the transformation τ on the common-scale count
data, kij/sj , yields new data values whose variance
is approximately the same throughout the dynamic
range.

One application of VST is sample clustering, as in
Figure 6; such an approach is more straightforward
than, say, defining a suitable distance metric on the
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Figure 7: Application to ChIP-Seq data. Shown are p value
histograms resulting from comparisons of Pol-II ChIP-Seq data
between replicates of the same individual (first and second col-
umn) and between two different individuals (third and forth col-
umn). The upper row corresponds to an analysis based on Pois-
son GLMs (“P”), the bottom row to analysis with DESeq (“D”).
In the first column, two replicates from individual A (replicate
set A1 ) are compared against two further replicates from the
same individual (A2 ). As expected, the p value histograms are
approximately flat, indicating no significant differences. In the
second column, two replicates from individual B (B1 ) are com-
pared against two further replicates from the same individual
(B2 ). While no significant differences are expected, the Poisson
GLM analysis finds an enrichment of small p values; this is a
reflection of overdispersion in the data, that is, the variance in
the data is larger than what the Poisson GLM assumes (see also
Section 5.1 ). The third column compares two replicates from
individual A (A1 ) against two from individual B (B1 ). True
binding differences are expected, and both methods result in
an excess of small p values. The forth column shows the com-
parison of four replicates of individual A (A1 combined with
A2 ) against four replicates of individual B (B1, B2 ); increased
sample size leads to higher detection power.

untransformed count data, whose choice is not obvi-
ous, and may not be easy to combine with available
clustering or classification algorithms. Another use is
the computation of more complex contrasts, such as in-
teractions between experimental factors or regression
on continuous-valued variables, and analysing the ef-
fects as if the data were homoskedastic. However, the
power of such an approach would be lower than in the
NB-based approach of Section 3, since it ignores the
discreteness and skewedness of the count data.

4.7 ChIP-Seq

An application of DESeq to ChIP-Seq data is shown in
Figure 7. For two human individuals (“A” and “B”),
four replicates of ChIP-Seq for polymerase-II had been
done. Using a pre-compiled list of binding regions, a
table of count data can be obtained by counting the
number of reads aligned to each binding region (which
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now take the place of genes).
In analysing this table, type-I error control was

maintained by DESeq : the lower left two panels of
Figure 7 show approximately uniform p value his-
tograms for comparisons within the same individual,
and no binding region was significant at 10% FDR
using Benjamini-Hochberg adjustment. Differential
binding was found, however, when contrasting the
two individuals, with 6,450 binding regions significant
when only two replicates each were used and 9,415
when four replicates were used.

However, if one assumed the read counts to follow
Poisson distributions, a standard approach would be
to perform count regression, i.e., to use a generalized
linear model (GLM) of the Poisson family (Cameron
and Trivedi, 1998). The upper row of Figure 7 shows
that for this approach an enrichment of small p values
even for comparisons within the same individual, indi-
cating that the variance is underestimated, and literal
use of the p values would hence lead to anticonserva-
tive (overly optimistic) calling of differential binding
regions.

5 Discussion

Why is it necessary to develop new statistical method-
ology for sequence count data? If large numbers of
replicates were available, questions of data distribu-
tion could be avoided by using non-parametric meth-
ods, such as Wilcoxon and Kruskal-Wallis tests. How-
ever, it is desirable (and possible) to consider exper-
iments with smaller numbers of replicates per condi-
tion. In order to compare an observed difference with
the to be expected random variation, we can employ
two sources of information on the size and nature of
random variation: first, we can use distribution fam-
ilies, such as normal, Poisson and negative binomial
distributions, in order to determine the higher mo-
ments, and hence the tail behavior, of statistics for
differential abundance, based on observed low order
moments such as mean and variance. Second, we can
share information between genes, based on the notion
that data from different genes follow similar patterns
of variability. Here, we have described an instance of
such an approach, and we will now discuss the choices
we have made.

5.1 Distributional family

While for large counts, the normal distributions might
provide a good approximation of between replicate
variability, this is not the case for lower count values,
whose discreteness and skewness mean that probabil-
ity estimates computed from a normal approximation
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Figure 8: Noise estimates for the data of Nagalakshmi et al.
(2008). The data allow assessment of technical variability (be-
tween library preparations from aliquots of the same yeast
culture) and biological variability (between two independently
grown cultures). The blue curves depict the squared coefficient
of variation at the common scale, wρ(q)/q2 (see Equation (9))
for technical replicates, the red curves for biological replicates
(solid lines, dT data set, dashed lines, RH data set). The data
density is shown by the black curve in the top panel. The purple
area marks the range of the shot noise for the range of library
sizes in the data set. One can see that the noise between techni-
cal replicates follows closely the shot noise limit, while the noise
between biological replicates exceeds shot noise already for low
count values.

would be inadequate.
For the Poisson approximation, a key paper is the

work by Marioni et al. (2008), who studied the techni-
cal reproducibility of RNA-Seq. They extracted total
RNA from two tissue samples, one from the liver and
one from the kidneys of the same individuum. From
each RNA sample they took seven aliquots, prepared
a library from each aliquot according to the protocol
recommended by Illumina and sampled each library
on one lane of a Solexa genome analyzer. For each
gene, they then calculated the variance of the seven
counts from the same tissue sample and found very
good agreement with the variance predicted by a Pois-
son model. In line with our arguments in Section 2,
Poisson shot noise is the minimum amount of variation
to expect in a counting process. Thus, Marioni et al.
(2008) concluded that the technical reproducibility of
RNA-Seq is excellent, and that the variation between
technical replicates is close to the shot noise limit.

From this vantage point, Marioni et al. (2008) sug-
gested to use the Poisson model (and Fisher’s exact
test, or a likelihood ratio test as an approximation to
it) to test whether a gene is differentially expressed be-
tween their two samples. It is now vital to notice that
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a rejection from such a test only informs us that the
difference between the average counts in the two sam-
ples is larger than one would expect between technical
replicates. Hence, we do not know whether this differ-
ence is due to the different tissue type, kidney instead
of liver, or whether a difference of the same magnitude
could have been found as well if one had compared two
samples from different parts of the same liver, or from
livers of two individuals.

Figure 1 shows that shot noise (purple region) is
only dominant for very low count values, while already
for moderate counts, the effect of the biological varia-
tion between samples exceeds the shot noise by many
orders of magnitude. This is confirmed by compar-
ison of technical with biological replicates (Nagalak-
shmi et al., 2008). In Figure 8, we used DESeq to
obtain variance estimates for the data of Nagalakshmi
et al. (2008). The analysis indicates that the difference
between technical replicates barely exceeds shot noise
level, while biological replicates differ much more.

Tests for differential abundance that are based on a
Poisson model, such as proposed by Jiang and Wong
(2009) or Wang et al. (2010) should thus be interpreted
with caution, as they will tend to underestimate the
effect of biological variability.

Consequently, it is preferable to use a model that
allows for overdispersion. While for the Poisson distri-
butions, variance and mean are equal, the negative bi-
nomial distributions are a generalisation that allow for
the variance to be larger. The most advanced of the
published methods using this family of distributions
is likely edgeR (Robinson and Smyth, 2007). DESeq
owes its basic idea to a good part to edgeR, but differs
in several aspects.

5.2 Sharing of information between
genes

First, we discovered that the use of total read counts
as estimates of sequencing depth, and hence for the ad-
justment of observed counts between samples (as rec-
ommended by Robinson and Smyth (2007) and other
authors) may result in high apparent differences be-
tween replicates, and hence in poor power to detect
true differences. DESeq uses the more robust size es-
timate Equation (5); in fact, edgeR’s power increases
when it is supplied with those size estimates instead.

For small numbers of replicates such as often en-
countered in practice, it is not possible to obtain si-
multaneously reliable estimates of the variance and
mean parameters of the NB distribution. edgeR ad-
dresses this problem by estimating a single common
dispersion parameter. In our method, we make use
of the possibility to estimate a more flexible, mean-

dependent local regression. The amount of data avail-
able in typical experiments is large enough to allow for
sufficiently precise local estimation of the dispersion.
Over the large dynamic range that is typical for RNA-
Seq, the raw SCV often appears to change noticeably,
and taking this into account allows DESeq to avoid
bias towards certain areas of the dynamic range in its
differential-expression calls (see Figures 3 and 4).

This flexibility is the most substantial difference be-
tween DESeq and edgeR, as simulations show that
edgeR and DESeq perform comparably if provided
with artificial data with constant SCV (Supplementary
Note F). edgeR attempts to make up for the rigidity
of the single-parameter noise model by allowing for
an adjustment of the model-based variance estimate
with the per-gene empirical variance. An empirical
Bayes procedure, which was originally developed for
the limma package (Smyth, 2004), determines how to
combine these two sources of information optimally.
However, for typically low replicate numbers, this so-
called tagwise dispersion mode seems to rather reduce
edgeR’s power (Section 4.4).

Third, we have suggested a simple and robust way of
estimating the raw variance from the data. Robinson
and Smyth (2008) employed a technique they called
quantile-adjusted conditional maximum likelihood to
find an unbiased estimate for the raw SCV. The quan-
tile adjustment refers to a rank-based procedure that
modifies the data such that the data seem to stem
from samples of equal library size. In DESeq, differ-
ing library sizes are simply addressed by linear scaling
(Equations (2) and (3)), suggesting that quantile ad-
justment is an unnecessary complication. The price we
pay for this is that we need to make the approximation
that the sum of NB variables in Equation (10) be itself
NB distributed. While it seems that neither the quan-
tile adjustment nor our approximation pose reason for
concern in practice, DESeq is conceptionally simpler
and computationally faster.

Our approach provides useful diagnostics. Plots
such as Supplementary Figure S2 are helpful to judge
the reliability of the tests. In Figures 1b and 8, it is
easy to see at which mean value biological variability
dominates over shot noise; this information is valuable
to decide whether the sequencing depth or the number
of biological replicates is the limiting factor for detec-
tion power, and so helps in planning experiments. A
heatmap as in Figure 6 is useful as data quality con-
trol.

6 The R package DESeq

We implemented our method as a package for the sta-
tistical environment R (R Development Core Team,
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2009). As input, it expects a table of count data. The
data, as well as metadata, such as sample classes, are
managed with the S4 class CountDataSet, which is de-
rived from eSet, Bioconductor’s standard data type for
table-like data. The package provides high-level func-
tions to perform analyses such as in Section 4 with
only a few commands, allowing researchers with little
knowledge of R to use it. This is demonstrated with
examples in the documentation (the so-called package
vignette). Furthermore, lower-level functions are sup-
plied for more experienced users who wish to deviate
from the standard work flow. A typical calculation,
such as the analysis shown in Section 4.2, takes a few
minutes of computation time on a desktop computer.
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Supplementary Notes

A Parameterization of the neg-
ative binomial distribution

An integer valued random variable K is said to follow
a negative binomial distribution with parameters p ∈
]0, 1[ and r ∈]0,∞[ if (Cameron and Trivedi, 1998)

Pr(K = k) =
(
k + r − 1
r − 1

)
pr(1− p)k. (16)

This two-parametric distribution can, equivalently, be
parametrised in terms of its mean µ and variance σ2,
via

p =
µ

σ2
and r =

µ2

σ2 − µ
. (17)

B Variance estimator

In Section 2.2, we claim that ŵiρ − ziρ, as defined in
Eqs. (7, 8), is an unbiased estimator for the raw vari-
ance viρ. To show this, we compute the expectation
value of ŵiρ. To simplify notation, we suppress the in-
dices i and ρ in the following. Furthermore, we neglect
differences between the true library sizes sj and their
estimates ŝj . Then,

Q̂ =
1
m

m∑
j=1

Kj

sj

is an unbiased estimator of q, because, due to Equa-
tion (2), EKj = sjq0. Next, we examine

(m− 1) ŵ =
∑

j: ρj=ρ

(
kj
sj
− q̂
)2

.

Taking expectations on both sides yields

(m− 1) E ŵ =
(

1− 1
m

)∑
j

EK2
j

s2j
− 1
m

∑
j,l
j 6=l

EKjKl

sjsl

For j 6= k, Kj and Kl are independent, and hence
EKjKl = sjslq̂

2, while for j = l, we have EK2
j =

(EKj)
2 + VarKj = s2j q̂

2 + sj q̂ + s2jv by the definition
of variance and Equation (3). Using this, we find

E ŵ = v +
q̂

m

∑
j

1
sj︸ ︷︷ ︸,

where the underbraced part is the bias correction term
z.

C Removal of bias due to
reparametrization

When estimating distribution parameters for the pur-
pose of calculating p values from the distribution, bias
in the parameter estimates can cause problems. As
the choice of parameters to characterize a distribution
is arbitrary, the question arises for which set of param-
eters bias should be minimized in order to then allow
for accurate inference.

For the NB distribution, we investigated this issue:
By means of simulations with similar settings as in
Supplementary Note F, we found that if we used the
unbiased mean and variance estimates q̂iρ and wρ(q̂iρ)
from Equations (6) and (9) to calculate p values with
Equation (11) for simulated data without any differ-
ential expression, the p values were not uniform, but
tended to be too small when the number of repli-
cates was low. In previous work on inference based
on the NB distribution, the authors usually aimed at
getting unbiased estimates for another pair of parame-
ters, namely for the mean and either for the dispersion
parameter (e.g., Bliss and Fisher (1953)) or, more re-
cently, for its reciprocal, i.e., the quantity we denote
the raw SCV (e.g., Clark and Perry (1989); Lawless
(1987); Saha and Paul (2005)). The question why
this parameter pair is suitable is discussed by Lawless
(1987). Our simulations support that approach: if we
calculate the raw SCV from the mean and variance
estimates, reparametrize to mean and raw SCV re-
move the bias that this reparametrization introduced
to the raw SCV (using the numerical procedure de-
tailed below), the null p values become uniform in the
simulations.

Numerical bias removal. Let fmq be a function
that maps a true raw SCV value γ to the expectation
of the estimate γ̂ = (σ̂2 − µ̂)/µ̂2. fmq(γ) approaches
its limit for q → ∞ very fast; the changes for q &
30 are negligible for our purposes, and the values for
small q only lead to a conservative overestimation of
the variance. Hence, we precalculate fmq for a fixed,
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Figure S1: Shape of the function p(a, b), with kS = 10, 000,
b = kAB − a, µA = 7, 000, µB = 4, 000, σ2

A = µA + 0.1µ2
A

and σ2
B = µB + 0.1µ2

B. The vertical line marks the estimate
kSµA/(µA + µB) for the mode.

large value of q, and all the values m = 2, 3, . . . , 15,
at a grid of values for γ, invert it and interpolate in
order to bias-correct an estimate γ̂. For m & 15, fmq
is sufficiently close to the identity function to make a
bias correction unnecessary for our purposes.

D Numerical calculation of the
p values

Evaluating the sums in Equation (11) requires some
care. In HTS data, the count sum kS can be large
(e.g., millions of counts for a single strongly expressed
gene), and calculating all the summands individually
may take a long time and result in rounding error ac-
cumulation. Figure S1 shows the dependence of p(a, b)
(as defined in Section 3 and using Equation (14) for
the distribution of KA) on a for typical parameters.
The function is unimodal, with mode approximately
at ratio a/b equal to the ratio of the means of KA and
KB. The function’s simple shape allows the following
numerical approximation: start at evaluating the sum
from the peak (or rather, from its estimated location
according to the means) and proceed outwards in two
passes, first left, then right. During the summation,
watch the changes of the value and keep adapting the
step size according to a pre-defined precision goal. The
value of p for the actually observed count values kA and
kB is calculated beforehand, so that both the sum in
the numerator and denominator of Equation (11) can
be calculated in the same pass. To compute the den-
sity the NB distribution, we use a function (Loader,
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Figure S2: Empirical cumulative density function (ECDF)
plots for the χ2-probabilities of the residuals from the variance
fit (orange line in Figure 1), stratified by the mean. The green
line is the diagonal, which is the expected curve if the residuals
follow the χ2 distribution with mρ − 1 = 1 degree of freedom.

2000) in the C API of R (R Development Core Team,
2009).

E Diagnostics for the local re-
gression

The choice of the gamma family for the local regression
can be motivated as follows: If the size-adjusted counts
kij/sj in the sample variance estimate wiρ calculated
in Equation (7) were normally distributed with true
variance σ2

ij , the quantity (mρ−1)wiρ/σ2
ij would follow

a χ2 distribution with mρ− 1 degrees of freedom, and
this should hold as well for the residuals,

ξiρ = (mρ − 1)
wiρ
w(q̂iρ)

(where we have replaced the true variance σ2 with its
fitted value w(q̂iρ.) . Even though the size-adjusted
counts are not normally distributed, this is still a use-
ful approximation for GLM local regression. Among
the exponential families commonly used with general-
ized linear models, the gamma family, which includes
the χ2 distributions, is close to the actual distribution
of the residuals, and since generalized linear models
tend to show robustness against misspecification, we
expect a reasonable fit. In order to verify this, we
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Figure S3: Results from a simulation mimicking the distribution of counts in the neural stem cell data. (a) Uniformity of the p
values calculated for the genes that were not differentially expressed, shown with an ECDF plot. (b) Comparison of the p values
between the DESeq and edgeR for the genes that were simulated as differentially expressed.

can check how well the residuals ξiρ follow a χ2 dis-
tribution. To this end, we calculate the χ2 quantiles
of the ξiρ and check them for uniformity by plotting
their empirical cumulative density function (ECDF).
Figure S2 shows the ECDF curves for the condition
ρ = GNS, stratified by the estimated means q̂iρ. As
one can see, the residuals follow the distribution rea-
sonably well. Only for extremely low counts (below
5), the fitting quality is reduced. At such low counts,
the shot noise dominates (see Figure 1b), and inaccu-
racies in the estimation of the raw noise are no reason
for concern.

It is worth noting that the χ2 distribution for
mGNS − 1 = 1 degree of freedom has a heavy right
tail. Hence, the fact that in Figure 1 so many points
lie far above the fitted line does not imply a bad fit.

F Simulations

As a check of the correctness of DESeq and to further
explore its performance in comparison to edgeR, we
performed simulations. Here, we show a set of typical
results for simulation parameters chosen to resemble
the situation in the neural stem cell data set.

We drew true mean values qi for 20,000 genes from
an exponential distribution with rate 1/250. Each
gene was considered “truly differentially expressed”
(tDE) with probability 30%, and for all tDE genes

a log2 fold change was randomly drawn from a nor-
mal distribution with mean 0 and standard deviation
2.5. Finally, four count values were drawn for each
gene, two for condition A and two for condition B,
from negative binomial distributions, with the given
means and variances as below, and multiplied by the
size factors, which we chose as 0.5, 1.7, 1.4 and 0.9,
similar to those seen in experimental data

For the variances, we catered to edgeR’s assumption
and set the raw SCV to a constant, 0.5. Then, we used
both our approach and edgeR to test for differential ex-
pression. edgeR was given the true size factors, while
our approach had to estimate them from the data.
In this setting, edgeR (running in common-dispersion
mode) correctly estimated the raw SCV with good ac-
curacy. Both approaches controlled the type-I error
rate correctly: the percentage of type-I errors at 5%
nominal significance level was (averaged over 10 simu-
lation runs) 3.1% for DESeq and 3.4% for edgeR. (See
Figure S3a for a plot with data from one run). At 10%
FDR, DESeq discovered 21% of the truly differentially
expressed genes, and edgeR found 26%. Finally, both
methods stayed below the nominal 10% FDR with an
actual FDR of 5.1% (DESeq) and 6.9% (edgeR). Note
that edgeR’s apparent slight advantage is to be ex-
pected here as the simulation stipulates a constant raw
SCV.
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