Tumor suppressors function as a

bottleneck against cellular reprogramming into iPS cells

L.Boominathan, M.Sc.,(Med.

Bio., JIPMER), M.Sc., (Life Sci.,(Cancer bio.) Wizemann Inst., Israel), Ph.D. (NUS, Singapore), Past Post-doc. (NEITPI, Boston; MDACC, Houston)

49 Nattar main street,

Murungapakkam, Modilarpet,

Puducherry- 605 004.

Email: lakshmanan.boominathan@gmail.com

Hypothesis

It has been shown that a combination of four factors, such as c-Myc, Oct-4, Sox-2, and Klf-4, or Oct-4, Sox-2, Nanog and Lin28, is required for reprogramming of differentiated cells into pluripotent stem cells.

However, reprogramming efficiency appears to be very low (<0.5%), suggesting that genes that are expressed in differentiated cells inhibit reprogramming.

Therefore, I hypothesized that tumor suppressor genes could suppress reprogramming of differentiated cells into iPS cells.

Results

TA-p73 increases the expressions of TRIM32, Ago, and miR-134

- C-terminal NHL domain of TRIM32, an ubiquitin ligase, binds to Argonaute 1(Ago-1, a component of RNA information silencing complex) and thereby the complex TRIM32-Ago1 promotes the efficiency of processing of microRNA-134(figure 1).
- Bioinformatics analysis of m/hTRIM32 promoter revealed more than five p73/p63 binding sites in the TRIM32 promoter, indicating that it could be a transcriptional target of TA-p73/p63 (Table 1). This data suggests a possibility that the TA-p73/p63, by increasing the expression of TRIM32, it could increase the Ago1/2 activity and thereby it could increase the processing of miR-134.

Bioinformatics analysis of miR-134 targets suggests that it could inhibit the expression of

- a) Nanog;
- b) Sox-2;
- c) Oct-4;
- and d) LRH1.

This data suggests that TA-p73/p63 could down regulate the reprogramming factors, such as Nanog, Sox-2, Oct-4, and LRH-1, by increasing the expression of miR-134.

In addition, TA-p73 could decrease the expression of stem cell factors, such as Nanog, Sox-2, Oct-4, Klf-4, and c-myc, by increasing the expression of miR-145 (figure 1).

TA-p73/p63 increases the expression of the tumor suppressor let-7 and decreases the expression of lin-28

Furthermore, p53/TA-p73/p63 may increase the expression of the tumor suppressor let-7, which, in turn, inhibits the stem cell factor lin-28 expression to inhibit reprogramming. Therefore, inhibiting the expression of

the tumor suppressor TA-p73/p63 will be useful in improving reprogramming efficiency.

Inhibiting the expression of TA-p73/p63 through antimiR-106b/145 may increase reprogramming

Remarkably, miR-106 appears to increase the expression of TA-p73 by suppressing its negative regulator, Itch, suggesting that by inhibiting the expression of TA-p73/p63 through anti-miR-106, one could increase the efficiency of reprogramming. In addition,

reprogramming efficiency can be improved by transducing the expression vectors containing anti-miR-145 (figure 1).

Human TRIM32 promoter encoades p63/p73 binding sites

Position	TRIM32(h) promoter
-54 to -84	(tagcaggaat)ttgaccctcta(gggcatgaat)
-840 to -	(ttc <u>ctaggcc</u>)ccc(aaa <u>catg</u> aca)caataaactctg(tga <u>cat</u>
887	gatt)
-3335 to	(tta <u>caag</u> ttg)gc(agc <u>cttg</u> ttt)
-3357	
-4310 to -	(g <mark>tgctagaag</mark>)(aggcgagatt)
4330	

-4737	to-	(aagcatggca)gctttggggcagga
4788		(att <u>cttg</u> aca)tcctcaga(gag <u>cttgg</u> tg)

mouseTRIM32 promoter encoades p63/p73 binding sites

Position	TRIM32 promoter
-10 to -41	(tgc <u>catggga</u>)a(gga <u>cgtg</u> cta)(gcg <u>catg</u> cgc)
-57 to -79	(ggg <u>caag</u> ttg)ac(ggg <u>cagg</u> cga)
-1020 to -1032	(ggccagggat)aa(aatcatgtga)
-1223 to 1243	(tct <u>ctggg</u> aa)(ag <u>ccttggg</u> a)

-2949 to -2972	g <mark>tt<u>catg</u>cta)agc(tca<u>caag</u>gct)</mark>
-4375 to -4395	(ctc <u>cttg</u> ttc)(tc <u>cgagga</u> t)
-4399 to -4419	(ggcctggtaa)(caccttgact)
-4468 to -4488	(aat <u>caagg</u> tc)(t <u>gcatgg</u> tg)
-4565 to -4590	(ctc <u>caag</u> aga)tcaga(caa <u>cgagg</u> ct)

Table 1. Bioinformatic analysis of human/mouse TRIM32 promoter sequence for potential p73/p63 binding sites (CWWG). The p63/p73 binding sites are underlined. Mismatching sequences are highlighted in red.

Conclusion

Analysis of microarray data with bioinformatics and computational biology approach revealed that p53/TAp73/p63-microRNAs could disrupt the corereprogramming network in ES cells and thereby they could inhibit self-renewal and reprogramming. Therefore, this study suggests that eliminating the tumor suppressor homologue TA-p73/p63 function is indispensable for improving reprogramming efficiency.