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Sequence comparison and alignment has had an enormous imgaan our understanding of
evolution, biology, and disease. Comparison and alignmertf biological networks will likely
have a similar impact. Existing network alignments use infomation external to the networks,
such as sequence, because no good algorithm for purely topgical alignment has yet been
devised. In this paper, we present a novel algorithm based Edy on network topology, that
can be used to align any two networks. We apply it to biologidanetworks to produce by far
the most complete topological alignments of biological netorks to date. We demonstrate that
both species phylogeny and detailed biological function ahdividual proteins can be extracted
from our alignments. Topology-based alignments have the gential to provide a completely
new, independent source of phylogenetic information. Our gnment of the protein-protein
interaction networks of two very different species—yeast ad human—indicate that even dis-
tant species share a surprising amount of network topology ith each other, suggesting broad
similarities in internal cellular wiring across all life on Earth.

1 Introduction and Motivation

Advances in high throughput experimental methods havegtielarge amounts of biological network data,
such as protein-protein interaction (PPI) networks. Thetwost commonly used high-throughput methods
are yeast two-hybrid screening, resulting in binary intéom datai=® and protein complex purification
methods using mass-spectrometry, resulting in co-congidéa’ 12 Just as comparative genomics has led
to an explosion of knowledge about evolution, biology, aisgdse, so will comparative proteomics. As more
biological network data is becoming available, compaeatinalyses of these networks across species are
proving to be valuable, since such systems biology typesmiparisons may lead to transfer of knowledge
between species as well as to exciting discoveries in deolaty biology. The most common methods for
such network comparisons are network alignments.

Network alignment is the problem of finding similarities Wween the structure or topology of two or
more networks. In the biological context, comparing neksarf different organisms in a meaningful man-
ner is arguably one of the most important problems in evahatiy and systems biolody.Exactly analogous
to sequence alignments between genomes, alignments ofjlwal networks can be useful because we may
know a lot about some of the nodes in one network and almobktrgpabout topologically similar nodes in
the other network; then, specialized knowledge about oneteibus something new about the other. Net-
work alignments can also be used to measure the global siyitetween complete networks of different
species. Given a group of such biological networks, theimafrpairwise global network similarities can
be used to infer phylogenetic relationships.

*To whom correspondence should be addressed; E-mail: ma@istperial.ac.uk .
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1.1 Theoretical Background

A network (or graph) is a collection of nodes (or vertices)d @onnections between them called edges.
Graphs are used to describe, model, and analyze an enormaysaphenomen&’ 1°including physical
systems such as electrical power grids and communicatibmonies, social systems such as networks of
friendships or corporate and political hierarchies, ptgisrelationships such as residue interactions in a
folded protein or software systems such as call graphs aesgjpn and syntax trees.

A graphG(V, E), or G for brevity, has node sét and edge sek. The sheer number and diversity of
possible graphs (aboraf"2) of them exist givern nodes) makes graph classification and comparison prob-
lems difficult. One particular comparison problem is cabalgraph isomorphism, which asks if one graph
G exists as an exact subgraph of another graglV, F'). This problem isNP-complete, which means that
no efficient algorithm is known for solving 1 Network alignment is the more general problem of finding
the best way to “fit"G into H even if G does not exist as an exact subgraptHofSome networks, such as
the biological ones that we consider below, may also comtaise, i.e. missing edges, false edges, or both.
In these cases, and also due to biological variation, iti€wen obvious how to measure the “goodness” of
an inexact fit. One measure could be to assess the numbegméaledges—that is, the percentage of edges
in E that are aligned to edges . We call this the “edge correctness” (E¥)° However, it is possible
for two alignments to have similar ECs, one of which exposegd, dense, contiguous, and topologically
complex regions that are similar i@ and H, while the other fails to expose such regions of similarity.
Additionally, although EC can easily be used to measure tiadity of an alignment after the fact, it is not
clear how to use it talirect an alignment algorithm; in fact, maximizing EC is an NP-hardblem since
it implies solving the subgraph isomorphism problem. Thatker strategies must be sought to guide the
alignment process.

1.2 Previous Approaches

Analogous to sequence alignments, there dristl andglobal network alignments. Thus far, the majority
of methods used for alignment of biological networks haveufed on local alignment8-24 With local
alignments, mappings are chosen independently for eaehregion of similarity. Many algorithms for lo-
cal alignment have been develop®dthBLAST searches for high-scoring pathway alignments between two
networks, by taking into account both the homology betwéeraligned proteins and the probabilities that
PPIs in the path are true PPIs and not false-posi&¥eé¢etworkBLAST detects conserved protein clusters
rather than paths, by deploying a likelihood-based scarifigme that weighs the denseness of a subnetwork
versus the chance of observing such network substructuaamadm?®> MaWl Sh defines network alignment
as a maximum weight induced subgraph problem and implensnts/olution-based scoring scheme to
detect conserved clusters; it extends the concepts of temmduy events in sequence alignments to that of
duplication, match, and mismatch in network alignmentseaaduates the similarity between network struc-
tures through a scoring function that accounts for thestutwnary event$® Graemlin, the first method
capable of identifyinglense conserved subnetworks efbitrary structure, scores a module by computing
the log-ratio of the probability that the module is subjecevolutionary constraints and the probability that
the module is under no constraints, while taking into actginylogenetic relationships between species
whose networks are being aligné.

Local alignments can be ambiguous, with one node havingreéifit pairings in different local align-
ments. In contrast, a global network alignment providesiguaalignment from every node in the smaller
network to exactly one node in the larger network, even thailngs may lead to inoptimal matchings in
some local regions. Previous local network alignment dlgmis have not generally been able to identify
large subgraphs that have been conserved during evoR#tion.

2



Nature Precedings : hdl:10101/npre.2009.4089.1 : Posted 16 Dec 2009

Global network alignment has been studied previously irctrgext of biological networks? 27-2Un-
like the above algorithms that primarily aim to detect consd subnetworkdsoRank?’ aims to maximize
theoverall match between the two networks. It relies on spectral griapbry to compute scores of aligning
pairs of nodes from different networks; it does so by usirghhuristic that two nodes are a good match if
their respective neighbors also match well. Thus, the sebeeprotein pair depends on the score of their
neighbors, that, in turn, depend on the neighbors of theghters, and so on. Once these “topological”
scores are computed for all node pairs, sequence-based Bké@es are included in the pairwise align-
ment scores. IsoRank then constructs the node alignmenmthdgtrepetitive greedy strategy of identifying
among all protein pairs the highest scoring pair, outpgtthmat pair, and removing all scores involving any
of the two identified node%’ The more recenitsoRankN relies on the notion of node-specific rankings and
uses a method similar RageRank-Nibble algorithm?2® Graemlin has been extended to allow global network
alignment by relying on a learning algorithm that uses aning set of known network alignments and their
phylogenetic relationships to learn parameters for itgsisggdfunction, and by automatically adapting the
learned objective function to any set of netwofRs.

Hence, most existing local and global network alignmenthoés incorporate somaepriori information
about nodes such as sequence similarities of proteins imeflorks?*27 or they require a variety of
biological information as the input such as phylogenetiatienships between species whose networks are
being aligned or use some form of learning on a set of “truigjhahents?®

1.3 Our Contribution

At best, all previous algorithms depend only implicitly adirectly on the topology of the network, whereas
we believe that there is important information encodedatliyento the topology of biological networks.
Furthermore, we believe that much of this topology-encoiiéormation is not easily extracted through
any means other than explicitly measuring network topalégy example, there exist identical protein se-
guences that can fold in different ways in different envinemts, leading to different functions and thus very
different network topologies in a PPI netwoik:33In such cases, homology information is more correctly
encoded in the topology of network neighborhoods than ineece similarity* For this and other reasons,
we believe that network topology, in and of itself, providesuable biological information that is largely in-
dependent of other currently available information. Thus propose a network alignment algorithm whose
cost function is based solely and explicitly on a strongpth8cally-grounded, direct measure of network
topological similarity.

We introduce a novel method for aligning a pair of networlat ik basedolely on network topology.
As such, this algorithm could be applied doy two networks, not just biological ones. For example, our
algorithm can be applied to road maps or social networkschvbbviously have no genetic or protein se-
guence associated with them. We apply our method to aligmtet@in-protein interaction (PPI) networks
and demonstrate that our alignment exposes far more tapaljgcomplex regions of similarity than ex-
isting methods. Also, we use our method to compute pairwlge-all network similarity matrix between
a group of species, and then build a phylogenetic tree ttaslaestriking resemblance to the one based on
sequence comparison. The significance of these resultharéhey extract statistically significant mean-
ing from a new source of information—pure network topologiat is independent of sequence or any
other commonly used biological information. We believe tha results in this paper just barely scratch the
surface of the information that can be extracted from ndtiapology.
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2 Results and Discussion

We focus on topology instead of protein sequence becausémi® aiscover biological knowledge that is
encoded in the PPI network topology. Since proteins agtgeigaperform a function instead of acting in
isolation, analyzing complex wirings around a protein irRd Retwork could give deeper insights into inner
working of cells than analyzing sequences of individualegerrurthermore, network topology and protein
sequences might give insights into different slices ofdgatal information and thus, one could loose much
information by focusing on sequence alone. Although proseiquence similarity correlates with functional
similarity, there exist proteins with 100% sequence idgitiat have different functional rolé8-32Thus, re-
stricting analysis to sequences might give incorrect fionei assignments. Similarly, although high protein
sequence similarity correlates with similarity in 3-dins@mal structure, sequence-similar proteins can have
structures that differ significantly from one anotf&Thus, sequence-based homology analyses may mask
important structural and functional information. On théesthand, since the structure of a protein is ex-
pected to define the number and type of its potential intevggtarters in the PPI network, sequence-similar
but structurally-dissimilar proteins are expected to hdwWierent PPI network topological characteristics.
Moreover, entirely different sequences can produce idehsitructures$? 3® In cases where such proteins
are expected to share a common function, sequence-baseitbfuprediction would fail, where network
topology-based one would not. Finally, we show that botlusage and topology have similar predictive
power with respect to Gene Ontology (GO) teffESupplementary Figure 1), demonstrating that network
topology can provide as much functional information as girosequences. Since our goal is to uncover
biological knowledge encoded in the topology of PPI netwodur alignments do not use protein sequence
information. Thus, our method can aligny type of network, not just biological ones. Note, howeveatth
inclusion of sequence component into the cost function ofnoethod is trivial (see Section 4), but this is
out of the scope of the manuscript.

Obviously, if one is to build meaningful alignments baseklyoupon network topology, one must first
have a highly constrainingneasure of topological similarity. The simplest (and weakest) dggmon of
the topology of a node is itdegree, which is the number of edges that touch it. Our much morelhigh
constraining measure is a generalization of the degree afla.'We define graphlet as a small, connected,
induced subgraph of a larger netwofk-3° An induced subgraph on a node s&t C V of G is obtained by
taking X andall edges ofG having both end-nodes iN. Figure 1 shows all the graphlets on 2, 3, 4, and
5 nodes. For a particular nodein a large network, we define a vector of “graphlet degréesiat counts
the number of each kind of graphlet that toucliFigure 2). This vector, osignature, of v describes the
topology of its neighborhood and captures its intercorividies out to a distance of 4 (see Section 4.1 and
Figure 2)*° This measure is superior to all previous measures, sins®ésed on all up to 5-node graphlets,
which is practically enough due to the small-world naturenainy real-world network&!

For our purposes, an alignment of two netwofkand H consists of a set of ordered pairs y), where
x is anode inz andy is a node ind . Our algorithm, called GRAAL (GRAph ALigner), incorporatéacets
of both local and global alignment. We match pairs of nodégrmating in different networks based on their
signature similarity*° (see Section 4.1), where a higher signature similarity betwtwo nodes corresponds
to a higher topological similarity between their extendaighborhoods (out to distance 4). The cost of
aligning two nodes is modified to align the densest parts efritworks first; the cost is reduced as the
degrees of both nodes increase, since higher degree natiesmilar signatures provide atighter constraint
than correspondingly similar low degree nodes (see Sedt@and the Supplementary Information)js
a parameter in [0,1] that controls the contribution of theesignature similarity to the cost function, the
other contribution being simply the degree of the node (smti@h 4.2). In the case of two node alignments
comparing equally, the tie is broken randomly. Thus, défgmruns of the alignment algorithm can produce
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different results. However, we find that for PPI networkst th@ analyze below, a deterministic “core”
alignment containing 60% of all aligned pairs remains axaibruns (see Section 2.1).

We align each node in the smaller network to exactly one nodée larger network. The matching
proceeds using a technique analogous to the “seed and &zigpdach of the popular BLASY algorithm
for sequence alignment: we first choose a single “seed” ffaindes (one node from each network) with
high signature similarity. We then expand the alignmenialgdoutward around the seed as far as practical
using a greedy algorithm (see Section 4.2). Although latakiture, our algorithm produces large and dense
global alignments. By “dense” we mean that the aligned sajiigg share many edges, which would not be
the case in a low-quality or random alignment. We believe tthe high quality of our alignments is based
less on the details of the extension algorithm and more omfgavgood measure of pair-wise topological
similarity between node¥.

2.1 Pairwise Alignment of Yeast and Human PPI Networks

Using GRAAL, we align the human PPI network of Radivojac et®ao the Collins et al. yeast PPI net-
work,'? which we call “human1” and “yeast2,” respectively. We chgsast as our second species because
currently it has a high quality PPI network, with 16,127 nategtions (edges) among 2,390 proteins (nodes).
The “best” alignment (defined below) found by GRAAL align890 of the edges in yeast2 to edges in
humanl. Thus, the edge correctness (EC) of our alignmeit72%. There are 970 nodes involved in these
“correct” edge alignments, representing 40% of all yeast®es. We obtained similar EC for aligning other
yeast?>4*and humat**4®networks (Supplementary Figure 2). The best alignmentfisei as follows.
Due to the existence of the parameter in the cost function (as explained above) and sant®mness in
the GRAAL algorithm (see Section 4.2 and the Supplementafyrination for details), the actual align-
ments and ECs vary across different values.odnd across different runs of the algorithm for the same
With this in mind, the best alignment is the alignment with tighest EC over all values of, and over all
runs for the giver. The highest EC is obtained for of 0.8; the minimum EC over all runs for thigis
higher than the maximum EC over all runs for any othemhus, we focus on alignments produced doof

0.8. Variation of EC over different runs for thisis small, with minimum and maximum EC of 11.5% and
11.72%, respectively. Moreover, intersection of aligntedrom up to 40 different runs at of 0.8 contains
1,433 pairs, i.e., abod0% of the entire alignment. We call this intersection timee alignment.

In addition to counting aligned edges, it is important thet aligned edges cluster together to form
large and dense connected subgraphs, in order to uncoverasgions of similar topology. We define a
common connected subgraph (CCS) as a connected subgraph (not necessarily inducegdpaars in both
networks. The largest CCS in our best alignment (Figure 3#) 900 interactions amongst 267 proteins,
which comprises 11.2% of the proteins in the yeast2 netw@tk.second largest CCS has 286 interactions
amongst 52 nodes, depicted in Figure 3B. The entire commbgraph is presented in Supplementary
Figure 3.

2.2 Statistical Significance of GRAAL's Yeast-Human Alignnent

In the following three paragraphs, we look at three distimays in which to judge the statistical significance
of our alignment: first, we judge the quality of our alignmeompared to a random alignment of these two
particular networks; second, we comment on the amount dfesity found between yeast and human in our
alignment; and third, we interpret the biological significa of our alignment. Section 4 and Supplementary
Information provide more details on all of the above.

5



Nature Precedings : hdl:10101/npre.2009.4089.1 : Posted 16 Dec 2009

Given a random alignment of yeast2 to humanl, the probalwfitobtaining an edge correctness of
11.72% or better p-value) is less thafi x 10~8. The probability of obtaining a large CCS would be signifi-
cantly smaller, so this represents a weak upper bound op-gaiue.

Judging the amount of similarity found between the yeast® laumanl networks in our alignment
requires us to state carefully what we are comparing agdingte align with GRAAL networks drawn
from several different random graph modélthat have the same number of nodes and edges as yeast2 and
humanl, we find that the edge correctness between randonomkstig significantly lower than the edge
correctness of our yeast2-humanl alignment. For examipdajrag two Erdds-Rényi random graphs with
the same degree distribution as the data (“ER-DD") givesdge eorrectness of only abouti1 + 0.22%.
Similar alignments of Barabasi-Albert type scale-freéwueks (“SF-BA"),*’ stickiness model networks
(“STICKY"), * or 3-dimensional geometric random graphs (“GEO-3B"pive edge correctness scores of
only 2.86 + 0.57%, 5.89 + 0.39% and8.8 + 0.39%, respectively. Accepting GEO-3D as the best available
null model (see Section 4.3), thevalue of our yeast2-human1 alignment is at ntogtx 10~3. This tells
us that yeast and human, two very different species, enjog metwork similarity than chance would allow.

We measure the biological significance of our alignment bynting how many of our aligned pairs
share common Gene Ontology (GO) terfisGO terms succinctly describe the many biological proper-
ties that a given protein may have. For this analysis, weidenshe “complete” GO annotation data set,
containing all GO annotations, independent of GO evideromke cGO annotation data was downloaded
in September 2009. Across our entire best yeast2-humaganadint, 45.1%, 15.6%, 5.1%, and 2.0% of
aligned protein pairs share at least one, two, three, and@@uterms, respectively. Compared to random
alignments, the-values for these percentages are all in the® to 10~® range. Furthermore, the results
improve across GRAALsore yeast2-humanl alignment: 50.9%, 19.3%, 7.3%, and 3.0%gvfead protein
pairs share at least one, two, three, and four GO terms, atdgglg; the p-values for these percentages are
allin the10~8 to 10~ range.

2.3 Comparison with Other Methods

GRAAL produces by far the most complete topological alignteeof biological networks to date and un-
covers CCSs (Common Connected Subgraphs) that are sudistdatger and denser than those produced
by currently published algorithms, as demonstrated beldwe. best currently published global alignment
of similar networks is the alignment of yeast and fly by IsoR&which uses sequence information in
addition to topological information. It aligns 1,420 edglest its largest CCS contains just 35 nodes and 35
edges. We applied IsoRank to our yeast2-humanl data usingomological information. We found that it
aligns 628 interactions, giving an edge correctness of 8/49%, compared to GRAAL's edge correctness
of 11.72%. Hence, we align 3 times more edges than IsoRank de@Rank’s largest CCS has just 261
interactions among 116 proteins, compared to GRAAL's IstrggCS with 900 interactions amongst 267
proteins. Thus, GRAAL's largest CCS is 2.3 and 3.5 timesdathan IsoRank’s largest CCS in terms of the
number of nodes and edges, respectively. Note that we daaloidie sequence information in IsoRank’s
alignment cost function, since Singh et al. (2007) have shihat the highest edge correctness is obtained
when topology alone is usé&d.

Additionally, our results are better then those achievetsbiRank with respect to the number of shared
GO terms even though GRAAL does not use any protein sequaficeniation. In the global alignment
produced by IsoRank, 44.2%, 14.1%, 4.1%, and 1.5% of aligmetdin pairs have at least one, two, three,
and four GO terms in common, respectively, compared to GRapkrcentages of 45.1%, 15.6%, 5.1%,
and 2.0%, respectively. Furthermore, if we restrict oulysig only to the largest CCS, in IsoRanks’s CCS,
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the percentages are 60.6%, 11.9%, and 0% for sharing atlleasand 3 common GO terms, respectively,
while in GRAAL's CCS, these percentages are 67.2%, 22.0% 5206, respectively.

Recently, IsoRankN, an algorithm for global alignmentnafitiple networks, has been introducétl.
However, a comparison with GRAAL is not feasible, since tidpat of the two algorithms is different.
While GRAAL outputs a list of one-to-one node mappings betvihe networks being aligned, IsoRankN’s
alignment contains sets of aligned proteins, where no tws®eerlap, but each set can contain more than
one node (i.e., many-to-many node mapping) from each of ¢éwarks being aligned. Thus, IsoRankN’s
output can not be quantified topologically with EC, since arany-to-many node alignment can produce
exponentially many one-to-one node alignments and enuimgrall of them is computationally infeasible.

Another popular global network alignment method is Graaffliwe do not compare our alignment to
the one produced by Graemlin because Graemlin requiresietyaf other input information, including
phylogenetic relationships between the species beingeadigin contrast, GRAAL'sutput can be used to
infer phylogenetic relationships.

Finally, other methods potentially better than IsoRanls&Xi However, their current implementations
failed to process networks of the size of yeast2 and humandreover, we do not benchmark these methods
on the yeast and fly data analyzed by Zaslavskiy et al. (28@@cause they did not try to align the entire
yeast and fly networks but they focused only on their smail@nced subgraphs defined on proteins covered
by Inparanoid clusters Thus, although their “global” yeast-fly alignment align<leanode in the smaller
subnetwork (defined above) to a node in the larger subnepvitoik not truly global, as it aligned only
parts of the original yeast and fly networks. Therefore, wenfbit inappropriate to evaluate GRAAL's
global alignment of the entire yeast and fly networks withrttglobal” alignments of partial yeast and fly
networks. Moreover, we believe that a good network aligrinaégorithm should both produce high-quality
alignments and be capable of dealing with large data satsjstlespecially true for biological networks,
since their sizes will only continue to grow. Thus, the methby Zaslavskiy et al. (2009) that failed to
process any larger data set are not relevant to the largeretwe consider.

2.4 Application to Protein Function Prediction

With the above validations in hand (Section 2.2), we belithag GRAAL's alignments can be used to
predict biological characteristics (i.e., GO moleculandtion (MF), biological process (BP), and cellular
component (CC)) of un-annotated proteins based on thgmrakents with annotated ones.

Here, we distinguish between two different sets of GO artiwtalata: the complete set described above,
containing all GO annotations, independent of GO evidemaies, and biologically-based set, containing
GO annotations obtained by experimental evidence codes(se€® for details). Since in the complete
GO annotation data set, many GO terms were assigned to q@atemputationally (e.g., from sequence
alignments), that set is biologically less confident tham Itiologically-based one. We make predictions
with respect to both GO annotation data sets, as descrided.be

First, we analyze GRAAL's best yeast2-humanl alignmet,(the alignment with the highest EC
over all runs for alpha of 0.8, as explained in Section 2.1jl¢émtify aligned protein pairs where one of the
proteins is annotated with a “root” GO term only: GO:0003&%MF, GO:0008150 for BP, or GO:0005575
for CC; this means that one of the proteins in the pair has pavkriunctional informatiort® Next, we check
if aligned partners of such proteins with unknown functioe annotated with a known MF, BP, or CC GO
term, with respect to both the complete and biologicallgdataGO annotation data sets. If so, we assign all
known MF, BP, or CC GO terms to the unannotated protein.

$Personal communication with the authors.
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With respect to the complete GO data set, we predict MF for y#hdn and 435 yeast proteins, BP
for 53 human and 157 yeast proteins, and CC for 52 human and&egt proteins. Since GO database
offers a list with an explicit note that a protein is not asated with a given GO term, we were able to
examine directly whether our predictions contradicted list. We found no contradictions in GO database
for any of the yeast or human proteins with respect to MF or®&found contradiction only for one of
our human predictions with respect to CC. We also attemptadilidate all of our predictions using the
literature search and text mining tool CiteXplofér=or 34.1%, 43.4%, and 46.2% of our MF, BP, and CC
human predictions, respectively, this tool found at least article mentioning the protein of interest in the
context of at least one of our predictions for that proteior. yeast, these percentages are 42.07%, 3.18%,
and 12.96%, respectively. Our human and yeast predictiatemith respect to the complete GO data set
are presented in Supplementary Tables 1 and 2, respectively

With respect to biologically-based GO data set, we prediét #dr 30 human and 214 yeast pro-
teins, BP for 42 human and 41 yeast proteins, and CC for 45 huand 17 yeast proteins. None of
these predictions were contradicted in the GO database.aidated with CiteXplorer 10%, 4.76%, and
20% of our biologically-based MF, BP, and CC human predigtjaespectively. We also validated 48.1%
of our biologically-based MF yeast predictions. Our humad geast predictions made with respect to
biologically-based GO data set are presented in Supplemenables 3 and 4, respectively.

2.5 Reconstruction of Phylogenetic Trees by Aligning Metablic Pathways Across Species

Finally, we describe a completely different applicatioowhpurely topological alignment of metabolic net-
works obtained by GRAAL can be used to recover phylogenetationships.

Several studies analyzing metabolic pathways in diffespeicies have aimed to find an evolutionary
relationship between the species and construct their geyletic tree8%-°3Different distance metrics have
been used for constructing phylogenetic trees. For examiptglarities between pathways have been com-
puted from sequence similarities between correspondibstsates and enzymes from individual pathwéys
or as a combination of similarities of enzymes from indidtimetabolic networks and topologies of these
networks®% %3 The similarity of enzymes is based on the similarity of ttesquences, structures, or En-
zyme Commission numbe?8.The topological similarity of two pathways has been basethersimilarity
between nodes (corresponding to enzymes) and the simitdribheir neighborhoods, measuring whether a
node influences similar nodes and whether it is influencedrbijes nodes itselP! In addition, topological
similarity of metabolic pathways combining global netwamoperties, such as the diameter and clustering
coefficient, and similarities of shared node (i.e., enzyn@yhborhoods has been uséd.

Therefore, although related attempts eX¥sthey all still use some biological or functional informatio
external to network topology, such as sequence similgritedefine node similarities and derive phyloge-
netic trees from pathways. Since we use only network topgotoglefine protein similarity, our information
source is fundamentally different. Thus, our algorithmorers phylogenetic relationships (but not the evo-
lutionary timescale of species divergence at this poing aompletely novel and independent way from all
existing methods for phylogenetic recovery.

It has been shown that PPI network structure has subtletefecthe evolution of proteins and that
reasonable phylogenetic inference can only be done betolesely related species.In the KEGG pathway
database, there are 17 Eucaryotic organisms with fullyesscpd genome¥, of which seven are protists, six
are fungi, two are plants, and two are animals. Here we fooysatists (see the Supplementary Information
for fungi). For each organism, we extract the union of all abetic pathways from KEGG, and then find
all-to-all pairwise network alignments between speciésgi&RAAL. The edge correctness scores between
pairs of protist networks range from 29.6% to 76.7%. We erpailogenetic trees using the average distance
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algorithm', with pairwise edge correctness as the distance measureoMfgare our phylogenetic trees to
the published ondsobtained from genetic or amino acid sequence alignnfém&Figure 4 presents our
phylogenetic tree for protists and shows that it is very kintb that found by sequence compariSéiwe

can estimate the statistical significance of our tree by or@aghow it compares to trees built from random
networks of the same size as the metabolic networks (seeupplédnentary Information); we find that
the p-value of our tree is less than3 x 10~3. Phylogenetic trees based on alignments made by IsoRank
do not differ significantly from random ones (see the Suppletary Information). We also find that the
topologies of the entire metabolic networks of Cryptosgiorn parvum and Cryptosporidium hominis are
very similar, having edge correctness of 75.72%. This tesw@ncouraging since these organisms are two
morphologically identical species of Apicomplexan praazvith 97% genetic sequence identity, but with
strikingly different host®’ that contribute to their divergené®.

Note that all of the metabolic networks that we align arevastifrom a mix of experimentally obtained
data and network reconstructions based on orthology oelsttips between species. Hence, the fact that
we largely recover the phylogenetic trees obtained fronusece alignments is a strong validation of our
method. Moreover, the phylogenetic tree in the literatargdtained from sequence alignments of mitochon-
drial proteins or ribosomal RNA, whereas metabolic net@drkKEGG are partially obtained by sequence
alignments of protein sequences. Therefore, since diffeygurce of sequence data is used for reconstruct-
ing phylogenetic trees in the literature and for reconsingcmetabolic networks, the phylogenetic trees
obtained from our network alignments might already be vidae new and independent sources of phylo-
genetic information. This will gain in biological signifinae when purely experimentally obtained networks
become available further providing validation of sequebased phylogeny.

Given that our phylogenetic tree is slightly different frahat produced by sequence, there is no rea-
son to believe that the sequence-based one slaopitbri be considered the correct one. Sequence-based
phylogenetic trees are built based on multiple alignmergesfe sequences and whole genome alignments.
Multiple alignments can be misleading due to gene rearraegés, inversions, transpositions, and translo-
cations that occur at the substring level. Furthermordermdint species might have an unequal number of
genes or genomes of vastly different lengths. Whole gendmgenetic analyses can also be misleading
due to non-contiguous copies of a gene or non-decisive gefee® Finally, the trees are built incremen-
tally from smaller pieces that are “patched” together pbilisically,®>’ so probabilistic errors in the tree are
expected. Our tree suffers from none of the above problems.

3 Conclusions

In summary, we present evidence that it is possible to extriatogical knowledge from network topology
only. We introduce a new global network alignment algorittirat is based solely on network topology. As
such, it can be applied to any network type, not just biolalganes. We apply our method to align PPI
networks of yeast and human and demonstrate that it prodapekogically statistically significant align-
ments in which many aligned proteins perform the same bicébdunction. Given the high quality of our
yeast-human alignment, we predict biological function nhanotated proteins based on the function of
their annotated aligned partners, validating a large nurobeur predictions in the literature. Additionally,
we succesfully reconstruct phylogenetic trees from togicll alignments of metabolic networks, demon-
strating that network topology can be used as a novel angh@mtkent source of phylogenetic information.

Yhttp:/imww.mathworks.com/access/helpdesk/help/mathioinfo/index.html
Ihttp:/ffungal.genome.duke.edu/
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Network alignment has applications across an enormousdmomains, from social networks to soft-
ware call graphs. In the biological domain, the mass of atlyeavailable network data will only continue
to increase and we believe that high-quality topologicejrethents can yield new and pivotal insights into
function, evolution, and disease.

4 Methods

AgraphG(V, E), or G for brevity, has node séf and edge sef. Givenn = |V'| nodes, the maximum num-
ber of undirected edges i = n(n—1)/2, and the number of possible undirected graphs andes is thus
2M The sheer number and diversity of possible graphs makes gtassification and comparison problems
difficult. One of those problems is calledbgraph isomorphism: given two arbitrary graph&(V, E') and
H(U, F) such thaiV| < |U]|, doesG exist as a subgraph @f? That is, is there a discrete map V' — U
definedvv € V such thatz,y) € E = (oz,0y) € F? This problem isNP-complete, which means that
no efficient algorithm is known for finding the mappiag—the only known generally applicable way is to
search through all possible mappings frofrto U.18 Since the number of such mappings is exponential in
both |V'| and|U|, this is considered an intractable problem.

4.1 Graphlet Degree Signatures and Signature Similarities

GRAAL aligns a pair of nodes originating in different netisbased on a similarity measure of their local
neighborhood4® This measure generalizes the degree of a node, which cdentsimber of edges that the
node touches, into the vector gfaphlet degrees, counting the number of graphlets that the node touches,
for all 2-5-node graphlets (see Figure 1). Note that theakegf a node is the first coordinate in this vector,
since an edge (graphlét, in Figure 1) is the only 2-node graphlet. Since it is topatady relevant to
distinguish between, for example, nodes touching graphleait an end or at the middle, the notion of
automor phism orbits (or justorbits, for brevity) is used. By taking into account the “symmettibetween
nodes of a graphlet, there are 73 different orbits across &l 5-node graphlets. We number the orbits from
0 to 723 The full vector of 73 coordinates is tisgnature of a node (Figure 2).

The signature of a node provides a novel and highly constigaimeasure of local topology in its vicinity
and comparing the signatures of two nodes provides a highigtcaining measure of local topological
similarity between them. Thegnature similarity*° is computed as follows. For a node= G, u; denotes the
i*" coordinate of its signature vector, i.e;,is the number of times nodeis touched by an orbitin G. The
distanceD; (u, v) between the! orbits of nodes: andv is defined as; (u, v) = w; x ‘“;g;?,;j;)jo{’,_(fg;)‘ :
wherew; is a weight of orbiti that accounts for dependencies between orbits; for exardi erences in
counts of orbit 3 will imply differences in counts of all otbithat contain a triangle, such as orbits 10-14,
25, 26, etc. and thus, a higher weight is assigned to orhit 3than to the orbits that contain“®.The total

72
distanceD (u,v) between nodes andv is defined asD(u,v) = 25701) The distance)(u,v) is in [0,
L W;
1), where distance 0 means that signatures of nodesdv are identical. Finally, the signature similarity,

S(u,v), between nodes andv is S(u,v) = 1 — D(u,v).
4.2 GRAAL (GRAph ALigner) Algorithm

When aligning two graphé&/(V, E') and H (U, F'), GRAAL first computes costs of aligning each node in
G with each node irHH. The cost of aligning two nodes takes into account the sigaatimilarity between
them, modified to reduce the cost as the degrees of both node=ase, since higher degree nodes with

10



Nature Precedings : hdl:10101/npre.2009.4089.1 : Posted 16 Dec 2009

similar signatures provide a tighter constraint than gpoadingly similar low degree nodes (see the Sup-
plementary Information)x is the parameter in [0,1] that controls the contributionhef signature similarity

to the cost function; that id, — « is the parameter that controls the contribution of node el=gto the cost
function. In this way, we align the densest parts of the ndta/€irst.

Itis also possible to add protein sequence component tagidunction, to balance between topological
and sequence similarity of aligned nodes. This can be donelly by adding another parametérto the
cost function that would control the contribution of the reunt topologically-derived costs, while— 3
would control the contribution of node sequence similesitto the total cost function; similar has been
done by other relevant studi€s2’-2°However, as we aim to extract only biological informatiorceded
in network topology, analyzing how balancing between tipokogical and sequence similarity affects the
resulting alignments is out of the scope of our manuscrigtiathe subject of future work.

GRAAL chooses as the initial seed a pair of no@es:), v € V andu € U, that have the smallest cost.
Ties are broken randomly, which results in slightly differeesults across different runs. Once the seed is
found, GRAAL builds “spheres” of all possible radii arounddesv andu. A sphere of radiug around
nodev is the set of nodeS(v,r) = {z € V : d(v,z) = r} that are distance from v where the distance
d(v, x) is the length of the shortest path framto =. Spheres of the same radius in two networks are then
greedily aligned together by searching for the pdirsv’) : v € Sg(v,r) andu’ € Sy(u,r) that are
not already aligned and that can be aligned with the minirasi.dVhen all spheres around the s¢ed:)
have been aligned, some nodes in both networks may remaligngg For this reason, GRAAL repeats
the same algorithm on a pair of networlG?, H?) for p = 1,2, and3, and searches for the new seed again,
if necessary. We define a netwof® as a new networlG? = (V, EP) with the same set of nodes &5
and with (v, z) € EP if and only if the distance between nodeandz in G is less than or equal tg, i.e.,
da(v,z) < p. Note thatG' = G. UsingGP,p > 1 allows us to align a path of lengthin one network to
a single edge in another network, which is analogous to aliginsertions” or “deletions” in a sequence
alignment. GRAAL stops when each node frésris aligned to exactly one node f.

GRAAL produces global alignments. We note that optimal gl@ignments are not necessarily unique.
Given any particular cost function, there may be many distalignments that all share the optimal cost.
In this paper, we analyze just one specific alignment that alie® is a good one, although it may not
be optimal even according to our measure. Enumerating tithap (or at least good) alignments requires
extending our algorithm to allow many-to-many mappingsveen the nodes in the two networks, and is the
subject of the future work. Thus, many more predictions afabgalidity to those in this paper are likely to
be possible. However, we empirically demonstrate thatgelportion (about 60%) of the entire alignment is
conserved across different runs of the algorithm; thus,dbre alignment is independent of the randomness
in the algorithm.

The algorithm’s pseudo code and details about the complaridlysis are presented in the Supplemen-
tary Information. The software and data used in this papereailable upon request.

4.3 Statistical Significance of our Yeast-Human Alignment

Given a GRAAL alignment of two networks(V, E') andH (U, F'), we compute the probability of obtaining
a given or better edge correctness score at random. Forutpese, an appropriate null model of random
alignment is required. A random alignment is a random mappibetween nodes in two network§V, E)
andH(U,F), f : V — U. GRAAL producesglobal alignments, so that all nodes in the smaller network
(smaller in terms of the number of nodes) are aligned withesad the larger network. In other words,
f is definedvv € V. This is equivalent to aligning each edge framiV, E) with a pair of nodes (not
necessarily an edge) # (U, F'). Thus, we define our null model of random alignment as a ranueypping
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g: E — UxU.Wedefinen; = |V|,ny = |U|, my = |E|, andmg = |F|. We also define the number
of node pairs inH asp = % and letEC = x% be the edge correctness of the given alignment.
We letk = [m; x EC|] = [m; x z]| be the number of edges fro that are aligned to edges .
Then, the probability? of successfully aligning: or more edges by chance is the tail of the hypergeometric
m2) (P—m2

distribution: P = "% (D6 z(pm)”)
my

Now we describe how to estimate the statistical significari¢be amount of similarity we find between
yeast2 and humanl in our alignment. To do that, we need tom&stihow much similarity one would
expect to find between twandom networks and doing that, in turn, requires us to specify haxgenerate
model random networks. Given two models that purport to fitteo§ observations, we generally consider
as superior the one that has fewer tunable parameters. kompdx, the STICKY and ER-DD models are
constructed to preserve the degree distribution of the ddtese and other data-driven models of random
network§?-%4are thus expected to model particular PPI networks better theoretical network models.
However, they are not an appropriate choice to judge whdtieyeast2 and humanl networks share a
significant amount of structural similarity; this is becaubkese models are strongly conditioned on these
particular networks and thus they might transfer onto thel@hoetworks the similarities between yeast2
and humanl that we aim to detect in the first place. Thus, westsdar a well-fitting theoretical null
model. Arguably the best currently known theoretical mddePPI networks, requiring the fewest tunable
parameters, is thgeometric random graph model (“GEQ”)37-3%5%n which proteins are modeled as existing
in a metric space and are connected by an edge if they areaitiiked, specified distance of each other.

. For our yeast2—human1 alignment, we fiRdv 7 x 1078,

Although early, incomplete PPI datasets were modeled webldale-free networks because of their
power-law degree distributior;% it has been argued that such degree distributions were éacauf
noise’-%9In the light of new PPI network data, several studfe¥-%>have presented compelling evidence
that the structure of PPI networks is closer to geometrin thascale-free networks. This was done by com-
paring frequencies of graphlets in real-world and modelngts®” and by measuring a highly-constraining
agreement between “graphlet degree distributidg=inally, it has been shown that PPI networks can be
successfully embedded into a low-dimensional Euclideatespthus directly confirming that they have a
geometric structur€® The superior fit of the GEO model to PPI networks over other ef®day not be
surprising, since it can be biologically motivated. In parar, the currently accepted paradigm for evo-
lution is based on a series of gene duplication and mutatrents. We outline our crudgeometric gene
duplication model’® We model genes, and proteins as their products, as existsane biochemical metric
space. Although the dimension and axes of this space ardwous, we assume that when a parent gene is
duplicated, the child gene starts at a similar location erfetric space, since it is structurally identical to
the parent and thus inherits interactions from the parestmfitations and “evolutionary optimization” act
on the child, it drifts away from the parent in the metric spathe child may preserve some of the parent’s
interacting partners, but it may also establish new intevas with other gene& Similarly, in a geometric
graph, the closer two nodes are to each other, the moredttesahey will have in common, and vice-versa.
In addition to PPI networks, GEO is a well-fitting theoretinall model for other biological networks, e.g.,
brain function networkd and protein structure networks.

Accepting GEO as the optimal null model for PPI networks, wmpute the probability of obtaining
the EC of 11.72% in our alignment of yeast2 and humanl t®lex 10~2. We do so by aligning with
GRAAL pairs of GEO networks of the same size as yeast2 and hlirmad by applying the following form
of the Vysochanskij—Petunin inequality’(|X — u| > Ao) < g;%. Since GEO networks that are aligned
havethe same number of nhodes and edges as the data, it is reasonable toeasat the distribution of their
alignment scores is unimodal. Thus, we use the Vysochaskipnin inequality, since it is more precise
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than Chebyshev’s inequality for unimodal distributionsorél details are supplied in the Supplementary
Information.
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Fig. 1. All the connected graphs on up to 5 nodes. When appearingiadaeed subgraph of a larger graph, we call trgeaphl ets.
They contain 73 topologically unique node types, calleddmorphism orbits.” In a particular graphlet, nodes belnggo the
same orbit are of the same shade. Graptlgtis just an edge, and the degree of a node historically defiaesniiany edges it
touches. We generalize the degree to a 73-component “gtagddree” vector that counts how many times a node is toushed
each particular automorphism orBit.
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Fig. 2. An illustration of how the degree of nodein the leftmost panel is generalized into its “graphlet éegvector,” or “sig-
nature,” that counts the number of different graphlets thatmode touches, such as triangles (middle panel) or ssj@@gbtmost
panel). Values of the 73 coordinates of the graphlet degee®rof nodey, GDV (v), are presented in the table.
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Fig. 3. The alignment of yeast2 and humanl PPI networks. An edgedgeetiwo nodes means that an interaction exists in both
species between the corresponding protein pairs. Thudjghiyed networks appear, in their entirety, in the PPlvoets of both
species. (A) The largesbmmon connected subgraph (CCS) consisting of 900 interactions amongst 267 protéB)sThe second
largest CCS consisting of 286 interactions amongst 52 mmteach node contains a label denoting a pair of yeast amdhu
proteins that are aligned.
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Fig. 4. Comparison of the phylogenetic trees for protists obtaibgdienetic sequence alignments and by GRAAL's metabolic
network alignments. Left: The tree obtained from genetigusece comparisot. Right: The tree obtained from GRAAL. The
following abbreviations are used for species: CHO - Cryptoslium hominis, DDI - Dictyostelium discoideum, CPV - Qry
tosporidium parvum, PFA - Plasmodium falciparum, EHI - Enteba histolytica, TAN - Theileria annulata, TPV - Theiteri
parva. The species are grouped into the following clas#dgetlates,” “Entamoeba,” and “Cellular Slime mold.”
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