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Abstract

Mathematical models in Biology are powerful tools for the study and exploration of complex dynam-
ics. Nevertheless, bringing theoretical results to an agreement with experimental observations involves
acknowledging a great deal of uncertainty intrinsic to our theoretical representation of a real system.
Proper handling of such uncertainties, is key to the successful usage of models to predict experimental or
field observations. This problem has been addressed over the years by many tools for model calibration
an parameter estimation. In this article we present a general framework for uncertainty analysis and
parameter estimation which is designed to handle uncertainties associated with the modeling of dynamic
biological systems while remaining agnostic as to the type of model used. We apply the framework to
two Influenza transmission models: one deterministic and the other stochastic. The results show that
the framework can be applied without modifications to the two types of models and that it performs
equally well on both. We also discuss the application of the framework to calibrate models for forecasting
purposes.

Author Summary

A mathematical model is by definition a simplified and idealized representation of a real system. How well
a model’s dynamics reproduce the real system’s depends in part on how well we can set the parameters
of the model to correspond to their real-world counterparts. To add to this problem, precise information
about all the details of a model may not be available or the system may be intrinsically unpredictable or
stochastic. These facts contribute to what we call the uncertainty about a model. A standard way to deal
with uncertainty is to represent it as a probability distribution. In our paper, we present a comprehensive
tool to use experimental or field data to reduce the uncertainties in models, by updating those probability
distributions. Its usage can lead to more precise undertanding of the systems being modelled as well as
more reliable forecasting of systems such the spread of infectious diseases.

Introduction

Mathematical models have long played a key role in understanding infectious disease epidemiology [1] as
well other biological dynamical systems. Their ability to combine established theory and data to predict
empirical observation is unique and cannot be easily achieved by other methods [2]. In such models,
data in the form of rate parameters and time-series, and theory in the form of the model formulation,
interact to provide insight about each other. Parameter estimation and model selection techniques, allow
us to improve theory with the help of data (model selection) and estimate data which cannot be directly
observed, with the help of theory (parameter estimation).

Proper representation of the intrinsic uncertainty associated with dynamic models of biological sys-
tems, has been under increasing scrutiny through the develop of a number of methods for parameter
estimation and model calibration. Such methods, to be effective, must strive to be as comprehensible
as possible in the treatment of all identifiable sources of uncertainty related to a given mathematical
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representation of a biological system [3]. In practice, however, many uncertainty analysis methods fall
short of this ideal. Some of the work in the recent literature focus on developing exact methods for
parameter estimation, requiring, for instance, the derivation of the full likelihood function for the model
at hand. Exact methods, however, tend to be closely coupled to a specific model or class of models, being
less generally applicable [4–7].

The effort to develop appropriate estimation methods far exceed the (not in the least trivial) effort put
in developing the model to it is to be applied, thus calling for the development of more general methods
which will free modellers to concentrate in the modelling while having a good uncertainty analysys tool
at their disposal.

In this paper we introduce a generic framework for parameter estimation in dynamic models and
apply it to both deterministic and stochastic models of the spread of Influenza. The framework builds
on different tools from the fields of Bayesian inference and sequential Monte Carlo (SMC) and is aimed
at the fitting of dynamic models to available data. The fitting process generates posterior probability
distributions for both the model’s parameters and outputs. The original contribution of this paper is
in the way Bayesian and SMC computational methods available in the literature [8–10] are combined to
maximize generality and efficacy in the incorporation of available information into the estimation process.
At the core of the framework, sits an extension of the Bayesian melding method initially proposed by Poole
and Raftery [10] and successuffly applied for parameter estimations in a variety of applications [8, 9, 11].

The framework’s generality stems from the fact that the dynamic model being fit to data, from the
point of view of the inference machinery, is treated as a “black box” with inputs (parameters) and outputs
(time-series), and the full uncertainty about each of these elements can be included in the form of prior
distributions which will get updated based on observational data. The SMC approach to fitting also
contributes to the framework’s generality by allowing for a piece-wise fitting of the model to data. Model
comparison and selection can also be easily done since the dynamic model is just a pluggable component
of the framework.

The framework is meant to be used in a recursive fashion for continuous parameter estimation in
situation where data becomes available gradually. This inference workflow is adequate for model-based
forecasting applications which must include all available data up to a given point in time in order to
better predict subsequent observations. The recursive character of the analysis permit the estimation of
time-varying parameters, without requiring prior definition of a functional form for their variation. Thus,
externally forcing functions affecting the model’s parameters would simply be captured in the temporal
variations of their estimates. This is particurlarly useful in epidemiology, where forecasting based on
dynamic models often has to deal with time-varying transmission rates [12–15] .

Recursive Bayesian estimation of key parameters governing epidemic dynamics have been proposed
before [13, 14, 16, 17]. Most of these studies, focus on estimating the effective reproductive number,
R, of the epidemic, considering remaining parameters known. Our approach, in contrast, aims for the
simultaneous estimation of all relevant parameters in an arbitrary dynamic model in a manner which is
conducive to forecasting studies.

For this work, an open-source software library [18] was developed which allows for the immediate
application of the framework proposed here on other models. The library can be used from within a Sage
worksheet [19], requiring little programming knowledge. Example Sage Worksheets, with the models
described in this paper, are provided as supplementary material.

Methods

The core of the analytical framework proposed is mainly based of the Bayesian Melding methodology [10]
with modifications to make it work with dynamic models, that is, work with time-series as model outputs.
The Bayesian Melding method pioneered in providing a formal inferential framework that took into full
account information available about a model’s inputs and outputs. Our framework’s workflow is depicted
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in figure 1. It treats the dynamic model (M) as a black box which take as inputs, a set of parameter
values (Θ) on which we want to do inference on, and generates a set of time-series as output(Φ).

Φ = M(Θ) (1)

The inferential problem, consists in finding the posterior probability distribution of Θ or a subset of
it, and of Φ, given existing data. Data most frequently enter the inference in the form of time-series
corresponding to the models variables but it can also be available for the models parameters be used to
update Θ’s joint prior probability distribution. The observed data (D) used to fit the model may be refer
to only a subset of the model’s outputs (Φ). The inference proceeds recursively, on an arbitrary number
of time windows, W . Observed data for a given time window, Dw, is used to calculate the likelihood of
the model’s outputs:

L(Φw) = P (Dw | Φw) (2)

where w = 0, . . . ,W . From equations 1 and 2, we have that the likelihood of the model’s inputs is
given by:

L(Θw) = P (Dw |M(Θw)) (3)

In practice this means that the most likely sets of parameters (θ) will be the ones which generated
the most likely outputs (φ).

The posterior of Θ is update recursively according to equation 4.

π(Θw) ∝ q(Θw)L(Θw) (4)

where,

q(Θw) =
{
q(Θ0) if w = 0
π(Θw−1) if w > 0 (5)

Since outputs are dependent on inputs, information on outputs (data) can be used to restrict the
input parameter space. The mechanism by which this dependency is generated can be deterministic or
stochastic. The accuracy of the analysis will depend on the system’s identifiability, i. e. different θ
generate different φ.

The pluggable nature of the model, allows for a simple way to compare multiple models and select
which one fits best the available data. Model comparison and selection techniques are, however, not
discussed in this paper but can be found in the literature [20].

Prior Information: Before the first window of data can be processed to start the inference, prior
probability distributions for the parameters in Θ, q(Θ0) (eq. 5), need to be defined as well as the initial
conditions for the model. If prior information about the distribution of the outputs are available, they
can be defined here and they will be pooled with the induced prior on the outputs as described by Poole
and Raftery [10]. For subsequent inference windows (w ≥ 1), the initial values of {S,E, I, A,R} are set
to match observed data, and the probability distribution of Θ, q(Θw) will be π(Θw−1), the posterior of
the previous window (eq. 4).

Sequential Monte Carlo: The posterior distributions for the Θ and Φ are estimated by sampling-
importance-resampling [21]. This sequential Monte Carlo procedure involves running the model k times,
and then resampling the set {Θw,i}i=1...k with probability proportional to L(Θw,i) fit. The l best fitting
φw,i, determine which θw,i are retained. Fitting procedure is described in more detail below. We will use
small φ and θ to denote a single simulation result and a single parameter sample, respectively.
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The computational steps involved in obtaining posterior distributions for the Θm and Φm, on every
time window w, are summarized below. It assumes that we have observations of at least one of the
outputs of the models for the time window.

1. If w = 0, specify prior distributions for the input parameters, q(Θw), and initial values for the
state-variables as described above. If w ≥ 1, set q(Θw) = π(Θw−1).

2. Obtain k samples the joint probability distribution of parameters, q(Θw) by means of Latin-
hypercube-sampling. Regular random sampling is also possible but less efficient.

3. Run the model k times from t = 0, . . . , T where T is the length of the time window, with initial
values adjusted to match observed data.

4. If there are priors for Φ (not the case in the examples presented), form the pooled prior distribution
of the model outputs according to Poole and Raftery. [10]

5. Calculate the likelihood of each set of outputs (L(Φw,i)) of the model conditioned on the observed
time-series available (Dw).

6. Form the resampling weight vector, Rw,i which is the product of the Pooled Prior on the outputs
and L(Φw,i).

7. Obtain l samples from the joint prior distribution of the inputs, with probability given by Rw,i to
get the posterior distribution of the input parameters, π(Θw).

8. Run the model l times from the posterior distribution of the input parameters, to obtain the
posterior distribution of the model’s outputs.

For the applications presented in this paper, the distribution of φi[t] is assumed to be Normal. Thus
L(Φw,i) is a Normal likelihood function with fixed variance s2. Other parametric forms for the likelihood
function can be adopted. Figure 2 illustrates likelihood calculation. Parameters (Θw,i) are resampled
with probability proportional to the likelihood of M(Θw,i), as given by:

L(Φw,i) =
T∏
t=1

P (Dw[t] | Φw,i[t]) (6)

For larger models than the ones presented here, the computation of the likelihoods may become too
expensive. In such cases, in step 5 and 6 above, another fit metric could be applied instead, namely,
Approximate Bayes Computation methods(ABC) [22]. In such approach, a distance function is used to
quantify how close are are each of the Φw,i to the observed data, Dw. For example, the root-mean-square
deviation (equation 7) to compare the simulated (Φw,i) and the observed time-series.

RMSD(φw,i) =

√∑T
t=1(φw,i[t]−Dw[t])2

T
(7)

Using ABC, parameter sets (Θw,i) are resampled with probability proportional to 1− RMSD(φw,i)P
i RMSD(φw,i)

.
For the sake of conciseness, results using ABC were not included in this paper but the method is available
in the software library [18] implementing this analytical framework. The Sage worksheet available in the
supplementary material, can also be easily modified to re-run the examples presented here with an ABC
fitting scheme.
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Running Workflow: Once the model is defined and the SMC and inference parameters are set, all is
left is to run the analysis, for every w in W . Window width, T , is determined by the availability of data
when data is still being collected at the time of the fitting, or by the modeler when all data is available
from the start. Figure 3 illustrates the moving window inference. in which the model is fit to data in
a piecewise fashion. This workflow is very conducive to forecasting since at the end of each window we
have new Θw estimates to feed into longer forecasting simulations. The moving window approach, relax
the assumption that input parameters are constant, and new estimates for the parameters are generated
conditioned only on the state of the system at the beginning of the inference window (estimated in the
previous window) and current data. This allows for a good fiit even when underlying model parameters
(Θ) are not stationary.

Deterministic SEIAR model: In order to test the parameter estimation methodology, we setup a
fairly detailed deterministic model for seasonal Influenza [23]. From this model we generate data and
use it to try to estimate some key parameters of the model starting from vague priors. The chosen
model structure is based on an SEIR (Susceptible-Exposed-Infectious-Recovered) with the Infectious
compartment divided into symptomatic (I) and asymptomatic (A) individuals and allowing for a small
probability of reinfection (σ). The model is implemented as a set of ordinary differential equations (see
table 1 for parameters):

λ = β(I + ηA)

dS

dt
= µ− (λ+ µ)S,

dE

dt
= λS − (ε+ µ)E

dI

dt
= αεE + ασλR− (τ + µ)I

dA

dt
= (1− α)εE + (1− α)σλR− (τ + µ)A

dR

dt
= τI + τA−R(σλ+ µ)

For the deterministic SEIAR model, we chose to estimate three parameters, Θ = {β, α, σ}, keeping
the rest constant (see table 1 for parameter values). Although all parameters could be estimated, we
decided to restrict the inference to the parameters that are most likely to be unique to a given epidemics.

In all experiments, simulations where started (in the first window, w0) from these initial values: 0.999,
0, 0.001, 0, 0 and 0, for S, E, I, A, R and Ia, respectively.

Stochastic SEIAR Model

To demonstrate the suitability of the analytical framework to fitting stochastic models, we implemented
a slightly simpler version of the deterministic model (no reinfection) as a system of stochastic differential
equations,

P (dSt = −1, dE = 1 | Ht) = βS(It +At) dt
P (dEt = −1, dIt = 1 | Ht) = αεEt dt

P (dEt = −1, dAt = 1 | Ht) = (1− α)εEt dt
P (dIt = −1, dRt = 1 | Ht) = τIt dt

P (dAt = −1, dRt = 1 | Ht) = τAt dt
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This model is simulated using the Gillespie Direct exact algorithm [24]. Since here we are modeling
discrete populations sizes, initial values for the compartments were set to [490, 0, 10, 0, 0] respectively for
S,E, I, A,R. In this model we estimate all four input parameters, so Θ = {α, β, ε, τ}. On each window
w, the model was run 2000 times (k), the best 1000 (l) of them were retained. To stabilize the model’s
output, each of the k runs is actually an average of five runs with the same θi.

Results and Discussion

For testing the analytical framework proposed, simulated datasets were generated from both the deter-
ministic and stochastic SEIAR models. This simulated dataset was then segmented in 20 1-week long
segments which were “fed” into the analysis as described in the methods section.

Independent uniform prior distributions were defined for all the parameters being estimated (tables 2
and 3). These priors were defined so as to include the true parameter values in their support. Remaining
parameters were kept constant throughout the simulations. When fitting real data, where true parameter
values are not known, wider priors can be used. Moreover, misspecified priors which don’t include the
true parameter value in their support can be diagnosed by posterior distributions which get progressivelly
squashed towards one end of the prior range. No priors where attributed to the model’s outputs (Φ), since
we wanted to imposed no direct expectation on Φ. Although vague (uniform) priors with no correlation
structure were specified, in a scenario where one has empirical evidence about parameters this evidence
can be incorporated (Bayesianly or not), to yield a more informative joint prior distribution (q(Θ)).

The fitting of the deterministic SEIAR model to simulated data with moving 7-days window was able
to consistently estimate the original parameter values with increasing precision with each time-window
processed (figure 4). We also obtained a very good matching of the posterior prevalence (I and A) to data
(figure 5), which further attests to the unbiasedness of the estimates (table 2). Each week, the model
was run k = 3000 times, generating week long (7 days) time-series. Of these runs, the l = 1000 best runs
were retained and their Θi formed the posterior distribution π(Θ) used to calculated the posterior time
series, π(Φ)(figure 5).

To simulate a forecasting setting, parameter estimates at the end of each week, π(Θw), were used to
generate forecasts for the following 7 days (figure 6). These predictions were generated after adjusting
the two infectious classes, I and A (The ones we are interested in forecasting) to the last observed data
value. The mass-balance of the model was maintained by making adjustments to the susceptible class to
maintain the population size constant.

To further examine the robustness of the inference, we added underreporting noise to the simulated
data against which the model would be fit. This noise was added by multiplying each observed daily
prevalence (I) by a uniformly distributed random number between 0.9 and 1. Tables 2 and 3 show
the effects of underreporting noise on parameter estimates for the deterministic and stochastic models,
respectively. this intensity of underreporting noise was found not to degrade inference accuracy in any
substantial way.

Close inspection of the weekly parameter estimates for the deterministic model (figure 4) tells us
about the temporal variation of the uncertainty in the model. For exmple we can see that the uncertainty
about β, the transmission coefficient, is greatly reduced after the first 6 weeks of data are analyzed. This
indicated that reasonably reliable estimates of the transmission rate are possible when the epidemic is
just starting. In contrast, the reinfection parameter, σ can only be reliably estimated after the tenth week
or so, which makes perfect sense, because only then we will have enough recovered individuals passive of
reinfection.

From the Θ estimates ot the stochastic SEIAR model, a different set of insights about the models
dynamics become evident (figure 8).The recursive nature of the inference, makes it easier to pinpoint
issues of identifiability in the model structure by looking for bi- or multi-modality in posterior parameter
distributions. As an example, we can look at the appearance of bimodal posterior estimates for τ , ε and
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7

alpha at the beginning of the epidemic. As the dynamics progresses, however, this ambiguity is resolved.
In the case of α, the fraction of asymptomatics, its estimate converge to one of the previous modes as
soon as the I and A start to diverge, at around the third week.

These signals may also indicate the potential existence of more than one independent process under-
lying the observed dynamics and thus better inform modellers and policy makers.

The inference framework worked as efficiently for the Stochastic SEIAR model as it did for the de-
terministic model, even with underreporting noise (figure 7). The inference was able to generate good
estimates of the true parameter values (figure 8) in both fitting scenarios: with and without underreport-
ing noise (table 3). Consequently, the posterior parameter distributions at each week yielded reasonable
predictions for the following week(figure 9).

The overall efficiency of the analysis and precision of the estimates, indicate that this method can be
a very promising tool for forecasting epidemics. On the stochastic SEIAR, It is remarkable how the Θ
estimates stabilize around their true value, long before the epidemic peaks (around the tenth week). This
suggests that reliable predictions about rest of the epidemic could be made as early as in the 5th or 6th
weeks.

It is also worth mentioning that the computational time to run each inference cycle (1 week window) is
less than a minute (on a 2-core, 2.1GHz processor) for the samples sizes chosen. This makes the evaluation
of multiple models in parallel (for model comparison purposes) as well as running more replicates for better
results, a perfectly feasible task. The software was designed to take advantage of multiple cores on a
computer, when available, giving scalability to the methodology.

In real-world situations, availability of data is much more restricted and may compromise the quality
of the estimates, in such cases one may want to resort to simpler models with fewer degrees of freedom in
order to get better results. Nevertheless, preliminary results by our research group using real surveillance
data of seasonal Influenza, are confirmating the eficacy of this framework to predict real outbreaks and
epidemics. These results will be subject of a future publication.

Estimating parameters for arbitrary types of dynamical models based on available data is an extremely
challenging problem. There will always be a compromise to be made between inference precision and
generality of the estimation methods. Based on the results presented here, we are convinced that a good
balance can be striken between generality and the generation of quality estimates.
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Figure Legends

Figure 1. Analytical workflow. The inferential framework follows the digram above. The bottom
section, running workflow, is the actual recursive inference cycle. The above sections correspond to the
initialization of the analysis and is explained in the methodology. Dash dotted blocks indicate optional
step.
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Figure 2. Likelihood calculation. This diagram describes how likelihoods for each realization of the
model outputs are calculated. The full likelihood is the product of the individual likelihoods calculated
for every data point on every time-series generated by the model. Green stars represent data points and
the solid black line represents the model’s output (φi). Gaussian curves represent the parametric form
of the likelihood function.

Figure 3. Moving-window Inference. Illustration of the moving window recursive inference
process. Data is fed into the model in successive steps and posterior distributions on the parameters
and state variables become the priors for the following step.
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Figure 4. Temporal evolution of θ estimates, Deterministic SEIAR model. These plots
represent the posterior estimates of β, α and σ at the end of each week. Yellow areas represent
probability density.

Figure 5. Posteriors for I and A, Deterministic SEIAR. Posterior Distributions of
symptomatics, I and Asymptomatics, A. Black curve is the median and colored area is the 95% credible
interval. Note that these are not continuous time series but rather a juxtaposition of the posterior
curves at each week.
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Figure 6. Predicted I and A, Deterministic SEIAR. Forecast of symptomatics, I and
asymptomatics, A. Black curve is the median and colored area is the 95% interval. Curves for each
week are generated by sampling parameter sets (θi) from the previous week posteriors.

Figure 7. Posteriors for I and A, Stochastic SEIAR. Posterior Distributions of symptomatics, I
and Asymptomatics, A. Black curve is the median and colored area is the 95% credible interval. In this
run the fit is done against artificially underreported data, to illustrate the ability of the inference
framework to deal with two levels of stochasticity.
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Figure 8. Temporal evolution of θ estimates, Stochastic SEIAR. These plots represent the
posterior estimates of β, α, τ and ε at the end of each week. Yellow areas represent probability density.

Figure 9. Predicted I and A, Stochastic SEIAR. Predictions of symptomatics, I and
Asymptomatics, A. Black curve is the median and colored area is the 95% interval. Curves for each
week are generated by sampling parameter sets (θi) from the previous week posteriors. In this run the
fit is done against artificially underreported data.
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Table 1. Model Parameters
Name True value True value Meaning

deterministic model stochastic model
µ 0 – Birth/Death rate
β 1.4 0.00058 Transmission coefficient
η 0.5 – Infectivity reduction for asymptomatics
ε 0.2 0.1 Incubation rate
α 0.2 0.2 Fraction of symptomatic
σ 0.5 – Reinfection rate
τ 0.5 0.01 Infectious period

Parameters of the SEIAR model for both deterministic and stochastic versions, their meanings and
values used in the simulations.

Table 2. Parameters Priors and Posteriors. Deterministic SEIAR
Parameter Prior Posterior wo/ underreporting† Posterior w/ underreporting‡

β U [1.1, 1.7] 1.3897[1.3039, 1.4891] 1.4462[1.3879, 1.5193]
α U [0.01, 0.51] 0.2000[0.1615, 0.2361] 0.1809[0.1559, 0.2083]
σ U [0.4, 0.6] 0.5030[0.4527, 0.5575] 0.5067[0.4764, 0.5545]

Probability distributions for the deterministic SEIAR model. Priors are Uniform distributions:
U [min,max] The posteriors correspond to final estimate of the parameters, after the last week of data
has been processed(median[min,max]). †fitted to simulated data. ‡Fitted to simulated data modified
by under-reporting noise as described in the text.

Table 3. Parameters Priors and Posteriors. Stochastic SEIAR
Parameter Prior Posterior wo/ underreporting† Posterior w/ underreporting‡

β U [1e− 5, 6e− 4] 0.0006[0.0004, 0.008] 0.0006[0.0004, 0.0007]
α U [0.01, 0.5] 0.1907[0.0131, 0.3793] 0.1958[0.0688, 0.3216]
ε U [0, 0.2] 0.0985[0.0737, 0.1247] 0.0983[0.0798, 0.1200]
τ U [0.0, 0.02] 0.0102[0.0070, 0.0140] 0.0086[0.0047, 0.0128]

Probability distributions for the Stochastic SEIAR model. Priors are Uniform distributions:
U [min,max] The posteriors correspond to final estimate of the parameters, after the last week of data
has been processed (median[min,max]).†fitted to simulated data. ‡Fitted to simulated data modified
by under-reporting noise as described in the text.
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