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Abstract

We investigate methods for modelling metabolism within populations of cells. Typ-
ically one represents the interaction of a cloned population of cells with their environ-
ment as though it were one large cell. The question is as to whether any dynamics are
lost by this assumption, and as to whether it might be more appropriate to instead
model each cell individually. We show that it is sufficient to model at an intermediate
level of granularity, representing the population as two interacting lumps of tissue.

1 Introduction

The emerging field of systems biology seeks to reconcile subcellular-level components (such
as enzymatic reactions) with cellular- and organism-level behaviour (such as metabolism).
Non-linear processes dominate these interactions; experience from other areas of science
has taught us that mathematical models, continuously revised by new information, must
be used to describe and interpret complex biological phenomena [1, 2].

As systems biology grows, so we see a proliferation of mathematical models of cell meta-
bolism and signalling – see the many examples at the model repositories BioModels.net [3]
and CellML.org [4]. Given the inherent difficulties in in performing single cell experiments,
one property held in common by many of these models is the assumption of “lumped dy-
namics”. To explain this term, consider a typical scenario in which a million S. cerevisiae
are grown in a chemostat. Experiments are performed to measure average metabolite
concentrations over the population of yeast cells. A mathematical model of metabolism is
then built in which “the cell” has these average characteristics, but a volume equivalent
to a million cells (see Fig. 1).

Given the identical metabolic characteristics of each clonal cell, it would seem natural to
approximate the system by lumping the population as a single mass. Intuition would sug-
gest that dynamics are unchanged but, as we shall see below, this linear, verbal reasoning
approach is incorrect. However, we show that it is not necessary to consider each individ-
ual cell – which would lead to a million times as many ODEs – rather correct dynamics
can be captured by considering two interacting lumps of cells.
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Figure 1: Modelling at different scales. See Eqs. (1)–(2) for a mathematical
representation, where y denotes extracellular and x intracellular concentrations.
Typically, (a) one models the cell population as one bulked compartment; at
the other end of the granularity scale, (b) one could consider each of the n cells
individually, which would lead to approximately n times as many ODEs.
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2 A theorem

We frame the problem mathematically. Let xi denote a set of metabolite concentrations
within cell i, and y a set of external concentrations (see Fig. 1). Assuming each cell has
identical characteristics, we may write

x′i = f(xi, y) i = 1, . . . , n (1)

y′ = g(y)− 1
n

∑
i

h(xi, y) (2)

Here f denotes intracellular reactions, h transport into cells and g the rate of metabolite
supply.

Linearise about a steady-state xi = x∗, y = y∗ to give stability matrix

An =



fx 0 · · · 0 fy

0
. . .

...
...

. . .
...

0 fx fy

− 1
nhx · · · · · · − 1

nhx gy − hy


(3)

We propose that

λ(A1) ⊆ λ(A2) = λ(A3) = . . . (4)

where λ denotes the spectrum. That is, the system bulked into two compartments has the
same eigenvalues as the system with three compartments, but more than the system with
one compartment.

To show λ(An) ⊆ λ(An+1), let vn = (x1, . . . , xn|y)′ and suppose Anvn = λvn. Taking

vn+1 =
(
x1, . . . , xn,

1
n

∑
xi

∣∣∣∣ y)′ (5)

we find An+1vn+1 = λvn+1.

Now suppose un+1 = (x1, . . . , xn+1|y)′ and suppose An+1un+1 = λun+1. Taking

un =
(
nx1 + xn+1

n+ 1
, . . . ,

nxn + xn+1

n+ 1

∣∣∣∣ y)′ (6)

we find Anun = λun.

Finally, we must consider the possibility that un = 0, i.e. xi = −xn+1/n ∀i. If n ≥ 2, this
may be overcome by first creating a new eigenvector u′n+1 = (xn+1, x2, . . . , xn, x1|y) by
swapping two elements, then constructing un as above. Thus we may conclude λ(An) ⊇
λ(An+1) for n ≥ 2 as required.
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The practical implication of the above theorem is that, the dynamic behaviour (or at least
the linear dynamic behaviour) of a full system of cells may be captured by bulking the
cells into two compartments. If cells are instead bulked as one, some behaviour will be
lost.

Moving to specifics, we may construct the two sets of eigenvectors associated with the
system. If u1 = (x|y)′ is an eigenvector of A1, then un = (x, . . . , x|y)′ is the corresponding
eigenvector of An. If v = x is an eigenvector of fx, then vn = (x, 0, . . . , 0,−x, 0, . . . , 0|0)
are the corresponding eigenvectors of An.

3 An example

From a stability perspective, the system

x′ = f(x, y∗) (7)

may be naturally unstable at x = x∗, but this instability may be masked in the model
through tight control in y – leading to the eigenvalues of A1 all having negative real part.
However, if the cells are not bulked as one, but rather as two (or more) compartments,
the feedback exposes the realities of the system as An now inherits positive real part
eigenvalues from fx.

For example, the Brusselator is a model proposed in 1968 for an autocatalytic, oscillating
chemical reaction [5]. In dimensionless form, dynamics may be written as

u′ = 1− (b+ 1)u+ au2v (8)
v′ = bu− au2v (9)

Its steady-state is given by (u, v) = (1, b/a) and if b > a+ 1 there exists a globally-stable
limit-cycle (see Fig. 2).
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Figure 2: (From Eqs. (8)–(9)). Stable limit cycle of the Brusselator. Parameter
values used are a = 1, b = 3, u(0) = 1.01 and v(0) = b/a.
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This model may be transformed by setting x = (u, v) and letting y = b now be a variable
representing the externally-supplied nutrient (similar results may be obtained by setting
letting a vary).

u′i = 1− (b+ 1)ui + au2
i vi (10)

v′i = bui − au2
i vi (11)

b′ = g − 1
n

∑
i

(h1ui + h2vi + h3b) (12)

For certain parameter values, control on b will seem to stabilise the system (n=1 – see
Fig. 3 (a)). However, when the bulked cells are split, the underlying oscillations return
(b). Similar dynamics are observed when comparing n = 2 and n = 3 (c).

4 Discussion

Returning to Fig. 1, we see the two scales of granularity typically used in metabolic
modelling. Typically one represents a population of cells as a single compartment, rather
than considering the dynamics of n individual cells. The reasons for this are not clear.
It may be that it is assumed that a population of clonal cells would behave in the same
way as this. Alternatively, it may be assumed that in order to capture the interactive
dynamics, around n times as many differential equations would be required.

As we have shown, both mathematically and via the example of the Brusselator, neither
of these assumptions are true. Rather, to answer the titular question, two lumps are
required. It is hoped that by using this methodology as standard, new dynamics may be
exposed that were previously hidden by the standard assumptions.

Acknowledgements I acknowledge the support of the BBSRC/EPSRC Grant BB/
C008219/1 “The Manchester Centre for Integrative Systems Biology (MCISB)”. Thanks
to Dave Broomhead for fruitful discussions.
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Figure 3: (From Eqs. (10)–(12)). (a) n = 1: steady state stabilisation. Parameter
values used are as in Fig. 2, with g = 2, h1 = −4, h2 = 0, h3 = 2 and b(0) = 3.
(b) n = 2: stable limit cycle obtained by dividing populations. Parameter values
used are as before, with initial conditions u1(0) = 1.01, u2(0) = 0.99. (c) n = 3:
initial conditions u1(0) = 1.01, u2(0) = 1 and u3(0) = 0.99.
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