BRAGOMAP – A new Perl script for high throughoutput Blast results analysis including GO and MapMan annotations.

Woycicki R.1, Gutman W.2, Przybecki Z1.

¹Dept of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences SGGW, Warsaw, Poland, ²Dept of Biochemistry, Faculty of Agronomy and Biology, Warsaw University of Life Sciences - SGGW,

Motivation

Analysis of sequences similarities is the first and most important method used to find out the function of unknown nucleotides. Searching of homologs should be done carefully not to loose any important ones. Having thousands of results from various long-read sequencing projects (ie. differentially expressed tags, genomic polymorphons or BAC ends), the by-hand ability to retrieve interesting (to our goal) similarities in hundreds of thousands of Blast results is practically not possible. Decreasing the number of retrieved sequences by giving more stringency in e-value threshold or displaying less results would lead to false deductions. Using the program it is also possible to automate gene product annotations.

Methods

To facilitate fast retrieval of interesting Blast homologies and making right deductions about the biological role of sequences, in big sequencing projects, the new Perl script BRAGOMAP was written. The program make use of some of BioPerl modules as well as the power of regex text-mining in the Perl itself (Table 1).

Results

The script gives us the possibility to retrive interesting BLAST similarities by using keywords to scann GenBank fields and giving scores for each one found. It collects all impotrant information from GenBank data and puts in separate columns of tab-delimited file for further use (Table 2). If we were interested in flower differentiation genes we could use the keywords (flower, ovule, anther, pollen, etc.) and/or filter all the homologies sequences isolated from flower tissues in a special development stage. We can also filter results by choosing similarities to interesting genes or protein products. This script retrieve also all standard information from the Blast and GenBank files as Description, ACC no., E-value, Similarity positions, Query Length, Percent of Similarity etc. Automatic annotations are done by looking for genes, protein products and /or DB references in the proper mappings files (Table 3).

Table 3 – Annotations chart

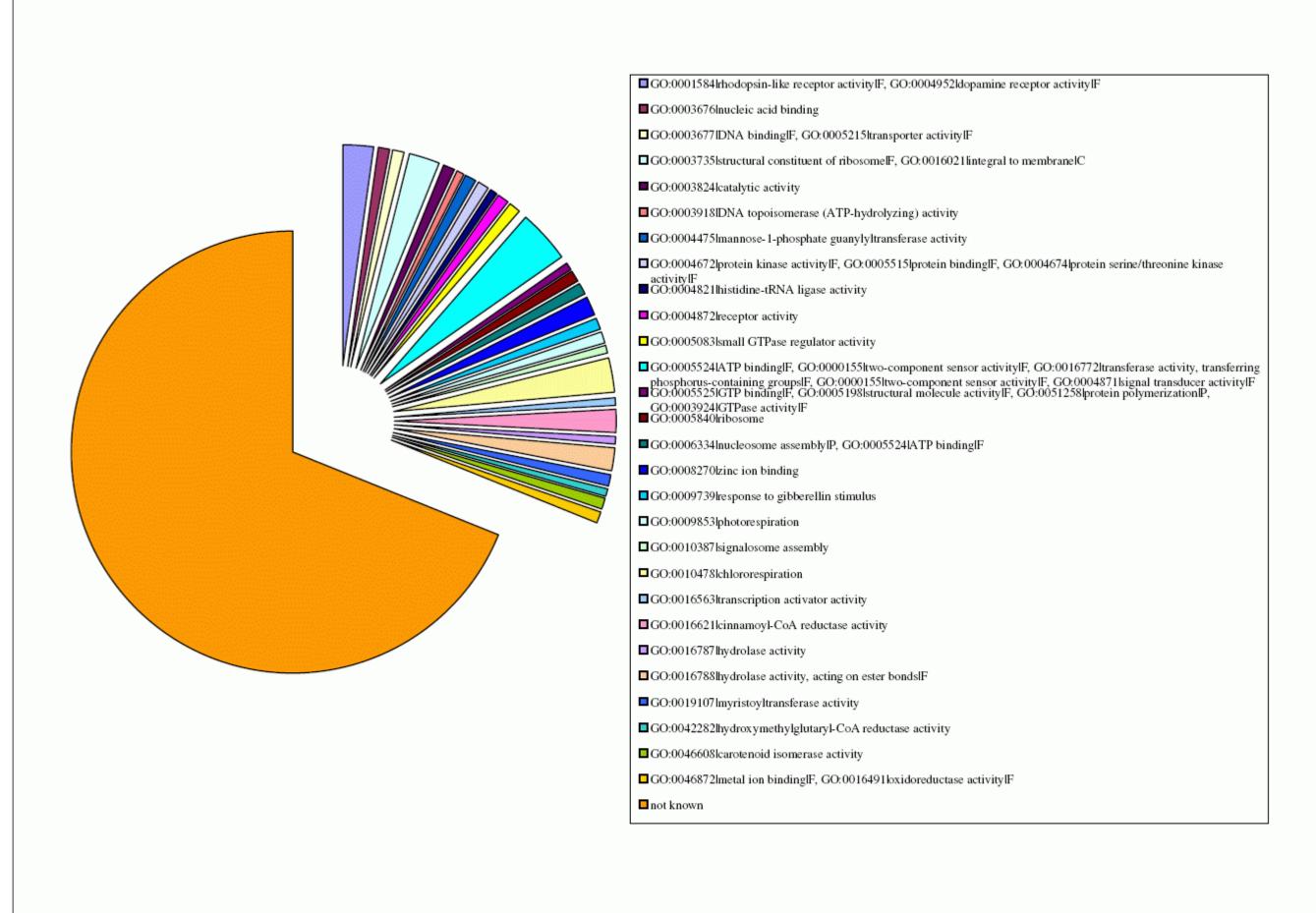


Table 1 – Program parameters

What do You want to do [b]last or [f]iltering?: f

Filtering settings filename:? cucf2

First file number: 1 Last file number: 3883

File name: stcok_blastn_nt_030908 Most important taxon: cucurbitaceae Less important taxon: magnoliophyta

Minor taxon: eukaryota

Important organella: mitochondrion Minimal percent of simillarity: 60 Minimal length with 60 simillarity: 20 Number of HITs to analyze: 0

Choosen database is: nt

Keywords list filename:? cuck1

Your choosen keywords are: ACO, sex, flower, female, male, gonade, pollen, anther, ACS, fruit, shoot apex, SRY, X chromosome, Y chromosome, chromosome X, chromosome Y, ovary, ovule, carpel, pistil, primordium, development, differentiation, embryo, stress, heatshock, ethylene, auxin, hormone, steroid, seed, gibberellin, stamen, PCD, pollination, programmed cell death, buds, drougth, ROS, monooxygenase, catalasa, apoptosis, laddering, oxygene stress, chaperones, transport, transcription factor, tapetum, archespor, ACC, microspore, macrospore, placenta, ethrel

Do You want to start [f]iltering or to change [s]ettings:? f

Is it an update(y/n):? n

Filtering: #1/1 ACC_NO is AM465301

Number of all unique found keywords: 0

*** Number of all collected points *** 6

It was filtered: #1/1

Filtering: #2/1

Table 2 – Collection of GenBank Data

	Total_Score Keys_P	Found_Keys	E-value_P GO_AN_F GO_AN_P	GO_AN_C Desc_I	P Org_P Sim_	P Tax_F	Anno_P	Feat_P	Key_P	Sim_R E	-value	ACC_NO	Genes	Products Proteins	Tissue_Type Dev_Stage	DB_XREF
0 ZPCSPO11_C09 Cucumis sativus	12 1	transcription factor	3		0 0	2 8	0	1	0	85 0	.0	AY221169		basic leucine zipper tr AAO89566.1		taxon:3659, GI:29691164
5 ZPCSPO11_C09 Ipomoea nil	10 2	transcription factor, flower	3		0 0	2 3	1	1	1	77.97619(1,00E-151	U37437	PNIL 34	PNIL34 AAB19120.1	seedling	taxon:35883, GI:1052960
4 ZPCSPO11_C09 Populus trichocarpa	9 1	male	3		0 0	2 3	0	1	0 :	82.02380	1,00E-162	EF148495		unknown ABK96463.1	Sapling trees one metre in h	taxon:3695, GI:118489317
2 ZPCSPO11_C09 Trifolium repens	8 0		3 GO:001656 GO:000996	5 leaf morph	0 0	2 3	0	0	0	66.904761	1,00E-165	AM282585	zip	putative desaturase-lik CAK54360.1	leaf	taxon:3899, GI:109450812,
10 ZPCSPO11_C09 Arabidopsis thalian	8 1	transcription factor	2 GO:000367 GO:000940	GO:000573	0 0	2 3	1	0	1	73.21428	1,00E-104	U38232	AT103	AT103 AAB18942.1	etiolated seed	taxon:3702, GI:1033195
11 ZPCSPO11_C09 Arabidopsis thalian		transport	2 GO:000367 GO:000940	GO:000573	0 0	2 3	0	1	0	73.09523	1,00E-103	NM_115553	AT103	AT103 (DICARBOXY∐NP_191253.1		taxon:3702, TAIR:AT3G569
7 ZPCSPO11_C09 Solanum lycopersion	8 1	fruit	2		0 0	2 3	0	1	0	70.476190	1,00E-121	BT013953			fruit	taxon:4081
8 ZPCSPO11_C09 Populus trichocarpa		female	2		0 0	2 3	0	1	0 :	8.333333	1,00E-109	EF148071		unknown ABK96057.1	Young and mature leaves, al	dtaxon:3694, GI:118488487
9 ZPCSPO11_C09 Zea mays Spermat	8 1	seed	2		0 0	2 3	0	1	0	70.595238	1,00E-105	AY108897				taxon:4577, MaizeGDB:634
1 ZPCSPO11_C09 Nicotiana tabacum	8 0		3		0 0	2 3	0	0	0	70.47619(0	.0	AY221168		ZIP AA089565.2		taxon:4097, GI:33943103
3 ZPCSPO11_C09 Trifolium repens	8 0		3		0 0	2 3	0	0	0	66.904761	1,00E-163	AY322557		putative fatty acid des AAP83877.1		taxon:3899, GI:32480923
6 ZPCSPO11_C09 Gossypium hirsutu			2 GO:001656 GO:000996	5 leaf morph	0 0	2 3	0	0	0	78.809523	1,00E-141	AY456957	ZIP	putative leucine zipperAAR20445.2		taxon:3635, GI:38503523
15 ZPCSPO11_C09 Arabidopsis thalian	7 0		2 GO:0003677 DNA bindii	GO:000953	0 0	2 3	0	0	0	73.095238	1,00E-101	AF236101	Crd1	putative dicarboxylate AAF63476.1		taxon:3702, GI:7542486
17 ZPCSPO11_C09 Oryza sativa Japon	7 1	transcription factor	1		0 0	2 3	0	1	0	70.595238	5,00E-98	NM_001049	Os01g027	hypothetical protein NP_0010427	45.1	taxon:39947, GenelD:43269
43 ZPCSPO11_C09 Euphorbia esula	7 1	buds	1		0 0	2 3	0	1	0 (8.9285714	8,00E-54	AF417577		leucine zipper-contain AAL13304.1		taxon:3993, GI:16033631
12 ZPCSPO11_C09 Triticum aestivum S	7 0		2		0 0	2 3	0	0	0	73.095238	1,00E-103	AY322552		putative fatty acid des AAP83872.1		taxon:4565, GI:32480913
13 ZPCSPO11_C09 Rosa davurica	7 0		2		0 0	2 3	0	0	0	75.833333	1,00E-103	AY322555		putative fatty acid des AAP83875.1		taxon:237596, GI:32480919
14 ZPCSPO11_C09 Spinacia oleracea	7 0		2		0 0	2 3	0	0	0	75.833333	1,00E-101	AY322553		putative fatty acid des AAP83873.1		taxon:3562, GI:32480915
18 ZPCSPO11_C09 Triticum aestivum S	6 0		1 GO:000538 GO:001004	3 response t	0 0	2 3	0	0	0	70.595238	5,00E-98	AY738114	zip1	leucine zipper protein AAW66004.1		taxon:4565, GI:58339283
26 ZPCSPO11_C09 Triticum aestivum S	6 0		1 GO:000538 GO:001004	3 response t	0 0	2 3	0	0	0	70.595238	2,00E-88	AY914051	zip1	putative leucine zipperAAX97504.1		taxon:4565, GI:62736388
64 ZPCSPO11_C09 Oryza sativa (japon	6 1	transcription factor	0		0 0	2 3	0	1	0	11.904761	1,00E-46	AP008207	Os01g027	BAF04659.1		taxon:39947, GI:113532276