This was a presentation at the first day, so I will change the title.

Kikuo Harigaya
Nanotechnology Res. Inst.
AIST, Tsukuba, Japan

Theoretical Investigation on Electronic Properties of Topological Materials: Moebius Nanographite and Conjugated Polymers

K. Harigaya ${ }^{\text {a }}$, A. Yamashiro ${ }^{\text {b }}$,
Y. Shimoia, K. Wakabayashic,
F. L. Gud , and Z. R. Lie
${ }^{\text {aNanotechnology Research Institute, AIST }}$ ${ }^{\text {b }}$ Kyoto University, ${ }^{\text {c Hiroshima University }}$ ${ }^{d}$ Kyushu University, eJilin University, China

Outline

1. Electronic structure changes in Moebius boundary nanographite and conjugated polymers
2. Magnetic and optical properties: How the boundary conditions, periodic and Moebius, are effective?

Moebius strip

A Moebius strip is a twisted loop. This is the first one-sided surface discovered by A. F. Moebius (1790-1868).

In this M.C.Escher's figure, all nine red ants crawl on same surface.

Material with Moebius Strip form now exists!

Recently the NbSe_{3} Moebius strip has been synthesized by S. Tanda's Group. S. Tanda et. al., Nature 417, 397 (2002).

This intriguing topological material has initiated some theoretical researches in the mesoscopic physics.

(1) K. Yakubo, Y. Avishai, and D. Cohen, Phys. Rev. B 67, 125319 (2003).
(2) M. Hayashi and H. Ebisawa, J. Phys. Soc. Jpn. 70, 3495 (2002).

In these theoretical works, the square lattice geometry is used.

If we consider the nanographite ribbons with Moebius boundary condition, what will happen in their electronic and magnetic structures?

Moebius aromatic hydrocarbons have been synthesized!!

letters to nature

Synthesis of a Möbius aromatic hydrocarbon

D. Ajami ${ }^{1}$, 0. Oeckler ${ }^{2}$, A. Simon ${ }^{2}$ \& R. Herges ${ }^{1}$

${ }^{1}$ Institut fur Orgarische Chemic, Universitar Kid, Orto-Hahn-Platz 4, 24098 Ked , Gomany
${ }^{2}$ Max-Planck-institut fior Festkarpoforschugg, Hasonbergstrafe 1.
D-70569 Stutrgart, Germany
Nature 426, 819 (2003)
Twisted π-electrons

Figure 3 -ray structures and photograpts of the cystals of the C_{2} Mobius and the C_{3} Hückel somes. The strucureploss are ideaized forclaity (thermal elipsoids arerempued and the bond orders are indcated by single and double lines). Stuctural paraneters for the Hudxel isomer are not reliable because of disorder (gee text). Therebcre the bond lengts (A) and $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{Cd}$ dedral angles ior the poyene tridge shownin the fogreare dsternined by DFT caculatons (83.4 P/ $6-316^{*}$). For the complets sed of X-ray data and cakulatons, see Suplementary iffanaton.

1 st topic: Magnetism in Moebius nanographite ribbons

1. Discussion on topological materials: Moebius strips
2. Magnetic domain wall states vs.
helical spin orders

Stacking of graphene planes

Activated carbon fibers (ACF)

(a) high surface area with nanopore (structural unites randoml aryanged) (b) a fiber after heat teeatment

(a)

(b)

Localized states along zigzag edges

Armchair v.s. zigzag edges

Wave function amplitudes

Band structures of π-electrons

Magnetic moment along the zigzag edge by the Hubbard model

One dimensional Hubbard model for a graphene ribbon the nearest neighbor hopping t, onsite repulsion U

Spin alignment along the zigzag edges

Spin becomes larger as U increases

Adsorption of molecules and magnetic properties

Experiments

Adsorption of $\mathrm{H}_{2} \mathrm{O}$ molecules

Interpretations
（a）$\underset{\pi \text {－electrob子電雲 }}{ } \mathrm{S}_{\pi \text { 系由来のスピン }}$

（b）

スピン間相互作用 $J \sim t^{2} / U$ 増大 increase of $J \sim t^{2} / \cup$

decrease of χ

N．Kawatsu，Master Thesis（2001）；H．Sato et al， Solid State Commun．125， 641 （2003）．

Analysis by the cluster type model

* Closed shell electron case:

Increase of interactions \rightarrow Increase of total magnetic moment

* Open shell electron case:

Increase of interactions \rightarrow Decrease of total magnetic moment
\rightarrow In agreement with
experiments

K. Harigaya, J. Phys.: Condens. Matter 13, 1295 (2001);
K. Harigaya, Chem. Phys. Lett. 340, 123 (2001);
K. Harigaya and T. Enoki, Chem. Phys. Lett. 351, 128 (2002).

Citation by "Nature"

Magnetic carbon

Tatiana L. Makarova* $\dagger \ddagger$, Bertil Sundqvist \dagger, Roland Höhne§, Pablo Esquinazi§, Yakov Kopelevichll, Peter Scharff \ddagger, Valerii A. Davydovg, Ludmila S. Kashevarovag
\& Aleksandra V. Rakhmaninag

The discovery of nanostructured forms of molecular carbon has led to renewed interest in the varied properties of this element. Both graphite and C_{60} can be electron-doped by alkali metals ${ }^{1}$ to become superconducting transition temperatures of up to 52 K have been attained by field-induced hole-doping of C_{60} (ref. 2). Recent experiments ${ }^{34}$ and theoretical studies ${ }^{5,6}$ have suggested that electronic instabilities in pure graphite may give rise to superconducting and ferromagnetic properties, even at room temperature. Here we report the serendipitous discovery of
6. Harigaya, K. The mechanism of magnetism in stacked nanographite: theoretical study. J. Phys. Condens. Matter 13, 1295-1302 (2001).

Figure 4 Magneliation of Ph- C_{50} in a fixed aplied feid od 02 T (ipper ouve, mianges) and the remanert magnetivation ottainadat $H=0 \mathrm{~T}$ (lower ouve, dirdeajasa furcfon ot terpersture. The Curie lemperature is stout 500 K .

Observation of edge states

- Recently, edge states have been observed by STS for zigzag edges by Prof. T. Enoki's group (Tokyo Inst. of Tech.) and by Prof. Fukuyama's group (Univ. Tokyo), almost simultaneously.
- There are not edge states for the
 armchair edges.
- Therefore, the nanographite model has become more realistic.
Y. Niimi et al, Appl. Surface Sci.

241, 42 (2005).

Spin density distribution of magnetic solutions

Moebius ribbon: $\mathrm{U}=\mathrm{t}, \mathrm{V}=\mathbf{0} ; \mathbf{4 \times 2 0}$ carbon atoms

Mid-gap state in electronic structures

The magnetic domain wall

$$
N=4, L=40
$$

$\mathrm{U} / \mathrm{t}=0.1$

$\mathrm{U} / \mathrm{t}=1$

The width of the magnetic domain wall decreases with increasing the Coulomb interaction U/t.
K. Wakabayashi and K. Harigaya,
J. Phys. Soc. Jpn. 72, 998 (2003).

U/t dependence of the energy spectrum (MBC)

Prof. Shirakawa

The soliton levels appear inside the Hubbard gap like in conjugated polymers
 e.g. polyacetylene.

Model and Method

Extended Hubbard model

$$
\begin{aligned}
H=\sum_{i, j, \sigma}^{n . n .} t_{i, j} \hat{c}_{i, \sigma}^{\dagger} \hat{c}_{j, \sigma} & +\sum_{i} U\left(\hat{n}_{i}^{\uparrow}-\frac{1}{2}\right)\left(\hat{n}_{i}^{\downarrow}-\frac{1}{2}\right) \\
& +\sum_{i, j}^{n . n .} V\left(\hat{n}_{i}-1\right)\left(\hat{n}_{j}-1\right) .
\end{aligned}
$$

Mean Field Approx. with Spin Rotation

$$
\begin{aligned}
& \hat{c}_{i, \Uparrow}^{\dagger} \hat{c}_{i, \uparrow} \hat{c}_{i, \Downarrow}^{\dagger} \hat{c}_{i, k}
\end{aligned}
$$

Spin density distribution of helical magnetic order

Moebius ribbon: $\mathrm{U}=\mathrm{t}, \mathrm{V}=0 ; 4 \times 20$ carbon atoms

$\underset{\text { Ordering }}{\text { Ferrimagnetic }} \xrightarrow{U / t \gg 1} \xrightarrow[\begin{array}{c}\text { ferrimagnetic } \\ \text { state }\end{array}]{\begin{array}{c}\text { AFlike }\end{array}}$
Localized state is not present in the energy gap.

Magnetic moment $\left(M_{x}, M_{z}\right)$ at the edges Moebius strip, 4×40 atoms, $U / t=1, V / t=0$

Energy spectra vs. U/t

Localized magnetic state

Magnetic domain wall state
Helical magnetic state
U opens the energy gap between the HOMOs and LUMOs in the localized magnetic and helical magnetic state,
while mid-gap levels appear in the magnetic domain wall state.

Comparison of the total energy

Moebius strip, $4 \times L(L=40,20,16,12,8)$ carbon atoms Hubbard model with $0<U / t<10$

Lower energy for helical magnetic orders

$\Delta E=$ (total energy of magnetic domain wall)
 - (total energy of helical magnetic state)

L [carbon atom]
L : Length of strip

2nd topic: Optical excitations in Moebius conjugated polymers

1. How effects of the unique Moebius geometries are observed in optical experiments?
2. Two types of Moebius boundaries: uniform ring torsions vs. localized twists

Model for poly(para-phenylene)

PPP: poly(para-phenylene) tight binding model with long range interaction
(a) PPP

к-th optical excitation determined by the single-Cl method

$$
|\kappa\rangle=\sum_{(\mu, \lambda)} D_{\kappa,(\mu, \lambda)}|\mu, \lambda\rangle .
$$

$$
\begin{aligned}
& H=H_{\mathrm{pol}}+H_{\mathrm{int}} \\
& H_{p 01}=\sum_{i, \sigma} E_{i} c_{i, \sigma}^{\dagger} c_{i, \sigma}-\sum_{(i, j), \sigma}\left(t_{i, j}-\alpha y_{i, j}\right)\left(c_{i, \sigma}^{\dagger} c_{j, \sigma}+\text { Hc) }+\frac{K}{2} \sum_{i, j, j} v_{i, j}^{2}\right. \\
& H_{\text {itn }}=U \sum_{i}\left(c_{i, t}^{\mathrm{t}} c_{i, t}-\frac{n_{\mathrm{el}}}{2}\right)\left(c_{i, t}^{\mathrm{t}} c_{i, t}-\frac{n_{\mathrm{el}}}{2}\right) \\
& +\sum_{i, j} W\left(r_{i, j}\right)\left(\sum_{\sigma} c_{i, \sigma}^{\dagger} c_{i, \sigma}-n_{\mathrm{c}}\right)\left(\sum_{\tau} c_{j, \tau}^{\dagger} c_{j, \tau}-n_{c \mathrm{c}}\right) .
\end{aligned}
$$

$$
W(r)=\frac{1}{\sqrt{(1 / U)^{2}+(r / a V)^{2}}} \quad \begin{aligned}
& \text { Ohno potential } \\
& \begin{array}{l}
\text { U: onsite repulsion } \\
\text { V: long range int. }
\end{array}
\end{aligned}
$$

electron-hole excitation from the Hartree-Fock ground state

$$
|\mu, \lambda\rangle=\frac{1}{\sqrt{2}}\left(c_{\mu, \uparrow}^{\dagger} c_{\lambda, \uparrow}-c_{\mu, \downarrow}^{\dagger} c_{\lambda, \downarrow}\right)|g\rangle
$$

Electronic bands in oligomers

Electronic bands for the number of phenyls: $\mathrm{N}=5$

- Periodic boundary
- Moebius boundary
$\uparrow \uparrow$ Optical excitations

Energy difference of the optical excitations is found between two boundary conditions. This could be observed for oligomers due to the sparse population in the wavenumber space.

Optical absorption of poly(paraphenylene): periodic case

Ring torsion angle: $\Phi=0^{\circ}$
$\mathrm{N}=20$: number of phenyl rings
$\mathrm{U}=2.5 \mathrm{t}, \mathrm{V}=1.3 \mathrm{t}$: Coulomb interactions reported in K. Harigaya, J. Phys.:
Condens. Matter 10, 7679 (1998).

Optical absorption of poly(paraphenylene): Moebius case 1

Ring torsion angle: $\Phi=180^{\circ} / \mathrm{N}$ uniform for all over the system ($\mathrm{N}=20$: number of phenyl rings)

electric field $E^{\prime} / / \mathrm{x}, \mathrm{y}$

Mixing of absorption of $E / / z$ component of the periodic boundary case

Optical absorption of poly(paraphenylene): Moebius case 2

Ring torsion angle: $\Phi=30^{\circ}$ localized for five phenyl rings ($\mathrm{N}=20$: total number of phenyls)

Smaller mixing of $\mathrm{E} / / \mathrm{z}$ component because of the localized torsions

Moebius molecules and oligomers

COMMUNICATIONS

Monocyclic (CH) ${ }_{\boldsymbol{\dagger}}$-A Heilbronner Möbius

 Aromatic System Revealed**Michael Mauksch, Valentin Gogonea, Haijun Jiao, Paul von Ragué Schleyer*
Dedicated to Professor Edgar Heilbronner
In 1964 Heilbronner predicted that singlet [$4 n$]annulenes would be aromatic systems in twisted conformations where the p orbitals lie on the surface of a Möbius strip (Figure 1). ${ }^{[1]}$

Figure 1. Schematic representation of the Möbius type overlapping p orbitals in (CH) ${ }_{9}$. The C_{2} axis lies horizontally; the carbon atom on it (right) is across from the phase inversion (left).

Moebius annulene

M. Mauksch et al, Angew.

Chem. Int. Ed. 37, 2395 (1998).

Scheme 3: Reaction of the cyclo(oligothophene-diacetylene) 9-11 to the fully α-conjugated cyclo[n]thiophenes 13-15.

Polythiophene oligomers: Synthesis with Moebius boundary?
G. Fuhrmann et al, Synth. Met. 119, 125 (2001).

Moebius conjugated polymers?

fully 3. Reaction of the cyclo(oligothophene-diacetylene) 9-11 to the fully α-conjugated cyclo[n]thiophenes 13-15.

Possibly, by manipulating monomers by STM, Moebius polymers could be synthesized.

Ring torsions could be fixed by bridging nearby aromatic rings.

Polythiophene oligomers:
G. Fuhrmann et al, Synth. Met.

119, 125 (2001).

2nd topic：NLO in Moebius polymers

産業技術総合研究所
ナノテクノロジー研究部門針谷 喜久雄
k．harigaya＠aist．go．jp
http：／／staff．aist．go．jp／k．harigaya／

Cited in "Nature Asia Materials"

(14) nature asia-pacific

npg
 asia materials
 in association with
 TOKYO INSTITUTE OF TEOHNOLOEY

home

featured highlight

Twisted molecules lock down electrons

Published online 30 April 2008
Researchers from China and Japan have studied how the twist in a molecule can affect the way its electrons are positioned; a fundamental factor in understanding how molecules interact with light.

Zhi-Ru Li and colleagues from Jilin University in China, along with Kikuo Harigaya of AIST, Tsukuba and Feng Long Gu of Kyushu University, Fukuoka, Japan created a computer simulation of a molecule shaped like a Möbius strip-a loop with a twist that has only one, continuous face. Chemists have already created various molecular analogues to this mathematical figure that have unusual electronic and optical properties ${ }^{1}$.

The scientists calculated how clouds of electrons are spread around these twisted molecules, known as cyclacenes, and compared their results with simple
ir . .

,

Model for poly(para-phenylene)

PPP: poly(para-phenylene) tight binding model with long range interaction
(a) PPP

к-th optical excitation determined by the single-Cl method

$$
|\kappa\rangle=\sum_{(\mu, \lambda)} D_{\kappa,(\mu, \lambda)}|\mu, \lambda\rangle .
$$

$$
\begin{aligned}
& H=H_{\mathrm{pol}}+H_{\mathrm{int}} \\
& H_{p 01}=\sum_{i, \sigma} E_{i} c_{i, \sigma}^{\dagger} c_{i, \sigma}-\sum_{(i, j), \sigma}\left(t_{i, j}-\alpha y_{i, j}\right)\left(c_{i, \sigma}^{\dagger} c_{j, \sigma}+\text { Hc) }+\frac{K}{2} \sum_{i, j, j} v_{i, j}^{2}\right. \\
& H_{\text {itn }}=U \sum_{i}\left(c_{i, t}^{\mathrm{t}} c_{i, t}-\frac{n_{\mathrm{el}}}{2}\right)\left(c_{i, t}^{\mathrm{t}} c_{i, t}-\frac{n_{\mathrm{el}}}{2}\right) \\
& +\sum_{i, j} W\left(r_{i, j}\right)\left(\sum_{\sigma} c_{i, \sigma}^{\dagger} c_{i, \sigma}-n_{\mathrm{c}}\right)\left(\sum_{\tau} c_{j, \tau}^{\dagger} c_{j, \tau}-n_{c \mathrm{c}}\right) .
\end{aligned}
$$

$$
W(r)=\frac{1}{\sqrt{(1 / U)^{2}+(r / a V)^{2}}} \quad \begin{aligned}
& \text { Ohno potential } \\
& \begin{array}{l}
\text { U: onsite repulsion } \\
\text { V: long range int. }
\end{array}
\end{aligned}
$$

electron-hole excitation from the Hartree-Fock ground state

$$
|\mu, \lambda\rangle=\frac{1}{\sqrt{2}}\left(c_{\mu, \uparrow}^{\dagger} c_{\lambda, \uparrow}-c_{\mu, \downarrow}^{\dagger} c_{\lambda, \downarrow}\right)|g\rangle
$$

Electronic bands in oligomers

Electronic bands for the number of phenyls: $\mathrm{N}=5$

- Periodic boundary
- Moebius boundary
$\uparrow \uparrow$ Optical excitations

Energy difference of the optical excitations is found between two boundary conditions. This could be observed for oligomers due to the sparse population in the wavenumber space.

Optical absorption of poly(paraphenylene): periodic case

Ring torsion angle: $\Phi=0^{\circ}$
$\mathrm{N}=20$: number of phenyl rings
$\mathrm{U}=2.5 \mathrm{t}, \mathrm{V}=1.3 \mathrm{t}$: Coulomb interactions reported in K. Harigaya, J. Phys.:
Condens. Matter 10, 7679 (1998).

Optical absorption of poly(paraphenylene): Moebius case 1

Ring torsion angle: $\Phi=180^{\circ} / \mathrm{N}$ uniform for all over the system ($\mathrm{N}=20$: number of phenyl rings)

electric field $E^{\prime} / / \mathrm{x}, \mathrm{y}$

Mixing of absorption of $E / / z$ component of the periodic boundary case

Optical absorption of poly(paraphenylene): Moebius case 2

Ring torsion angle: $\Phi=30^{\circ}$ localized for five phenyl rings ($\mathrm{N}=20$: total number of phenyls)

Smaller mixing of $\mathrm{E} / / \mathrm{z}$ component because of the localized torsions

Mobius strip cyclacene, cyclic cyclacene, and linear strip

- N
- C
- H

Cyclic
opening the ring

Optimized Geometries

Method: MP2/6-31+G(d) in Gaussian 03 package

C-N	Möbius		cyclic	linear	
1	$\begin{aligned} & \hline 1.290 \\ & 1.445 \end{aligned}$	distorted region	1.349	$\begin{aligned} & 1.304 \\ & 1.383 \end{aligned}$	end part
2	$\begin{aligned} & \hline 1.305 \\ & 1.403 \end{aligned}$		1.349	$\begin{aligned} & \hline 1.322 \\ & 1.359 \end{aligned}$	
3	$\begin{aligned} & 1.297 \\ & 1.384 \end{aligned}$	nondistorted region	1.349	$\begin{aligned} & 1.334 \\ & 1.348 \end{aligned}$	Non-end part
4	$\begin{aligned} & \hline 1.336 \\ & 1.346 \end{aligned}$		1.349	$\begin{aligned} & 1.342 \\ & 1.341 \end{aligned}$	
5	$\begin{aligned} & 1.375 \\ & 1.311 \end{aligned}$		1.349	$\begin{aligned} & 1.349 \\ & 1.334 \end{aligned}$	
6	$\begin{array}{\|l\|} \hline 1.460 \\ 1.221 \end{array}$	distorted region	1.349	$\begin{aligned} & 1.360 \\ & 1.322 \end{aligned}$	end part
7	$\begin{aligned} & \hline 1.263 \\ & 1.431 \end{aligned}$		1.349	$\begin{aligned} & 1.383 \\ & 1.304 \end{aligned}$	
N-N					
1-2	2.399		2.268	2.294	
2-3	2.384		2.268	2.287	
3-4	2.250		2.268	2.286	
4-5	2.287		2.268	2.286	
5-6	2.327		2.268	2.287	
6-7	2.484		2.268	2.294	
7-1	3.280		2.268	13.658	

Calculated μ, α, β, etc

$$
\begin{array}{lc}
\mu_{0}=\left(\mu_{x}^{2}+\mu_{y}^{2}+\mu_{z}^{2}\right)^{1 / 2} & \alpha_{0}=\frac{1}{3}\left(\alpha_{x x}+\alpha_{y y}+\alpha_{z z}\right) \\
\beta_{0}=\left(\beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2}\right)^{1 / 2} & \beta_{i}=\frac{3}{5}\left(\beta_{i i i}+\beta_{i j j}+\beta_{i k k}\right), i, j, k=x, y, z
\end{array}
$$

	μ_{0}	$\alpha_{0}(a u)$	$\beta_{x}(a u)$	$\beta_{y}(a u)$	$\beta_{z}(a u)$	$\beta_{0}(a u)$	$R^{2}(a u)$	$\Delta \mu(\mathrm{au})$	f_{0}	$\Delta E(\mathrm{eV})$	$f_{0} \cdot \Delta \mu$
Möbius	3.46	268.12	-383	61	67	393	5686	0.484	0.395	6.144	0.191
Cyclic	5.33	323.38	0	1	1049	1049	6023	1.039	0.624	5.222	0.648
Linear	5.34	476.33	100	-2812	-1	2814	20434	0.437	2.031	5.634	0.867

Atomic Unit

Fundamental Atomic Units

Quantity	Name	Symbol	SI value	Planck unit scale
mass	electron rest mass	$m_{\text {e }}$	$\begin{aligned} & 9.109 \\ & 3826(16) \times 10^{-31} \\ & \mathrm{~kg} \end{aligned}$	$10^{-8} \mathrm{~kg}$
length	Bohr radius a_{0}	$a_{0}=\hbar /\left(m_{e} c \alpha\right)$	$\begin{aligned} & 5.291772 \\ & 108(18) \times 10^{-11} \mathrm{~m} \end{aligned}$	$10^{-35} \mathrm{~m}$
charge	elementary charge	e	$\begin{aligned} & 1.602176 \\ & 53(14) \times 10^{-19} \mathrm{C} \end{aligned}$	$10^{-18} \mathrm{C}$
angular momentum	Reduced Planck's constant	$\hbar=h /(2 \pi)$	$\begin{aligned} & 1.054571 \\ & 68(18) \times 10^{-34} \mathrm{~J} \mathrm{~s} \end{aligned}$	(same)
energy	Hartree energy	$E_{\mathrm{h}}=m_{\mathrm{e}} \mathrm{c}^{2} \mathrm{a}^{2}$	$\begin{aligned} & 4.359744 \\ & 17(75) \times 10^{-18} \mathrm{~J} \end{aligned}$	$10^{9} \mathrm{~J}$
electrostatic force constant	Coulomb's constant	$1 /\left(4 \pi \varepsilon_{0}\right)$	$\begin{aligned} & 8.9875516 \times 10^{9} \\ & \mathrm{C}^{-2} \mathrm{~N} \mathrm{~m}^{2} \end{aligned}$	(same)

β_{0} values versus to the

 electronic spatial extent $<R^{2}>$ and $\varepsilon_{\text {gap }}(\mathrm{LUMO}-\mathrm{HOMO})$

LUMO and HOMO orbitals

Summary

1. Topological materials: Moebius nanographite and conjugated polymers
2. Magnetic domain wall states [1] vs. helical magmetic order in nanographite [2]
[1] K. Wakabayashi and K. Harigaya, J. Phys. Soc. Jpn. 72, 998 (2003).
[2] A. Yamashiro, Y. Shimoi, K. Harigaya, and K. Wakabayashi, Physica E 22, 688 (2004).

Summary

3. Optical response in Moebius poly(paraphenylene): Certain components of the optical absorption for the electric field perpendicular to the polymer axis mix with the absorption spectra for the electric filed parallel with the polymer axis as a signature of the Moebius polymers. \rightarrow Promotion of materials synthesis
[3] K. Harigaya, J. Phys. Soc. Jpn. 74, 523 (2005).

Summary

3. Static polarizability α and the first hyperpolarizability β are studied, comparing three models: Mobius strip cyclacene, ring cyclacene, and linear strip.
4. Opening the knot of the Mobius to form the ring leads to the increase of a from 268 to 323 a.u. and β increases about three times from 393 to 1049 a.u.
5. Opening the ring to form the linear strip, α increases from 323 to 476 a.u. β as well increases about three times from 1049 to 2814 a.u.

Acknowledgements

Experimental:
N. Kawatsu (Tokyo Inst. of Technology)
Y. Kobayashi (Tokyo Inst. of Technology)
H. Sato (Chuo University)
K. Takai (Tokyo Inst. of Technology)
T. Enoki (Tokyo Inst. of Technology)

Theoretical:
A. Yamashiro (Kyoto University)
K. Wakabayashi (NIMS)
Y. Shimoi (AIST), F. L. Gu (Kyushu University)
Z. R. Li (Jiling University, China)

