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A genome modular classification that associates cellular processes with modules 

could lead to a method for quantifying the variations in gene expression levels 

caused by different cellular stages or conditions: the transcriptogram, a powerful 

tool for assessing cell performance, would be at hand. Here we present a 

computational method that order genes on a line and clusters strongly interacting 

genes, defining functional modules associated with gene ontology terms. The 

starting point is a list of genes and a matrix specifying their interactions, available 

at large gene interaction databases. Considering the Saccharomyces cerevisiae 

genome we produced a succession of plots of gene transcription levels for a 

fermentation process. These plots discriminate the fermentation stage the cell is 

going through and may be regarded as the first versions of a transcriptogram. This 

method is useful for extracting information from cell stimuli/responses 

experiments, and may be applied with diagnostic purposes to different organisms. 

Determining the precise role of each biochemical agent in every relevant process 

occurring in the cell has turned out to be an elusive task. Local methods that focus on 

one or just a few components of such reactions have met their limitations and we are far 

from an understanding of cell metabolism that would allow preventing, for example, 

cancer or aging in a complex organism. In a global approach, each gene plays its role in 

a way that prevents the analysis of its performance as an isolated unit. However, the 

local analysis did pay off, although not completely, suggesting that there must be a 

third, intermediate route between the local and the global points of view. From this 

intermediate point of view, the genome is regarded as a modular network,
1-4

 where 

genes in a module interact more strongly with one another as compared to their 

interactions with genes external to the module. Such a modular classification would 

provide an estimate of the relative influence of external genes on internal genes of a 

module, making possible approximate models for the module dynamics.  
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Genes have been classified in different ways, generating different databases. For 

example, similarity in nucleotide sequences generates the orthologous relationships 

between genes from different species.
5
 However, groups of orthologs do not necessarily 

represent functional modules. Another way of classifying genes is by the cellular 

metabolic network in which they participate, as presented by KEGG´s data base
6
. A 

metabolic pathway is defined as a series of biochemical reactions that is responsible for 

modifying some set of molecules, but the rationale for identifying the pathway is a flux 

of mass,
7
 which is also different from identifying a functional gene module. On the 

other hand, it would be extremely interesting to i) identify functional gene modules 

inside a genome and then ii) identify which modules participate in each metabolic 

pathway.  

The point is how to produce a comparison method for the expression profiles of 

cells in different states (healthy vs. ill, different stages of cell cycle, etc.), yielding what 

we call a transcriptogram.  We have spotted two main difficulties in producing this 

method. The first one has to do with the fact that identifying functional groups is not 

straightforward (see Asur et. al. and references therein).
8
 Here we present a method for 

ordering a list of genes using the computational physics method known as Monte Carlo 

dynamics. The aim is to cluster on a line the strongly interacting genes. The second 

difficulty has to do with the wild fluctuations found in the expression profiles. Usually, 

fluctuations may be smoothed out by averaging the profiles values over some 

neighborhood, which requires a previous definition for a neighborhood. The genome 

ordering we propose here defines a neighborhood and a metric that correlates the mutual 

influence with the distance between two genes on the list. In this sense, genes that are 

far apart interact less strongly.  

The starting point for the method is a randomly enumerated list of genes and the 

corresponding matrix specifying the interaction between the genes. Here we consider 

gene interaction as the physical and/or functional association presented by any pair of 
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gene products. This body of information has been produced along the years by different 

researchers around the world and is magnificently organized and available at STRING 

database (http://string.embl.de).
9
 We retrieved all protein-protein interactions described 

in that database inferred by “experimental” and “database” evidences for the organism 

Saccharomyces cerevisiae. Our final list comprises 4655 genes and 47415 interactions. 

A similar approach for genome ordering, although not for the transcriptogram, 

has been proposed by Barabási and collaborators.
2,10

 Their ordering algorithm considers 

the topological overlap matrix, which measures the sharing of common neighbors by 

two genes. The algorithm then proceeds as a dendogram construction, where the 

proximity measure is taken as the topological overlap. However, this method leads to an 

ordering which may divide large modules, as we shall discuss in what follows. 

For an ordered list with N genes, the interaction data may be organized in an 

NN  matrix M , where the matrix elements,  ijM , are 1 or 0 depending on whether or 

not the  thi  and 
thj   genes on the list interact. The result is a symmetric matrix of zeroes 

and ones with a null diagonal. We propose here an ordering algorithm that favors the 

proximity of interacting genes by minimizing a virtual energy assigned to each ordering, 

given as 
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where |..| stands for the positive value of the difference between the neighboring sites of 

the interaction matrix and ijd  is proportional to the distance from the point (i,j) to the 

diagonal, that is, jidij  .This virtual energy increases with the number of interfaces 

between black and white dots on the matrix and increases further when these interfaces 

are far from the diagonal. Details are given in Methods section.  

 Figure 1 presents the interaction matrices for Saccharomyces cerevisiae,  taken 

for the initial random gene ordering (1a), after ordering following Barabási
2
 prescription 
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(1b), and following the Virtual Energy Minimization (VEM) algorithm (1c). In these 

figures a black dot located at  indicates that 1ijM . All three configurations 

present the same number of black dots. The randomly ordered gene list distributes 

uniformly the dots over the whole matrix surface. After Dendogram ordering, some 

black dots are concentrated on the main diagonal with some large clusters, while after 

VEM ordering the black dots concentrate even nearer the diagonal, leaving the top left 

and bottom right corners free of black dots. These two corners represent interactions 

between genes located far apart on the list. Furthermore, the black dot clusters far from 

the diagonal, which are present in the interaction matrix representing the Dendogram 

ordering, indicate a strong interaction between clusters of genes located far apart on that 

ordering.
 

To quantitatively characterize the orderings, we have defined window 

modularity for each gene as the ratio between the number of interactions that link any 

two genes in an interval (window)  of size w of the gene list, centered at gene, and the 

number of interactions involving at least one gene in that window.
11

 We considered 

periodic boundary conditions to deal with genes near the ends of the list. Window 

modularity strongly depends on the window size . For example, for a window 

containing all genes of an ordered list, window modularity is one for every gene, while 

it decreases when the window is smaller than the cluster size, due to interactions 

connecting genes inside the window with genes outside the window that still belongs to 

the cluster. Also, genes that link different clusters present low modularity. On Figures 

1d-l window modularity is represented by the gray landscapes.  There we have chosen 

w=251. Plots for other values of window size are presented in Supplementary Materials 

On Line. Observe that window modularity in both Dendogram and VEM orderings 

presents well defined peaks and valleys, indicating interacting modules. The random list 

presents a very low modularity for all genes. Although the peaks are similar in height, in 

the VEM ordering the valleys are deeper and the number of peaks separated by deep 
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valleys is smaller. In fact, since there are valleys with different depth, the peaks may be 

hierarchically defined: smaller clusters composing larger clusters.  

To assess the biochemical meaning of the orderings we have projected on the 

ordering information regarding the Biological Process terms from the Gene Ontology 

(GO) Database.
12

 We used DAVID Bioinformatics Resources,
13

 as described in 

Materials and Methods, to obtain the GO terms that best represent each window 

modularity  peak. For each GO term we calculated the fraction of genes in windows of 

251 sites that belong to the term, producing profiles that are smooth and depend on the 

ordering, presented on Figures 1 d-l. For the randomly ordered list, no peaks are seen 

and no information can be gathered from these plots. For the ordering obtained using 

Dendogram algorithm, some peaks appear, but the ontology terms are not as 

concentrated as for the VEM algorithm. Also, the VEM ordering successively locates 

classes of GO functions in an order that reproduces cell cycle: from right to left we first 

find functions associated with energy metabolism, followed by cell morphogenesis and 

cell communication, then GO terms related to vesicle transport and Golgi vesicle 

transport, then DNA replication and repair, and finally GO terms associated with RNA 

production and translation. 

The orderings may be further characterized using the connectivity k(i) and the 

clustering coefficient c(i) of the i
th

 gene on the ordering.
14

 The interaction matrix gives 

information on which pairs of genes interact. The connectivity k(i) of the  i
th

 gene on the 

ordering is defined as the number of genes with which it interacts. On its turn, the 

clustering coefficient c(i) is defined as the fraction of existing links between any two of 

the k(i) neighbors of the i
th

 gene, relative to the maximum possible number k(i)(k(i)-1)/2 

of such links. Figure 2a and 2b presents the connectivity and clustering coefficient 

profiles for, respectively, the Dendogram and VEM orderings, obtained by taking the 

average of these quantities over windows of 251 sites. The connectivity profile of the 

VEM ordering shows that i) genes with higher connectivity are more concentrated than 
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the Dendogram ordering, presenting a high peak around the window modularity 

maximum at the region located at 0.2-0.3 on the horizontal axis, associated with the 

translation GO term, while the poorly connected genes are found at the ordering 

extremities; and ii) the clustering coefficient also decreases to very small values at the 

ordering extremities. 

We now consider the evolutionary origins of these genes. By assessing 

information available on the Clusters of Orthologous Groups (COG) Database (updated 

and extended version),
9
 we have built for both VEM and Dendogram orderings, a 

profile for the fraction of genes in a 251-gene window that belongs to a COG, presented 

in Figures 2c and 2d. There we also show the profiles giving the fraction of these genes 

in a 251-gene window whose COG presents genes from Eukarya, Bacteria and Archea, 

from Eukarya and Bacteria only, from Eukarya and Archea only, and from Eukarya 

only. Details are described in Materials and Methods. The light gray landscape 

represents the window modularity to guide the eye. The majority of genes with COG in 

(black line) correspond to COGs with genes from Eukarya, Archea and Bacteria, which 

in general can be associated with early evolutionary roots, but not necessarily to a 

common ancestor, due to the high probability of horizontal gene transfer.
15

 While the 

profile associated with COGs presenting only Eukarya and Bacteria genes (orange line) 

for the Dendogram ordering spreads over all ordering, the VEM ordering shows a broad 

valley in the region 0.1-0.6 of the horizontal axis, associated with the GO biological 

process terms (see Figures 1f and 1i) translation, mRNA splicing, ribosome biogenesis 

and assembly, RNA processing, RNA elongation, translation from polymerase II 

promoter, DNA metabolic process, DNA replication, and DNA repair. Furthermore, the 

green profiles for the VEM ordering, associated with COGs with genes from only 

Eukarya, present a broad peak roughly in the same region as the valley of the Bacteria 

and Eukarya only COG profile. Above this peak, it is possible to spot two other higher 

peaks in the VEM green profile, the first around 0.3 on the horizontal axis, at the 
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regions associated with GO terms translation from polymerase II promoter, RNA 

processing, RNA elongation, mRNA polyadenylation, and mRNA 3‟-end processing; 

and the second peak around 0.6 on the horizontal axis, associated with vesicle mediated 

transport and vesicle Golgi transport. That is, the regions where the green profile is 

higher in the VEM ordering majorly contemplate biological processes typical of 

Eukaryotes. The pink lines present the profiles for the Archea and Eukarya only COGs. 

However low these profiles are, the VEM algorithm allows the identification of three 

Archea peaks localized on the ordering at the regions associated with the GO biological 

process terms (see Figures 1f and 1i) translation, mRNA splicing, RNA processing, and 

ribosome biogenesis and assembly.  

The most relevant difference between the results of Dendogram and VEM 

algorithm has to do with the correlation between interaction and proximity on the 

orderings at long ranges; at short range the difference between the two orderings are less 

marked. The evidence is given by Figures 1b and 1c, showing more black points far 

from the diagonal in the interaction matrix of the Dendogram ordering. We calculated 

the number of black dots per length on parallel lines, labeled by a parameter d, to the 

main diagonal. These lines comprehend links between genes sites located d genes apart. 

Figures 2e and 2f shows the black dots concentration as a function of d. After a rapid 

decrease until d=500, the Dendogram ordering yields an interaction concentration that 

stabilizes at 10
-3

. The VEM algorithm, on the other hand, keeps decreasing at an 

exponential rate, indicating much less long range interactions. For very short ranges, 

however, Figure 2F shows that the Dendogram algorithm concentrates more the 

interacting genes, up to 20 genes distant; between 20 and ~600 genes apart the VEM 

concentrates more, between 600 an 1000 they present roughly the same black dot 

density and, after that, the VEM ordering presents exponentially lower dot densities. We 

interpret this exponentially decaying dot density profile in the VEM ordering as a 

correlation between interaction and localization of the genes on the ordering. This 
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correlation gives place to adequate window averages, allowing the smoothing out of 

wild fluctuations in the diverse profiles.  

From now on we concentrate in analyzing the results for the VEM ordering.             

We sliced the VEM ordering in seven pieces, using the window modularity peaks as a 

guide (Fig. 3a). The genes of each piece, together with the information on the 

interaction between these genes, are fed to Medusa application
16

 and partial network 

graphs were produced, shown in Figure 3. The biological functions are mapped with 

GO terms. Observe that in this figure we are able to discriminate gene networks of 

related functions. 

For example, networks p1, p2 and p3 (Fig. 3b-d) are all associated with 

transcription and translation processes, as rRNA/mRNA processing and ribosome 

biogenesis and assembly. Network p4, also overlaps these functions (Fig. 3e), 

represented by DNA repair/replication and cell cycle regulation. All these four gene 

networks have in common the synthesis of biological polymers. By contrast, network p5 

seems to be on single cluster, shifting the ordering to other biochemical classes (Fig. 

3f), such as cell communication and morphogenesis. The last two gene networks (Figs. 

3g-h) present a variety of functions, from actin cytoskeleton organization and vesicle 

transport to carbohydrate, lipid and amino acid metabolic processes. Supplementary 

Figure S3 shows the GO terms as black dots clusters located on the interaction matrix. 

That figure discriminates better the cytoskeleton related functions, indicating that they 

populate the transition of peak 5 to 6. 

A remarkable feature of the right side of VEM ordering is the presence of several 

intermediate products and ATP-producing pathways (e.g. carboxylic acid cycle and 

cellular respiration). The network structure is enriched with highly interconnected 

anabolic and catabolic pathways, which is consistent with the basic strategy of central 

metabolism to form ATP, electron carriers and precursors for the biosynthesis of more-
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complex molecules. Therefore, gene networks p6 and p7 are related to the production of 

both energy and the building blocks from which other molecules of the cell are made.  

At the other end of the VEM ordering (the left side), the functional boundaries 

of the network structure seems to be better discriminated. There are sub-clusters  

associated with several processing steps that control the flow of genetic information in 

cells. As the functional chain, from DNA to RNA to protein, takes place in a more 

linear way comparing to central metabolism, it stands to reason that the network 

structure located at this ordering side is better discriminated by a one-dimensional 

representation. 

Taken together, the metabolic pattern as organized by the VEM algorithm gives 

rise to a sound biochemical and functional ordering, where the closest gene networks 

are more interrelated than the distant ones. 

Finally, we consider gene expression data for the yeast genome. We considered 

experimental data available at Gene Expression Omnibus database, regarding 

microarrays presenting probes for almost all genome components. We have then 

projected the expression on the VEM ordering, always considering window averages, 

obtaining expression profiles that we call transcriptograms. Here we show the 

transcriptograms for Saccharomyces cerevisiae using the data presented by the very 

nice paper by Tu et al.
17

 As explained in that reference, the expression data were 

obtained from yeast continuous culture, in controlled conditions, where the 

concentration levels of dissolved O2 is constantly measured. These levels vary 

periodically in time and the transcription levels were measured for 12 different stages in 

three different dissolved O2 concentration oscillation periods, summing up 36 

transcription profiles. Figure 4 presents the results concerning transcriptograms obtained 

using the VEM ordering. A movie presenting all 36 snapshots is available at 

Supplementary Materials On Line, as well as the results for the Dendogram ordering. 

Figure 4a presents 21 transcriptograms (7 per cycle), taken at the instants represented by 
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the colored (orange, blue, and purple) dots on the plot of dissolved oxygen versus time 

in log-linear plot (Fig. 4b). Each color is associated with one cycle. Figure 4a also 

presents the window modularity as a landscape, to guide the eye, and the distribution of 

three gene clusters as defined in Tu et al. paper based on sentinels genes: Ox 

(oxidative), R/B (reductive, building), and R/C (reductive, charging). Figures 4c to 4i 

present the relative expression profiles at different instants, where we divided all 

profiles by the expression values of the first transcriptome (t = 0). This stage has been 

arbitrarily chosen to evince time relative variations of gene expression. The expression 

profiles show different behaviors for the left and right hand side portions: the expression 

profile of left side peaks extremely abruptly at the intense burst of oxygen consumption, 

while the right side gradually raises when cells begin to cease oxygen consumption. 

According to the gene networks mapped in Figures 1 and 3, the left side embraces 

several energy-demanding processes, essentially represented by the synthesis of 

biological polymers. It requires abundant amounts of adenosine triphosphate (ATP), 

which is available in profusion at the respiratory phase. This interplay of metabolic 

pathways for energy production is compatible with the time ordering through the phases 

Ox, R/B, and R/C as described in the original paper.
17

 Our results support the 

conclusion drawn by the authors based on the expression of 15 genes for each cluster, a 

small gene fraction available in yeast transcriptomes. Here, by the use of 

transcriptograms, we present the dynamic changes during the metabolic cycle assessing 

the complete information. 

In summary, we propose here the transcriptogram as a tool for assessing cell 

metabolism, which is capable of discriminating the stage the cell is going through at a 

given instant. The reason why this is possible is based on the functional modularity of 

the genome, which is evinced by a hierarchical ordering of the gene list: strongly 

interacting genes form clusters, strongly interacting clusters form clusters of clusters, 

and so forth. A second requirement for a one-dimensional transcriptogram is the 
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correlation between distance and interaction strength not only between genes, but also 

between clusters of genes. In this way, the hierarchical characteristic of the ordering 

manifests itself on the interaction matrix by presenting a decreasing density of black 

dots as the distance from the main diagonal increases, such that the upper left and lower 

right corners are free of the black dots associated with interactions between genes far 

apart. Dendogram-like methods are capable of ordering the genome at gene-gene 

interaction level, but are less efficient in ordering at cluster-cluster interaction level, 

thus compromising the quality of functional information that the averages over 

neighboring sites may help producing. The VEM ordering algorithm contemplates the 

cluster-cluster interaction level by penalizing with higher virtual energy the interaction 

matrix configurations associated with gene orderings that locate interacting genes at 

distant positions. Further improvements on the algorithm should specifically 

contemplate this hierarchy, which ultimately reflects the functional correlation between 

genes. In fact, the transcriptogram opens the possibility of a tool that works as a 

telescope, where the focus is tunable and may be adjusted to the desired level of details: 

when passing from a wide genome overview to smaller functional modules analysis, the 

observation window may be narrowed down, discriminating more functional modules at 

greater detail. On the other hand, the method is readily applicable to any species, 

including Homo sapiens, which will be presented elsewhere. 

 

Methods 

We retrieved protein-protein interactions from STRING database 

(http://string.embl.de/)
9
 , using  “experimental” and “database” (95% of these 

interactions) added with  “neighbourhood”, “fusion”, “co-expression”, and “co-

occurrence” evidences, String-score≥0.800, comprising 4655 genes and 47415 

interactions. 
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The VEM Algorithm minimizes the energy given by Eq. (1). Periodic boundary 

conditions were used, except to calculate the distance to the main diagonal. We  

randomly choose two genes on the ordered list, swap their positions, and re-calculate 

the energy.  If the virtual energy decreases, the change is accepted. If the energy is 

increased by ΔE , the change is accepted with probability exp[-ΔE /T], where T is a 

virtual temperature. We started with T = 6 × 10
5
  and every 100 Monte Carlo Steps 

(MCS) the temperature is lowered to 20% of its previous value. A MCS is a number of 

random choices equal to the number of elements in the system.  

GO term enrichment was performed using DAVID bioinformatics resources 

(http://david.niaid.nih.gov)
13

 to determine whether particular gene ontology terms occur 

more frequently than expected by chance in a given set of genes. We used default 

settings for the category GOTERM_BP_ALL, and selected those terms with P < 0.05 

(for FDR no greater than 5%) representing central biochemical pathways/metabolic 

functions. From  bit strings where the ith bit is set to 1(0) whenever the ith gene of an 

ordering is (not)  listed in the GO term, we obtain smooth  profiles by assigning to every 

gene the fraction of bits valued 1 in a window of size w, centered on the gene.  

Yeast transcript expression data were obtained from YG_S98 array platforms 

(Affymetrix, Inc.)
17

, available at GEO database, Series GSE3431 

(http://www.ncbi.nlm.nih.gov/projects/geo/). The transcriptograms are obtained by 

assigning to the ith gene the average of the expression values of its neighbors in a 

window of size w centered at the gene.  

 

 

 

 

http://www.ncbi.nlm.nih.gov/projects/geo/
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LEGENDS 

Figure 1. Protein-protein interaction matrix analysis algorithms. The axes relative 

to gene position have been divided by the total number of genes: 4655. (a) Random 

ordering. (b) Dendogram ordering algorithm. (c) Virtual Energy Minimizing (VEM) 

algorithm. (d-l) Biological function projections for different peaks and orderings. Gray 

landscape backgrounds: window modularity for the orderings. The maxima at the 

window modularity plots correspond to larger concentrations of black dots on the matrix 

representation, that is, intra-module interactions are more intense in these regions. 

Figure 2. Statistical and evolutionary profiles of Dendogram and VEM orderings. 

The axes relative to gene position have been divided by the total number of genes: 4655. 

(a-b) Connectivity, modularity and clustering coefficient. The profiles of Dendogram 

and VEM orderings were obtained by taking the average of these quantities over 

windows of 251 sites. (c-d) Fraction of genes in a 251 gene window whose COG 

presents genes from Eukarya, Bacteria and Archea, from Eukarya and Bacteria only, 

from Eukarya and Archea only, and from Eukarya only. The light gray landscape 

background gives the window modularity to guide the eye. The gray line in both figures 

is the profile of the fraction of genes with COG in the window. (e-f) Black dot density 
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on lines parallel to the main diagonal, as a function of the distance of the line from the 

main diagonal. This gives information on the quantity of links between genes as a 

function of their distance on the ordering. (e) On a log-linear plot, to evince the 

exponential decay of dot density on the VEM plots and (f) on  a log-log, to evince the 

behaviour near the main diagonal.   

Figure 3. Graph representation of the VEM ordering. The axes relative to gene 

position have been divided by the total number of genes: 4655. (a) VEM ordering was 

sliced in seven pieces, using the window modularity peaks as a guide for this division. 

The genes of each piece, together with the information on the interaction between these 

genes, were fed to Medusa application
16

 to  produce the network graphs. (b – h) 

Network graphs associated with each peak, whose biological functions are mapped with 

GO terms using DAVID bioinformatics resources.
13

 

Figure 4. Saccharomyces cerevisiae transcriptograms. The axes relative to gene 

position have been divided by the total number of genes: 4655. (a) Microarray data 

available at Gene Expression Omnibus database
17

 were projected on VEM ordering to 

obtain the expression profiles, or transcriptograms. Each color is associated with one 

cycle, as explained in B. Projections on the ordering were performed always considering 

window averages. To guide the eye, the window modularity is depicted as a landscape, 

together with the distribution of three gene clusters, as described previously
17

 based on 

sentinels genes: Ox (oxidative), R/B (reductive, building), and R/C (reductive, 

charging). (b) Plot of dissolved Oxygen versus time in log-linear. Transcriptograms (6 

per cycle), were taken at the instants represented by the colored (orange, blue, and 

purple) dots. (c – i) Relative expression profiles. Transcriptograms were divided by the 

expression values of the first transcriptome (t=0). c: represents the relative expression 

profile corresponding to the first dot of each cycle; d: represents the second dot of each 

cycle, and so on. 
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„Supplementary Information accompanies the paper on www.nature.com/nature.‟ 
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