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Abstract 

The discovery of new anti-influenza drugs is urgent, particularly considering the 

recent threat of swine flu. In this study, the influenza virus M2 protein was 

expressed in HEK293 cells and shown to have selective ion channel activity for 

monovalent ions. The anti-influenza virus drug amantadine hydrochloride 

significantly attenuated the inward current induced by hyperpolarization of 

HEK293 cell membranes. Although adamantine derivatives are the only M2 

drugs for influenza virus A, their use is limited in the US due to drug resistance. 

Here we report the discovery of multiple M2 inhibitor lead compounds that were 

rapidly generated through focused screening of a small primary amine library. 

The screen was designed using a scaffold-hopping strategy based on 

amantadine. This study suggests that an antiviral compound directed against a 

conserved motif may be more useful than amantadine in inhibiting viral 

replication. 
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Introduction 

There is currently an outbreak of H1N1 influenza (swine flu) around the world1,2. 

Although vaccination is the ideal way to prevent influenza virus infection, the 

preparation of a new vaccine requires more than 6 months3. Thus, antiviral 

drugs are most effective for short-term defense against influenza.  However, 

very few effective drugs are available to combat the influenza virus. 

 

The only known anti-influenza A drugs3-6 are M2 inhibitors (amantadine and its 

derivative rimantadine) and NA inhibitors (zanamivir and oseltamivir). 

Amantadine and rimantadine are limited in their use in the US due to the rapid 

development of resistance. In addition, there is growing concern that 

anti-neuraminidase-resistant viruses may emerge if these drugs are widely 

used7. Thus, there is an urgent need to discover new types of M2 inhibitors for 

the development of new anti-influenza drugs. Although amantadine reached the 

market 40 years ago, all known M2 inhibitors to date are amantadine derivatives 

(Figure 1), with the exception of BL-17438.  Therefore, a vast area of chemical 

space remains to be explored. 

       

Many years of high-throughput screening (HTS) of various chemical libraries 

have not fulfilled expectations9. Although this strategy still plays a key role in 

lead generation, there is a growing interest in library design and analysis10. 

Focused screening has emerged as a more rational approach that emphasizes 

the quality rather than the quantity11. Dr. Gillet mentioned in his paper that10 

focused screening involves the selection of a subset of compounds according to 

existing structure-activity relationships. Although many publications12-15 have 
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discussed the trends and HTS application in drug discovery, there is a shortage 

of successful case studies that validate this approach.  

 

We decided to design and screen a small primary amine library of 

scaffold-hops11 based on amantadine to generate new lead compounds in the 

M2 inhibitor class. Five compounds were identified as M2 inhibitors out of a 

library consisting of 70 molecules. Here, we demonstrate that focused screening 

is highly efficient in lead generation, and we describe the identification of 

multiple M2 inhibitors that may support anti-viral drug discovery. 

 

Results and Discussion  

The mechanism of M2 inhibitors is to block the ion channel activity of the M2 

protein of most influenza A viruses16.  This action inhibits viral replication by 

blocking hydrogen ion flow. The amino group in amantadine is likely the 

pharmacophore and is necessary to block hydrogen ion transport.  

Consequently, the adamantyl group is the scaffold. For unknown reasons, 

nearly all studies except for those investigating BL-1743 have focused on the 

search for new aminoadamantane derivatives17, with much less attention 

focused on the chemotype.  

 

The strategy for our library design was simple and based on the structure and 

activity relationships of amantadine. The scaffold covers different molecular 

properties, with an emphasis on steric effect. As shown in Figure 2 and Table 

S1, this library contains linear, aromatic, monocylic, bicyclic, and tricyclic 

amines supplied by the major chemical companies. We rapidly constructed the 



 5

library by ordering 70 primary amines from commercial sources. 

 

The library was screened by employing three types of in vitro assays, including 

viral inhibition, a cell based assay, and patch clamp analyses. Among these 70 

compounds, we found five compounds (Table 1) that could act as M2 inhibitors. 

Only compound ZSG-2-101E was less active than amantadine, and the other 4 

compounds were more or less active in different assay models. Thus, these 

compounds were M2 inhibitors consisting of new chemotypes. 

 

The five structures in Table 1 represent the extent of the middle steric effects. 

Compound ZSG-2-101B is a substituted cyclohexyl amine, LSR-2-007C and 

LSR-2-007D are bi-cyclic compounds and entio-isomers configured in R and 

S-methyl group, ZSG-2-046C has the same scaffold as the former compounds 

with a methyl amine as a functional group, and ZSG-2-101E is closely related to 

Amantadine but contains one less methylene. The structure and activity data 

suggest that the wild type M2 ion channel can accommodate a range of 

chemical space, but a minimal functional group is required to block the channel. 

Whereas all linear, simple monocylic, and aromatic amines have no activity, 

substituted cyclohexylmaine, as well as some bicyclic and tricyclic amines, have 

inhibitory activities that mimic amantadine . Expansion of the size of Amantadine 

by the addition of substitute groups to the ring, such as methyl or hydroxyl 

groups, enhances inhibitory activity. 

 

Although medicinal chemists typically do not use such alkyl scaffolds for drug 

development, risk-versus-benefit equations suggest the usefulness of these 
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scaffolds. These newly discovered chemotypes may be used for further drug 

discovery targeted against acute and deadly infectious diseases. Thus, this 

study only validates that focused screening is practical for lead generation.  In 

addition, we disclose several new M2 inhibitors for the discovery of new 

anti-influenza drugs. Thus, drug discovery in academia may benefit from the 

use of targeted library design and analysis rather than expensive HTS.  
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Figure 1. Reported M2 inhibitors: mainly amantadine derivatives. 
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Figure 2. The design strategy used for our primary amine library. 
 
 



 



Table 1. Compounds that share the inhibitory activity of Amantadine identified in 
the small library.  

No. Amantadine ZSG-2-1
01B 

LSR-2-007C LSR-2-007D ZSG-2-046C ZSG-2-10
1E 

 
 
structure 

NH 2

 

NH2

 

NH2

 

NH2

 

NH2  

NH2

 

Viral 
inhibition 

7.447 
 

33.49 
 

6.018 
 

1.363 
 

2.304 
 

38.21 
 

Cell-based 
assay 

3.525 3.37 22.98 5.960 25.47 18.97 

Patch-clamp 
recording 

8.8±2.7 4.8±1.2 
 

6.8±2.2 4.3±2.7 
 

4.4±1.3 
 

13.5±4.1 
 

IC50 (mean ± SEM) μM.  
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